海军军医大学学报  2024, Vol. 45 Issue (3): 333-339   PDF    
胰岛素鼻腔给药治疗阿尔茨海默病研究进展
王晟蕾, 李凤珍, 李腾飞, 刘环海, 廖建春     
海军军医大学(第二军医大学)第二附属医院耳鼻咽喉头颈外科, 上海 200003
摘要: 胰岛素近年来被认为与阿尔茨海默病(AD)等中枢退行性疾病密切相关,可能是治疗和改善AD患者记忆、认知能力的靶点。血脑屏障的存在使胰岛素皮下注射无法在大脑中达到期望浓度,而鼻腔途径是最简便有效的避开肝脏首过效应,直接递送药物进入中枢神经系统的靶向给药方式。已有相关临床试验证明胰岛素经鼻腔给药可以改善AD患者的认知能力。本文就不同胰岛素给药方式的优劣、胰岛素与AD之间的关系及使用鼻腔胰岛素治疗AD的疗效等进行综述。
关键词: 胰岛素    鼻腔给药    阿尔茨海默病    中枢神经系统靶向药物递送    认知    
Intranasal insulin for Alzheimer's disease: research progress
WANG Shenglei, LI Fengzhen, LI Tengfei, LIU Huanhai, LIAO Jianchun     
Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200003, China
Abstract: Insulin has recently been proved to be closely associated with central degenerative diseases such as Alzheimer's disease (AD) and may be a target for the treatment and improvement of memory and cognitive performance of AD patients. However, the blood-brain barrier prevents subcutaneously administered insulin from reaching the desired concentration in the brain. The nasal route is the easiest and most efficient way to avoid the first-pass effect of the liver and directly deliver drugs into the central nervous system. Clinical trials have demonstrated that intranasal insulin can improve the cognitive function of AD patients. This article reviews the advantages and disadvantages of different insulin delivery routes, the relationship between insulin and AD, and the efficacy of intranasal insulin in the treatment of AD.
Key words: insulin    intranasal delivery    Alzheimer's disease    drug delivery to central nervous system    cognition    

鼻腔给药一般用于治疗鼻塞和过敏性鼻炎等鼻部疾病,由此开发的鼻用药物也大多在局部起效,如含抗组胺药或糖皮质激素的鼻腔喷雾剂、滴鼻剂等。近年来鼻腔给药作为口服给药和有创给药的替代途径,受到越来越多的关注[1]。鼻黏膜血液循环良好,蛋白水解酶活性低,同时存在直接通路转运药物进入脑组织,避免了肝脏的首过效应;此外,鼻腔给药的药物吸收分布快,能避开血脑屏障的干扰,以非侵入性的方式向中枢神经系统靶向给药[2]。这些特性使得鼻腔给药在治疗中枢神经系统疾病等方面成为研究焦点。

人胰岛素是一种小分子蛋白质,由51个氨基酸构成,含有2条多肽链,通过半胱氨酸残基之间的二硫键相连维持其稳定的三维构象,是人体重要的调节血糖水平的激素[3]。皮下注射胰岛素已成为糖尿病患者日常治疗方案之一,但这种给药方式会给患者带来疼痛感与恐惧情绪[4]。胰岛素经鼻腔途径给药大大增加了给药的便利性和患者依从性,不仅能够避免有创操作可能带来的感染,且可以将外源性胰岛素输送至中枢神经系统[2]。近年来随着中枢神经系统中胰岛素受体(insulin receptor,InsR)功能与通路研究的不断深入,胰岛素信号被认为与阿尔茨海默病(Alzheimer’s disease,AD)等神经退行性疾病密切相关[5]。胰岛素鼻腔给药作为记忆衰退患者或AD患者记忆、认知改善的潜在治疗方式引起广泛关注。本文就不同胰岛素给药方式的优劣、经鼻腔给药的基础与优势、AD与胰岛素的关系、使用鼻腔胰岛素治疗AD的疗效及相关进展等进行综述。

1 胰岛素

胰岛素作为调节人体代谢的重要激素,参与抑制糖异生、糖酵解、脂肪分解和蛋白质分解等代谢过程,也是大脑中的关键神经营养因子。既往认为大脑对胰岛素不敏感,胰岛素在中枢神经系统的作用局限于反馈和控制进食行为、能量代谢等,但这一观点随着发现胰岛素对神经元突触发育具有重要作用而转变[6]

