海军军医大学学报  2024, Vol. 45 Issue (12): 1521-1528   PDF    
翻译控制肿瘤蛋白1调控肾细胞癌细胞增殖迁移的机制
王庆卿1, 黄新忠2, 胡崟钰3, 曹洁3     
1. 南通大学医学院, 南通 226001;
2. 南通大学附属医院肾内科, 南通 226001;
3. 南通市第六人民医院肾内科, 南通 226000
摘要: 目的 检测翻译控制肿瘤蛋白1(TPT1)在肾细胞癌(RCC)中的表达,并探讨其在RCC中的作用。方法 从基因表达综合数据库下载微阵列数据集GSE15641(包括23例正常肾脏组织样本数据和32例RCC组织样本数据),并使用R 4.3.0软件筛选RCC组织和正常肾脏组织之间的差异表达基因。采用qPCR和蛋白质印迹法检测90例在南通大学附属医院确诊并接受治疗的RCC患者的RCC组织和癌旁正常组织,以及人RCC细胞(769-P、786-O、ACHN和Caki-1)和人正常胚肾293细胞(HEK293)中TPT1的表达。通过χ2检验分析TPT1表达与RCC患者临床病理特征之间的关系。从癌症基因组图谱数据库获得522例RCC患者的临床信息,采用ROC曲线和Kaplan-Meier生存曲线分析TPT1表达与患者预后的相关性。体外转染TPT1 siRNA和siRNA阴性对照(NC)至786-O和Caki-1细胞后,采用qPCR和蛋白质印迹法检测细胞中TPT1的表达,分别应用CCK-8实验、划痕实验和Transwell实验检测细胞的增殖、迁移和侵袭能力,并采用蛋白质印迹法检测凋亡相关蛋白的表达。结果 与正常肾脏组织和HEK293细胞相比,TPT1在RCC组织和RCC细胞中的表达均上调(均P<0.05)。TPT1表达水平低的RCC患者肿瘤大小及转移发生率均低于TPT1表达水平高的患者(均P<0.05)。ROC曲线分析结果提示,TPT1对RCC具有较高的诊断价值(AUC=0.856 9,95% CI 0.804 5~0.909 3,P<0.001)。Kaplan-Meier生存曲线分析结果显示,低TPT1表达组RCC患者的总生存期长于高TPT1表达组(P=0.018 4)。在细胞实验中,与siRNA NC组相比,转染TPT1 siRNA后786-O和Caki-1细胞的增殖活性、划痕愈合率和侵袭穿膜细胞数均下降(均P<0.01),凋亡相关蛋白Bcl-2和基质金属蛋白酶9表达降低、Bcl-2相关X蛋白表达增加(均P<0.05)。结论 TPT1参与了RCC的进展,可能是RCC治疗的潜在靶点。
关键词: 肾细胞癌    翻译控制肿瘤蛋白1    细胞增殖    细胞迁移    细胞凋亡    
Mechanism of translationally-controlled tumor protein 1 in regulating proliferation and migration of renal cell carcinoma cells
WANG Qingqing1, HUANG Xinzhong2, HU Yinyu3, CAO Jie3     
1. Medical School of Nantong University, Nantong 226001, Jiangsu, China;
2. Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China;
3. Department of Nephrology, The Six People's Hospital of Nantong, Nantong 226000, Jiangsu, China
Abstract: Objective To detect the expression of translationally-controlled tumor protein 1 (TPT1) in renal cell carcinoma (RCC) and to explore its role in RCC. Methods Microarray dataset GSE15641 (including 23 normal kidney tissue samples and 32 RCC tissue samples) was downloaded from the Gene Expression Omnibus, and differentially expressed genes between RCC tissue and normal kidney tissue were screened using R 4.3.0 software. The TPT1 expression in RCC tissue and adjacent non-tumor tissue of 90 patients diagnosed and treated at Affiliated Hospital of Nantong University, as well as in human RCC cells (769-P, 786-O, ACHN, and Caki-1) and human embryonic kidney 293 cell (HEK293) was detected by quantitative polymerase chain reaction (qPCR) and Western blotting. The relationship between TPT1 expression and clinical pathological characteristics of RCC patients was analyzed by χ2 test. The clinical data of 522 RCC patients were derived from The Cancer Genome Atlas, and the correlation between TPT1 expression and prognosis of RCC patients was analyzed by receiver operating characteristic (ROC) curve and Kaplan-Meier survival curve. After in vitro transfection of TPT1 small interfering RNA (siRNA) and its negative control (NC) into 786-O and Caki-1 cells, the TPT1 expression was detected by qPCR and Western blotting; the proliferation, migration, and invasion were detected by cell counting kit 8 assay, scratch assay, and Transwell assay, respectively; and the expression of apoptosis-related proteins was detected by Western blotting. Results TPT1 expression was significantly upregulated in the RCC tissue and cells compared with the normal kidney tissue and HEK293 cells (all P < 0.05). The RCC patients with low TPT1 expression levels had significantly smaller tumor size and lower metastasis rate than those with high TPT1 expression levels (both P < 0.05). The ROC curve analysis results indicated that TPT1 had high diagnostic value for RCC (area under curve was 0.856 9, 95% confidence interval was 0.804 5-0.909 3, P < 0.001). The Kaplan-Meier survival analysis results showed that the overall survival of RCC patients in the low TPT1 expression group was significantly longer than that in the high TPT1 expression group (P=0.018 4). In the cell experiment, compared with the siRNA NC group, the proliferation activity, scratch healing rate, and invading transmembrane cell number of 786-O and Caki-1 cells were significantly decreased after transfection with TPT1 siRNA (all P < 0.01); the expression levels of B-lymphoma gene 2 (Bcl-2) and matrix metalloproteinase-9 were significantly decreased, while the expression of Bcl-2 associated X protein was significantly increased (all P < 0.05). Conclusion TPT1 is involved in the progression of RCC and may be a potential therapeutic target for RCC.
Key words: renal cell carcinoma    translationally-controlled tumor protein 1    cell proliferation    cell migration    apoptosis    

