[1] |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI:10.1016/j.cell.2012.03.042 |
[2] |
DOLMA S, LESSNICK S L, HAHN W C, et al. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells[J]. Cancer Cell, 2003, 3(3): 285-296. DOI:10.1016/s1535-6108(03)00050-3 |
[3] |
YANG W S, STOCKWELL B R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15(3): 234-245. DOI:10.1016/j.chembiol.2008.02.010 |
[4] |
STOCKWELL B R, FRIEDMANN ANGELI J P, BAYIR H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. DOI:10.1016/j.cell.2017.09.021 |
[5] |
ARDS Definition Task Force, RANIERI V M, RUBENFELD G D, THOMPSON B T, et al. Acute respiratory distress syndrome: the Berlin definition[J]. JAMA, 2012, 307(23): 2526-2533. DOI:10.1001/jama.2012.5669 |
[6] | |
[7] | |
[8] |
EAGLE H. The specific amino acid requirements of a human carcinoma cell (Stain HeLa) in tissue culture[J]. J Exp Med, 1955, 102(1): 37-48. DOI:10.1084/jem.102.1.37 |
[9] | |
[10] |
GOLBERG L, SMITH J P. Changes associated with the accumulation of excessive amounts of iron in certain organs of the rat[J]. Br J Exp Pathol, 1958, 39(1): 59-73. |
[11] |
SEILER A, SCHNEIDER M, FÖRSTER H, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death[J]. Cell Metab, 2008, 8(3): 237-248. DOI:10.1016/j.cmet.2008.07.005 |
[12] | |
[13] |
GALARIS D, BARBOUTI A, PANTOPOULOS K. Iron homeostasis and oxidative stress: an intimate relationship[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(12): 118535. DOI:10.1016/j.bbamcr.2019.118535 |
[14] |
CAMASCHELLA C, NAI A, SILVESTRI L. Iron metabolism and iron disorders revisited in the hepcidin era[J]. Haematologica, 2020, 105(2): 260-272. DOI:10.3324/haematol.2019.232124 |
[15] | |
[16] |
LATUNDE-DADA G O. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy[J]. Biochim Biophys Acta Gen Subj, 2017, 1861(8): 1893-1900. DOI:10.1016/j.bbagen.2017.05.019 |
[17] |
CHEN P H, WU J, DING C C, et al. Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism[J]. Cell Death Differ, 2020, 27(3): 1008-1022. DOI:10.1038/s41418-019-0393-7 |
[18] |
BROWN C W, AMANTE J J, CHHOY P, et al. Prominin2 drives ferroptosis resistance by stimulating iron export[J]. Dev Cell, 2019, 51(5): 575-586.e4. DOI:10.1016/j.devcel.2019.10.007 |
[19] |
HASSANNIA B, WIERNICKI B, INGOLD I, et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma[J]. J Clin Invest, 2018, 128(8): 3341-3355. DOI:10.1172/JCI99032 |
[20] |
YE Z, LIU W, ZHUO Q, et al. Ferroptosis: final destination for cancer?[J]. Cell Prolif, 2020, 53(3): e12761. DOI:10.1111/cpr.12761 |
[21] |
HIDER R C, KONG X L. Glutathione: a key component of the cytoplasmic labile iron pool[J]. BioMetals, 2011, 24(6): 1179-1187. DOI:10.1007/s10534-011-9476-8 |
[22] |
PATEL S J, FREY A G, PALENCHAR D J, et al. A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly[J]. Nat Chem Biol, 2019, 15(9): 872-881. DOI:10.1038/s41589-019-0330-6 |
[23] |
KAGAN V E, MAO G, QU F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. DOI:10.1038/nchembio.2238 |
[24] |
GUILLOU H, ZADRAVEC D, MARTIN P G P, et al. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice[J]. Prog Lipid Res, 2010, 49(2): 186-199. DOI:10.1016/j.plipres.2009.12.002 |
[25] |
KAGAN V E, TYURINA Y Y, SUN W Y, et al. Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death[J]. Free Radic Biol Med, 2020, 147: 231-241. DOI:10.1016/j.freeradbiomed.2019.12.028 |
[26] |
DIXON S J, STOCKWELL B R. The role of iron and reactive oxygen species in cell death[J]. Nat Chem Biol, 2014, 10(1): 9-17. DOI:10.1038/nchembio.1416 |