血脑屏障由脑的连续毛细血管内皮细胞及其细胞间的紧密连接、完整的基膜、周细胞及星形胶质细胞围成的神经胶质膜构成,是一个复杂、动态的选择性渗透屏障,只允许高度亲脂的小分子物质通过,因此很多药物无法在脑脊液中达到期望浓度[7]。外周胰岛素进入大脑的唯一途径是通过构成血脑屏障和血-脑脊液屏障的内皮细胞和室管膜细胞上的InsR介导的内吞作用,以饱和运输的方式将胰岛素转运进入中枢神经系统,从而参与调节能量代谢,促进神经血管再生[8-9]

InsR属于络氨酸激酶受体,在大脑中嗅球、下丘脑、海马、大脑皮质、纹状体和小脑处密度最高,且高度富集于突触[8]。当胰岛素与之结合时,InsR自动磷酸化,通过胰岛素-InsR底物IRS-PI3K-Akt通路和Ras-RAF-MAPK通路促进内皮细胞增殖、血管扩张、神经元形成与轴突生长[10]。大脑中的胰岛素效应也调节外周胰岛素的敏感性、产热及脂肪代谢[6, 8]。既往以全身系统性给药作为探究胰岛素中枢神经系统作用的首选方式,但鼻腔给药不同于其他给药方式,为胰岛素入脑提供了一个简便快捷的途径。

1.1 不同胰岛素给药方式的优劣

传统的胰岛素给药方式为皮下注射,但这种有创方式常给患者带来痛苦与恐惧[4]。频繁的皮下注射也易引起注射部位局部组织坏死、脂肪萎缩或肥大、过敏、感染及神经损伤等[11]。且脂肪萎缩区域对胰岛素吸收不稳定,忽视注射部位的轮换可能会导致黑棘皮病[12]。除皮下注射外,胰岛素还有口服、经皮给药、鼻腔给药、肺部给药、脑室注射和眼部给药等多种给药方法。胰岛素口服易降解,生物利用度极低,目前还未能通过改变胰岛素性质、剂型或采用不同载体给药系统使其充分发挥效应[13]。经皮给药是靠微针穿透角质层与表皮形成的微小通道释放药物进入真皮的微循环系统,从而将药物快速转移到全身循环中[14]。肺部给药是利用超薄的肺泡上皮细胞、极大的肺泡表面积及其丰富的毛细血管进行胰岛素的快速全身分布[15]。被批准用于治疗1型、2型糖尿病的吸入型胰岛素粉末降低糖尿病患者糖化血红蛋白的效果不逊于皮下注射门冬氨酸胰岛素[16]。但经肺给药的长期安全性问题还有待考察,其最常见的不良反应是低血糖和咳嗽,还有可能增加长期吸烟患者的肺癌发生风险[17-18]。经皮与经肺给药可能成为糖尿病治疗的替代方法,但这2种给药方法都无法在中枢神经系统达到理想胰岛素水平的同时维持外周血糖平稳。脑室注射可将胰岛素直接输送到脑脊液,从而分布到整个脑区,也可选择下丘脑等位置进行有目的的注射,但相对有创的操作无益于提高胰岛素使用的依从性[19-20]。胰岛素眼部给药与皮下注射相比生物利用度低,仅为5%~10%,虽然可以通过视神经将药物运转进入脑脊液,但大部分药物在泪液作用下经鼻泪管排入鼻腔,且给药后血清胰岛素水平升高极快,约为基线水平的6倍[21]

1.2 胰岛素与鼻腔给药 1.2.1 鼻腔结构基础与给药优势

鼻腔是鼻的组成部分之一,被鼻中隔分隔为左右两部分,体积约为15 mL,总表面积约为150 cm2[22]。每侧鼻腔包含鼻前庭和固有鼻腔,固有鼻腔可分为嗅区和呼吸区两部分,其表面高度血管化并衬以黏膜,是全身给药的关键部位[23]。药物可经呼吸区黏膜进入鼻腔静脉,进入体循环或汇入颅内静脉,但此情况下药物必须通过血脑屏障才能进入大脑。嗅区位于上鼻甲,紧贴于筛板之下,黏膜中的嗅细胞向上合成嗅丝,通过筛骨筛板进入颅内,止于嗅球。同时硬脑膜向下延续,合成嗅神经鞘膜,药物可由此路径吸收进入脑脊液[24-25]。药物在呼吸区或嗅区通过三叉神经和嗅神经的轴突运输、跨细胞运输与嗅神经周围通道进行细胞外运输,不需要经过复杂的修饰就可进入脑脊液、脑干和大脑的更远区域发挥作用[26-27]。鼻腔给药是避免肝脏的首过效应、增加药物脑内递送的希望之路。