肾细胞癌(renal cell carcinoma,RCC)是起源于肾实质上皮系统的恶性肿瘤[1-2]。RCC在组织学上分为多种亚型,其中以透明细胞RCC最为常见[3-4]。RCC具有高复发率和高转移率等特点,给社会和患者家庭带来了巨大的负担[4]。RCC的治疗方法主要有手术、放疗和化疗,但多数患者起病隐匿、症状出现较晚,给治疗带来很大困难[5]。我国国家癌症中心发布的中国恶性肿瘤疾病负担报告显示,2022年我国有7.37万例新发RCC病例,有2.4万例患者因RCC死亡[6]。约30%的RCC患者在肿瘤切除后会发生远处转移,5年生存率低于20%[7-8]。因此,寻找RCC早期诊断和预后评估的分子指标是及早治疗、提高患者生存率的重要方法之一。

翻译控制肿瘤蛋白1(translationally-controlled tumor protein 1,TPT1)是一种高度保守的蛋白质,在多种人类肿瘤中异常表达,参与肿瘤细胞增殖、侵袭和凋亡的调控[9-11]。例如,miRNA-216a-5p通过靶向TPT1/哺乳动物雷帕霉素靶蛋白1轴抑制胰腺癌的进展[12];lncRNA TPT1-反义RNA1通过上调TPT1表达促进上皮性卵巢癌的发生[13]。然而,TPT1在RCC中的作用在很大程度上仍不清楚。

本研究探讨了TPT1在RCC组织中的表达水平及其临床意义,还通过功能缺失实验验证了TPT1在人RCC细胞中的生物学功能,旨在为RCC的诊断和治疗提供新的策略。

1 材料和方法 1.1 差异表达基因的筛选

从基因表达综合数据库(Gene Expression Omnibus,GEO)下载微阵列数据集GSE15641(包括23例正常肾脏组织样本数据和32例RCC组织样本数据),用R 4.3.0软件的preprocessCore包和limma包分别进行数据标准化处理和去除批次效应。采用箱线图评估数据标准化情况,通过主成分分析(principal component analysis,PCA)方法评估数据批次效应情况。使用R 4.3.0软件的limma包分析TPT1的差异表达情况,筛选条件为P<0.05且|log2(FC)|>1(FC为差异倍数)。

1.2 RCC患者数据下载及分组

从癌症基因组图谱(The Cancer Genome Atlas,TCGA;https://cancergenome.nih.gov/)数据库下载RCC患者的临床信息和TPT1表达数据,共获得522例RCC患者数据。按照TPT1表达中位数(1.495)将患者分为TPT1高表达组(TPT1表达水平≥1.495)和TPT1低表达组(TPT1表达水平<1.495),每组261例。采用在线工具OncoLnc(http://www.oncolnc.org/)进行数据分析。