[27] |
FRIEDMANN ANGELI J P, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191. DOI:10.1038/ncb3064 |
[28] |
INGOLD I, BERNDT C, SCHMITT S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409-422.e21. DOI:10.1016/j.cell.2017.11.048 |
[29] |
HAYANO M, YANG W S, CORN C K, et al. Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation[J]. Cell Death Differ, 2016, 23(2): 270-278. DOI:10.1038/cdd.2015.93 |
[30] |
MURPHY T H, MIYAMOTO M, SASTRE A, et al. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress[J]. Neuron, 1989, 2(6): 1547-1558. DOI:10.1016/0896-6273(89)90043-3 |
[31] | |
[32] |
XIE Y, ZHU S, SONG X, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Rep, 2017, 20(7): 1692-1704. DOI:10.1016/j.celrep.2017.07.055 |
[33] |
JENNIS M, KUNG C P, BASU S, et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model[J]. Genes Dev, 2016, 30(8): 918-930. DOI:10.1101/gad.275891.115 |
[34] | |
[35] |
ELGUINDY M M, NAKAMARU-OGISO E. Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH: ubiquinone oxidoreductases (NDH-2)[J]. J Biol Chem, 2015, 290(34): 20815-20826. DOI:10.1074/jbc.M115.641498 |
[36] |
BERSUKER K, HENDRICKS J M, LI Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. DOI:10.1038/s41586-019-1705-2 |
[37] |
KRAFT V A N, BEZJIAN C T, PFEIFFER S, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6(1): 41-53. DOI:10.1021/acscentsci.9b01063 |
[38] |
SOULA M, WEBER R A, ZILKA O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers[J]. Nat Chem Biol, 2020, 16(12): 1351-1360. DOI:10.1038/s41589-020-0613-y |
[39] |
GALLUZZI L, VITALE I, AARONSON S A, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541. DOI:10.1038/s41418-017-0012-4 |
[40] |
LINKERMANN A, STOCKWELL B R, KRAUTWALD S, et al. Regulated cell death and inflammation: an auto-amplification loop causes organ failure[J]. Nat Rev Immunol, 2014, 14(11): 759-767. DOI:10.1038/nri3743 |
[41] |
DONG H, QIANG Z, CHAI D, et al. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1[J]. Aging, 2020, 12(13): 12943-12959. DOI:10.18632/aging.103378 |
[42] |
XU Y, LI X, CHENG Y, et al. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion[J]. FASEB J, 2020, 34(12): 16262-16275. DOI:10.1096/fj.202001758R |
[43] | |
[44] |
ALI M K, KIM R Y, KARIM R, et al. Role of iron in the pathogenesis of respiratory disease[J]. Int J Biochem Cell Biol, 2017, 88: 181-195. DOI:10.1016/j.biocel.2017.05.003 |
[45] |
HUPPERT L A, MATTHAY M A, WARE L B. Pathogenesis of acute respiratory distress syndrome[J]. Semin Respir Crit Care Med, 2019, 40(1): 31-39. DOI:10.1055/s-0039-1683996 |
[46] |
HOROWITZ R I, FREEMAN P R, BRUZZESE J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: a report of 2 cases[J]. Respir Med Case Rep, 2020, 30: 101063. DOI:10.1016/j.rmcr.2020.101063 |
[47] |
PACHT E R, TIMERMAN A P, LYKENS M G, et al. Deficiency of alveolar fluid glutathione in patients with sepsis and the adult respiratory distress syndrome[J]. Chest, 1991, 100(5): 1397-1403. DOI:10.1378/chest.100.5.1397 |
[48] |
AGGARWAL S, DIMITROPOULOU C, LU Q, et al. Glutathione supplementation attenuates lipopolysaccharide-induced mitochondrial dysfunction and apoptosis in a mouse model of acute lung injury[J]. Front Physio, 2012, 3: 161. DOI:10.3389/fphys.2012.00161 |
[49] |
KELLNER M, NOONEPALLE S, LU Q, et al. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)[J]. Adv Exp Med Biol, 2017, 967: 105-137. DOI:10.1007/978-3-319-63245-2_8 |