1.2.2 胰岛素鼻腔给药

胰岛素经鼻腔给药后的相对生物利用度为16.6%~19.8%(2 h),与皮下注射相似[28-29]。对小鼠和大鼠模型的荧光示踪显示,胰岛素鼻腔给药时通过鼻黏膜吸收,避开血脑屏障,经嗅神经和三叉神经周围间隙转运入脑,到达嗅球并沿脑血管周围间隙分布[10, 30]。给药10 min后即可检测到脑脊液胰岛素水平的升高,并可在给药后30 min内输送至有重要胰岛素信号的区域[8, 25]。从鼻腔给药至检测到大脑中药物浓度升高的时间间隔提示其运输方式可能更符合快速细胞外运输机制[31]。鼻腔给药后的AUC脑∶血浆比皮下注射胰岛素高2 000倍,表明鼻腔途径能够将胰岛素靶向运输至大脑,且能避免外周胰岛素聚集[32]

胰岛素鼻腔给药后的血浆胰岛素水平更接近于正常的餐后胰岛素模式,其药代动力学曲线也与内源性胰岛素释放相似[33]。当胰岛素经鼻给药剂量在25 IU及以上时,血清胰岛素水平开始升高,给药后1 h内胰岛素水平持续升高,对血糖的影响在给药40 min后达到峰值水平,1.5~2 h后开始减弱[34]。胰岛素经鼻给药后平均达峰时间在15~20 min[28, 33]。胰岛素经鼻给药后加强了对内源性葡萄糖生成的抑制和外周组织对葡萄糖的摄取,并改善外周胰岛素敏感性[35]。Roque等[36]证明不论是正常人群还是糖尿病患者,胰岛素经鼻给药剂量即使高达80 IU也不会引起临床的严重低血糖,胰岛素经鼻腔给药有很高的安全性,是在中枢神经系统达到理想胰岛素水平并避免外周低血糖反应的给药简单途径。

胰岛素经鼻腔给药的常见不良反应为鼻部刺激,可表现为鼻部刺痛、灼热感、打喷嚏、鼻塞等,轻微的低血糖和胃肠道症状较少,并没有其他严重不良反应事件的报道,这些不良反应与选择鼻腔作为给药途径有直接关系[37]

2 AD与胰岛素

AD是一种以进行性认知功能障碍为特征的神经退行性疾病,β-淀粉样蛋白(β-amyloid protein,Aβ)沉积和Tau蛋白过度磷酸化是其特征。AD常表现出大脑葡萄糖利用受损与InsR功能障碍等异常[38]

在中枢神经系统中,胰岛素作用还将新陈代谢与认知功能联系起来。InsR在与学习和记忆有关的海马、额叶皮质中分布密集。胰岛素可促进海马区突触的可塑性,从而影响生理认知过程[39]。同时以慢性高血糖和胰岛素抵抗为特征的2型糖尿病也是AD的危险因素[40]。2型糖尿病患者对认知起重要作用的顶叶、颞叶和额叶的皮质代谢降低[6],大脑老化速度加快,大脑白质连接和网络结构减少,可能导致认知和情绪受损,患痴呆症的风险增加[41-42]

AD患者脑脊液及中枢神经系统中的胰岛素水平较低,胰岛素样生长因子1、2和InsR的表达也减少,并与AD的严重程度和认知能力恶化相关[43]。研究发现AD患者脑胰岛素IRS-PI3K-Akt信号通路活性明显降低[44-45]。AD特征的Aβ寡聚体可以阻断胰岛素信号向细胞内的传递,而胰岛素通路信号的降低又影响Aβ寡聚体的清除,并增加磷酸激酶糖原合成激酶3活性,使Tau蛋白过度磷酸化,可能导致神经退行性变[46]。胰岛素信号减少或缺乏还导致AD突触功能障碍及空间记忆、认知缺陷,说明胰岛素可能是治疗AD代谢与认知功能障碍的合适靶点[47-48]。高脑胰岛素抵抗水平会导致脑脊液与血清中胰岛素水平比值降低,与较差的认知记忆状态直接相关,很可能独立于Aβ和Tau蛋白的损伤机制导致认知功能障碍[6]

现仍使用口服乙酰胆碱酯酶抑制剂和谷氨酸受体拮抗剂等药物来减轻AD患者临床症状,改善记忆认知与功能水平。但大脑的药物浓度受到血脑屏障和药物自身通透性影响[24]。胰岛素经鼻给药最突出的特点就是能够通过嗅神经及三叉神经通路将胰岛素有效转运进入中枢神经系统,这一简单路径给利用胰岛素治疗AD等疾病带来了曙光。

3 胰岛素鼻腔给药与AD

鼻内胰岛素已被证实可以改善正常人群的陈述性记忆,对于认知功能正常的老年人群或糖尿病患者,也有助于改善其视觉空间记忆和认知功能[44, 49]。胰岛素入脑后激活InsR,改善神经元对葡萄糖的摄取[10],提高突触可塑性,从而有效改善AD患者记忆、认知和语言能力,并防止大脑萎缩[12, 43, 50-51]。研究表明每日40 IU鼻内胰岛素或胰岛素类似物治疗可以提高轻度认知功能障碍或AD患者的认知能力,对其语言工作记忆和视觉工作记忆也有明显的改善,且基线胰岛素抵抗水平越高,改善效果越明显[50, 52]

胰岛素可以增加胰岛素降解酶的表达,从而清除细胞外沉积的Aβ。在AD小鼠和大鼠模型中,鼻腔注射胰岛素在提高认知、记忆能力及改善抑郁状态的同时还降低了海马区Tau的磷酸化水平与Aβ寡聚体的浓度[53-54]。针对AD患者的研究也证实胰岛素鼻腔给药在提高患者认知功能的同时,可以改善脑脊液中AD相关生物标志物的水平,减缓AD症状进展[45]。磷酸化Tau蛋白-181(Tau-P181)与脑脊液Aβ42比值是AD风险和进展的敏感指标之一,常规胰岛素40 IU治疗2~4个月可以有效提高患者记忆力,并降低Tau-P181/Aβ42的比值[55]

干扰素γ(interferon γ,IFN-γ)浓度升高可保护神经系统,嗜酸性粒细胞趋化因子eotaxin和IL-2水平增加与AD认知能力下降速度减缓有关[56-57]。Eotaxin还可以与CC趋化因子受体3结合,通过胰岛素的Akt/PI3K通路促进血管生成。在长达12个月的试验中,受试者脑脊液中有关免疫功能、炎症和损伤的标志物均发生变化,40 IU胰岛素治疗组的IFN-γ、eotaxin和IL-2水平增加[58],经鼻胰岛素可在中枢神经系统促进免疫系统反应,进而对AD进展起治疗作用。载脂蛋白E4(apolipoprotein E4,ApoE4)可以加重血脑屏障损伤,导致认知能力下降,也是AD发病的危险因素之一。ApoE4表达阴性的AD患者胰岛素敏感性更低已有报道,常表现出胰岛素介导的葡萄糖处理能力的下降[59]。接受鼻腔胰岛素治疗的ApoE4阴性男性患者在记忆方面获得的改善比女性更多,胰岛素的记忆促进作用在剂量为20 IU时达到峰值。且在ApoE4阴性的认知健康人群中,胰岛素可有效降低Aβ42水平[60-61]。同时脑白质高信号体积的增加可以反映淀粉样血管病变,与AD相关生物标志和认知功能的恶化有关。一项长达12个月的双盲试验结果显示,每天2次20 IU鼻内胰岛素治疗有效减少了脑白质高信号体积的进展,防止认知功能的恶化[62]

所有胰岛素鼻腔给药治疗的研究中,在大脑中达到目标浓度的胰岛素在治疗期间都没有引起空腹血浆葡萄糖的下降,因此鼻腔途径是一种在保持外周正常血糖的同时使胰岛素在大脑达到有效浓度,进而改善AD患者的记忆与认知功能的安全实用方法。

4 小结

鼻腔给药方便快捷,可以通过嗅神经和三叉神经通路绕过血脑屏障增加药物脑内递送。胰岛素是临床广泛使用的药物,考虑到患者依从性与给药操作的简易安全性,鼻腔给药是在中枢神经系统达到理想药物浓度并避免有创操作带来的痛苦与低血糖风险的最佳给药方式。这使胰岛素的作用不再局限于控制外周血糖。大脑中胰岛素相关信号通路被证明与AD等神经退行性疾病相关,可影响记忆与认知能力。胰岛素通路信号的降低可影响Aβ寡聚体的清除,增加磷酸化Tau蛋白沉积,可能导致神经退行性变的产生。大量临床研究表明鼻腔应用胰岛素不仅可以调节外周胰岛素抵抗,还可以改善神经元对葡萄糖的摄取,提高突触可塑性,改善AD患者记忆、认知和语言能力,缓解AD进展并防止大脑萎缩。胰岛素可通过IFN-γ、eotaxin和IL-2等炎症标志物促进免疫系统反应,减缓脑白质高信号体积的进展,缓解AD症状。

胰岛素对记忆的促进作用受胰岛素抵抗水平、ApoE4基因表达差异的影响,目前取得较好效果的研究均使用常规胰岛素制剂。但中枢神经系统胰岛素与AD之间的病理机制尚未完全阐明,胰岛素的使用剂量与频率对中枢神经系统胰岛素抵抗及胰岛素自身昼夜节律有影响也未有定论。既往研究表明脑胰岛素在记忆改善和情绪控制方面的反应存在性别差异[61],因此同时也需要探究受试者年龄及胖瘦程度对疗效的影响,进而确定胰岛素治疗的最佳适应证。鼻黏膜长期给药是否会导致鼻腔慢性炎症改变和纤毛毒性还需更长时间的研究观察。

参考文献
[1]
ILLUM L. Nasal drug delivery-possibilities, problems and solutions[J]. J Control Release, 2003, 87(1-3): 187-198. DOI:10.1016/s0168-3659(02)00363-2
[2]
KASHYAP K, SHUKLA R. Drug delivery and targeting to the brain through nasal route: mechanisms, applications and challenges[J]. Curr Drug Deliv, 2019, 16(10): 887-901. DOI:10.2174/1567201816666191029122740
[3]
OWENS D R, ZINMAN B, BOLLI G B. Insulins today and beyond[J]. Lancet, 2001, 358(9283): 739-746. DOI:10.1016/S0140-6736(01)05842-1
[4]
SOUSA F, CASTRO P, FONTE P, et al. How to overcome the limitations of current insulin administration with new non-invasive delivery systems[J]. Ther Deliv, 2015, 6(1): 83-94. DOI:10.4155/tde.14.82
[5]
KELLAR D, CRAFT S. Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches[J]. Lancet Neurol, 2020, 19(9): 758-766. DOI:10.1016/S1474-4422(20)30231-3
[6]
ARNOLD S E, ARVANITAKIS Z, MACAULEY-RAMBACH S L, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums[J]. Nat Rev Neurol, 2018, 14(3): 168-181. DOI:10.1038/nrneurol.2017.185
[7]
NEUWELT E, ABBOTT N J, ABREY L, et al. Strategies to advance translational research into brain barriers[J]. Lancet Neurol, 2008, 7(1): 84-96. DOI:10.1016/S1474-4422(07)70326-5
[8]
KULLMANN S, VEIT R, PETER A, et al. Dose-dependent effects of intranasal insulin on resting-state brain activity[J]. J Clin Endocrinol Metab, 2018, 103(1): 253-262. DOI:10.1210/jc.2017-01976
[9]
BANKS W A, JASPAN J B, KASTIN A J. Selective, physiological transport of insulin across the blood-brain barrier: novel demonstration by species-specific radioimmunoassays[J]. Peptides, 1997, 18(8): 1257-1262. DOI:10.1016/s0196-9781(97)00198-8
[10]
LOCHHEAD J J, KELLOHEN K L, RONALDSON P T, et al. Distribution of insulin in trigeminal nerve and brain after intranasal administration[J]. Sci Rep, 2019, 9(1): 2621. DOI:10.1038/s41598-019-39191-5
[11]
RICHARDSON T, KERR D. Skin-related complications of insulin therapy: epidemiology and emerging management strategies[J]. Am J Clin Dermatol, 2003, 4(10): 661-667. DOI:10.2165/00128071-200304100-00001
[12]
BUZÁSI K, SÁPI Z, JERMENDY G. Acanthosis nigricans as a local cutaneous side effect of repeated human insulin injections[J]. Diabetes Res Clin Pract, 2011, 94(2): e34-e36. DOI:10.1016/j.diabres.2011.07.023
[13]
WONG C Y, MARTINEZ J, DASS C R. Oral delivery of insulin for treatment of diabetes: status quo, challenges and opportunities[J]. J Pharm Pharmacol, 2016, 68(9): 1093-1108. DOI:10.1111/jphp.12607
[14]
PETTIS R J, GINSBERG B, HIRSCH L, et al. Intradermal microneedle delivery of insulin lispro achieves faster insulin absorption and insulin action than subcutaneous injection[J]. Diabetes Technol Ther, 2011, 13(4): 435-442. DOI:10.1089/dia.2010.0184
[15]
BRASHIER D B S, KHADKA A, ANANTHARAMU T, et al. Inhaled insulin: a "puff" than a "shot" before meals[J]. J Pharmacol Pharmacother, 2015, 6(3): 126-129. DOI:10.4103/0976-500X.162013
[16]
RASHID J, ABSAR S, NAHAR K, et al. Newer devices and improved formulations of inhaled insulin[J]. Expert Opin Drug Deliv, 2015, 12(6): 917-928. DOI:10.1517/17425247.2015.990436
[17]
ROSENSTOCK J, FRANCO D, KORPACHEV V, et al. Inhaled technosphere insulin versus inhaled technosphere placebo in insulin-naïve subjects with type 2 diabetes inadequately controlled on oral antidiabetes agents[J]. Diabetes Care, 2015, 38(12): 2274-2281. DOI:10.2337/dc15-0629
[18]
BODE B W, MCGILL J B, LORBER D L, et al. Inhaled technosphere insulin compared with injected prandial insulin in type 1 diabetes: a randomized 24-week trial[J]. Diabetes Care, 2015, 38(12): 2266-2273. DOI:10.2337/dc15-0075
[19]
RHEA E M, SALAMEH T S, BANKS W A. Routes for the delivery of insulin to the central nervous system: a comparative review[J]. Exp Neurol, 2019, 313: 10-15. DOI:10.1016/j.expneurol.2018.11.007
[20]
GEIJSELAERS S L C, AALTEN P, RAMAKERS I H G B, et al. Association of cerebrospinal fluid (CSF) insulin with cognitive performance and CSF biomarkers of Alzheimer's disease[J]. J Alzheimers Dis, 2018, 61(1): 309-320. DOI:10.3233/JAD-170522
[21]
KOEVARY S B, LAM V, PATSIOPOULOS G, et al. Accumulation of porcine insulin in the rat brain and cerebrospinal fluid following ocular application[J]. J Ocul Pharmacol Ther, 2003, 19(4): 377-384. DOI:10.1089/108076803322279435
[22]
ROMEO V D, DEMEIRELES J, SILENO A P, et al. Effects of physicochemical properties and other factors on systemic nasal drug delivery[J]. Adv Drug Deliv Rev, 1998, 29(1/2): 89-116. DOI:10.1016/s0169-409x(97)00063-x
[23]
FORTUNA A, ALVES G, SERRALHEIRO A, et al. Intranasal delivery of systemic-acting drugs: small-molecules and biomacromolecules[J]. Eur J Pharm Biopharm, 2014, 88(1): 8-27. DOI:10.1016/j.ejpb.2014.03.004
[24]
AGRAWAL M, SARAF S, SARAF S, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs[J]. J Control Release, 2018, 281: 139-177. DOI:10.1016/j.jconrel.2018.05.011
[25]
LOCHHEAD J J, THORNE R G. Intranasal delivery of biologics to the central nervous system[J]. Adv Drug Deliv Rev, 2012, 64(7): 614-628. DOI:10.1016/j.addr.2011.11.002
[26]
JOHNSON N J, HANSON L R, FREY W H. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures[J]. Mol Pharm, 2010, 7(3): 884-893. DOI:10.1021/mp100029t
[27]
FAN Y, CHEN M, ZHANG J, et al. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases[J]. Crit Rev Ther Drug Carrier Syst, 2018, 35(5): 433-467. DOI:10.1615/CritRevTherDrugCarrierSyst.2018024697
[28]
STOTE R, MILLER M, MARBURY T, et al. Enhanced absorption of NasulinTM, an ultrarapid-acting intranasal insulin formulation, using single nostril administration in normal subjects[J]. J Diabetes Sci Technol, 2011, 5(1): 113-119. DOI:10.1177/193229681100500116
[29]
STOTE R, MARBURY T, SHI L, et al. Comparison pharmacokinetics of two concentrations (0.7% and 1.0%) of Nasulin, an ultra-rapid-acting intranasal insulin formulation[J]. J Diabetes Sci Technol, 2010, 4(3): 603-609. DOI:10.1177/193229681000400314
[30]
RENNER D B, SVITAK A L, GALLUS N J, et al. Intranasal delivery of insulin via the olfactory nerve pathway[J]. J Pharm Pharmacol, 2012, 64(12): 1709-1714. DOI:10.1111/j.2042-7158.2012.01555.x
[31]
LI Y, WANG C, ZONG S, et al. The trigeminal pathway dominates the nose-to-brain transportation of intact polymeric nanoparticles: evidence from aggregation-caused quenching probes[J]. J Biomed Nanotechnol, 2019, 15(4): 686-702. DOI:10.1166/jbn.2019.2724
[32]
NEDELCOVYCH M T, GADIANO A J, WU Y, et al. Pharmacokinetics of intranasal versus subcutaneous insulin in the mouse[J]. ACS Chem Neurosci, 2018, 9(4): 809-816. DOI:10.1021/acschemneuro.7b00434
[33]
DASH S, XIAO C, MORGANTINI C, et al. Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations[J]. Diabetes, 2015, 64(3): 766-774. DOI:10.2337/db14-0685
[34]
LEARY A C, STOTE R M, BREEDT H J, et al. Pharmacokinetics and pharmacodynamics of intranasal insulin administered to healthy subjects in escalating doses[J]. Diabetes Technol Ther, 2005, 7(1): 124-130. DOI:10.1089/dia.2005.7.124
[35]
HENI M, WAGNER R, KULLMANN S, et al. Hypothalamic and striatal insulin action suppresses endogenous glucose production and may stimulate glucose uptake during hyperinsulinemia in lean but not in overweight men[J]. Diabetes, 2017, 66(7): 1797-1806. DOI:10.2337/db16-1380
[36]
ROQUE P, NAKADATE Y, SATO H, et al. Intranasal administration of 40 and 80 units of insulin does not cause hypoglycemia during cardiac surgery: a randomized controlled trial[J]. Can J Anaesth, 2021, 68(7): 991-999. DOI:10.1007/s12630-021-01969-5
[37]
GWIZDALA K L, FERGUSON D P, KOVAN J, et al. Placebo controlled phase Ⅱclinical trial: safety and efficacy of combining intranasal insulin & acute exercise[J]. Metab Brain Dis, 2021, 36(6): 1289-1303. DOI:10.1007/s11011-021-00727-2
[38]
DOMÍNGUEZ R O, PAGANO M A, MARSCHOFF E R, et al. Alzheimer disease and cognitive impairment associated with diabetes mellitus type 2:associations and a hypothesis[J]. Neurologia, 2014, 29(9): 567-572. DOI:10.1016/j.nrl.2013.05.006
[39]
SĘDZIKOWSKA A, SZABLEWSKI L. Insulin and insulin resistance in Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(18): 9987. DOI:10.3390/ijms22189987
[40]
BARONE E, DI DOMENICO F, PERLUIGI M, et al. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease[J]. Free Radic Biol Med, 2021, 176: 16-33. DOI:10.1016/j.freeradbiomed.2021.09.006
[41]
VERGOOSSEN L W, SCHRAM M T, DE JONG J J, et al. White matter connectivity abnormalities in prediabetes and type 2 diabetes: the Maastricht study[J]. Diabetes Care, 2020, 43(1): 201-208. DOI:10.2337/dc19-0762
[42]
FROSCH O H, YAU P L, OSORIO R S, et al. Insulin resistance among obese middle-aged is associated with decreased cerebrovascular reactivity[J]. Neurology, 2017, 89(3): 249-255. DOI:10.1212/WNL.0000000000004110
[43]
ERICHSEN J M, CALVA C B, REAGAN L P, et al. Intranasal insulin and orexins to treat age-related cognitive decline[J]. Physiol Behav, 2021, 234: 113370. DOI:10.1016/j.physbeh.2021.113370
[44]
HALLSCHMID M. Intranasal insulin for Alzheimer's disease[J]. CNS Drugs, 2021, 35(1): 21-37. DOI:10.1007/s40263-020-00781-x
[45]
HÖLSCHER C. Insulin signaling impairment in the brain as a risk factor in Alzheimer's disease[J]. Front Aging Neurosci, 2019, 11: 88. DOI:10.3389/fnagi.2019.00088
[46]
SIMS-ROBINSON C, KIM B, ROSKO A, et al. How does diabetes accelerate Alzheimer disease pathology?[J]. Nat Rev Neurol, 2010, 6(10): 551-559. DOI:10.1038/nrneurol.2010.130
[47]
CRAFT S, CHOLERTON B, BAKER L D. Insulin and Alzheimer's disease: untangling the web[J]. J Alzheimers Dis, 2013, 33(Suppl 1): S263-S275. DOI:10.3233/JAD-2012-129042
[48]
GRILLO C A, PIROLI G G, LAWRENCE R C, et al. Hippocampal insulin resistance impairs spatial learning and synaptic plasticity[J]. Diabetes, 2015, 64(11): 3927-3936. DOI:10.2337/db15-0596
[49]
NOVAK V, MILBERG W, HAO Y, et al. Enhancement of vasoreactivity and cognition by intranasal insulin in type 2 diabetes[J]. Diabetes Care, 2014, 37(3): 751-759. DOI:10.2337/dc13-1672
[50]
GALINDO-MENDEZ B, TREVINO J A, MCGLINCHEY R, et al. Memory advancement by intranasal insulin in type 2 diabetes (MemAID) randomized controlled clinical trial: design, methods and rationale[J]. Contemp Clin Trials, 2020, 89: 105934. DOI:10.1016/j.cct.2020.105934
[51]
CRAFT S, BAKER L D, MONTINE T J, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial[J]. Arch Neurol, 2012, 69(1): 29-38. DOI:10.1001/archneurol.2011.233
[52]
CLAXTON A, BAKER L D, HANSON A, et al. Long acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer's disease dementia[J]. J Alzheimers Dis, 2015, 45(4): 1269-1270. DOI:10.3233/JAD-159002
[53]
GUO Z, CHEN Y, MAO Y F, et al. Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer's rat model[J]. Sci Rep, 2017, 7: 45971. DOI:10.1038/srep45971
[54]
MAO Y F, GUO Z, ZHENG T, et al. Intranasal insulin alleviates cognitive deficits and amyloid pathology in young adult APPswe/PS1dE9 mice[J]. Aging Cell, 2016, 15(5): 893-902. DOI:10.1111/acel.12498
[55]
CRAFT S, CLAXTON A, BAKER L D, et al. Effects of regular and long-acting insulin on cognition and Alzheimer's disease biomarkers: a pilot clinical trial[J]. J Alzheimers Dis, 2017, 57(4): 1325-1334. DOI:10.3233/JAD-161256
[56]
LIANG C S, TSAI C L, LIN G Y, et al. Better identification of cognitive decline with interleukin-2 than with amyloid and tau protein biomarkers in amnestic mild cognitive impairment[J]. Front Aging Neurosci, 2021, 13: 670115. DOI:10.3389/fnagi.2021.670115
[57]
FURUKAWA T, MATSUI N, FUJITA K, et al. CSF cytokine profile distinguishes multifocal motor neuropathy from progressive muscular atrophy[J]. Neurol Neuroimmunol Neuroinflamm, 2015, 2(5): e138. DOI:10.1212/NXI.0000000000000138
[58]
KELLAR D, REGISTER T, LOCKHART S N, et al. Intranasal insulin modulates cerebrospinal fluid markers of neuroinflammation in mild cognitive impairment and Alzheimer's disease: a randomized trial[J]. Sci Rep, 2022, 12(1): 1346. DOI:10.1038/s41598-022-05165-3
[59]
KRASEMANN S, MADORE C, CIALIC R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases[J]. Immunity, 2017, 47(3): 566-581.e9. DOI:10.1016/j.immuni.2017.08.008
[60]
REGER M A, WATSON G S, GREEN P S, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults[J]. J Alzheimers Dis, 2008, 13(3): 323-331. DOI:10.3233/jad-2008-13309
[61]
CLAXTON A, BAKER L D, WILKINSON C W, et al. Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer's disease[J]. J Alzheimers Dis, 2013, 35(4): 789-797. DOI:10.3233/JAD-122308
[62]
KELLAR D, LOCKHART S N, AISEN P, et al. Intranasal insulin reduces white matter hyperintensity progression in association with improvements in cognition and CSF biomarker profiles in mild cognitive impairment and Alzheimer's disease[J]. J Prev Alzheimers Dis, 2021, 8(3): 240-248. DOI:10.14283/jpad.2021.14