1.3 实验试剂

RCC细胞(人肾细胞腺癌细胞769-P、人肾透明细胞腺癌细胞786-O、人肾细胞腺癌细胞ACHN和人肾透明细胞癌皮肤转移细胞Caki-1)和人正常胚肾293细胞(HEK293)均购自美国ATCC。TPT1抑制剂(TPT1 siRNA-1、TPT1 siRNA-2)、siRNA阴性对照(negative control,NC)购自上海吉玛生物科技有限公司;转染试剂Lipofectamine® 2000、TRIzol试剂、MaximaTM SYBR Green qPCR预混液均购自美国ThermoFisher Scientific公司。RPMI 1640培养基(适用769-P、786-O细胞)、DMEM(适用ACHN、HEK293细胞)、McCoy’s 5a培养基(适用Caki-1细胞)、FBS及胰蛋白酶购自美国Gibco公司;青霉素-链霉素混合溶液购自美国Sigma公司;PrimeScriptTM反转录试剂盒购自大连宝生物工程有限公司;GAPDH、TPT1、Bcl-2、Bcl-2相关X蛋白(Bcl-2 associated X protein,Bax)和基质金属蛋白酶9(matrix metalloproteinase-9,MMP9)抗体及HRP标记的二抗均购自英国Abcam公司;CCK-8购自上海碧云天生物技术有限公司。

1.4 组织样本的获取

取2013年9月至2022年1月在南通大学附属医院确诊并接受治疗的90例RCC患者的RCC组织及癌旁正常组织(距离肿瘤病灶2 cm),保存在-80 ℃备用。本研究通过南通大学附属医院伦理委员会审批(2022-K138-01)。

1.5 细胞培养和转染

RCC细胞和HEK293细胞用含有10% FBS及100 U/mL青霉素-链霉素的培养基于37 ℃ 5% CO2恒温培养箱中培养,待细胞密度达约80%时用0.25%胰蛋白酶消化传代。将细胞接种于6孔板内,待细胞密度达50%~60%时更换成无血清培养基,分别将TPT1 siRNA-1、TPT1 siRNA-2和siRNA NC转染到细胞中,同时设置空白对照。TPT1 siRNA-1正义链序列为5’-UGUUCAAGGUCUAUCAGUGGA-3’,反义链序列为5’-CACUGAUAGACCUUGAACAAU-3’;TPT1 siRNA-2正义链序列为5’-AUUGUUCAAGGUCUAUCAGUG-3’,反义链序列为5’-CUGAUAGACCUUGAACAAUUU-3’;siRNA NC正义链序列为5’-GACUUCAUAAGGCGCAUGCUU-3’,反义链序列为5’-GCAUGCGCCUUAUGAAGUCUU-3’。

1.6 qPCR实验

使用TRIzol试剂分别从RCC组织和细胞中提取总RNA,用PrimeScriptTM反转录试剂盒将RNA反转录为cDNA,以GAPDH作为内参,采用MaximaTM SYBR Green qPCR预混液进行PCR扩增。反应体系:2×qPCR预混液12.5 μL、7.5 μmol/L正义和反义引物各1.0 μL、cDNA 2.5 μL、ddH2O 8.0 μL。反应条件:95 ℃ 15 min;94 ℃ 15 s(变性)、55 ℃ 30 s(退火)、70 ℃ 30 s(延伸),共40个循环。TPT1正向引物序列为5’-AGCCACAGTGAGATGTTCTCT-3’,反向引物序列为5’-CAGCCCGTCTGCAATTTCCT-3’;GAPDH正向引物序列为5’-TGTGGGCATCAATGGATTTGG-3’,反向引物序列为5’-ACACCATGTATTCCGGGTCAAT-3’。采用2-∆∆Ct法进行半定量分析。

1.7 蛋白质印迹法分析

细胞转染后,向每孔细胞中加入蛋白质裂解液提取总蛋白质,并经沸水煮10 min变性。蛋白质样品通过SDS-PAGE分离后转移至PVDF膜,用5%牛血清白蛋白溶液封闭2 h,用TBST洗PVDF膜3次后过夜孵育一抗(稀释比例均为1∶1 000),然后用TBST洗涤PVDF膜3次后室温孵育相应二抗(稀释比例均为1∶5 000)。于避光环境中进行ECL显影并拍照,利用ImageJ软件进行光密度分析,最终结果表示为目的蛋白质条带与内参条带的光密度比值。

1.8 CCK-8检测

将转染后的细胞按照每孔1×104个的密度接种到96孔板中培养,在0、24、48、72 h时分别取样并加入CCK-8试剂,继续培养4 h,使用酶标仪测定波长450 nm处的光密度值。

1.9 划痕实验

细胞常规培养至形成单层细胞,用灭菌的100 μL黄色Tip枪头划一条直线,形成无细胞生长区域(即划痕),并记录划痕区面积。随后将细胞置于恒温培养箱中培养,分别在0、24 h时用PBS洗去划落的细胞,于倒置显微镜下观察并拍照。

1.10 Transwell实验

将100 μL的Matrigel稀释液均匀涂于Transwell包被小室底部基底膜,往小室外加入含10% FBS的培养基900 μL,每个小室内接种细胞数约为1×105个,常规培养24 h。取出Transwell小室,用PBS洗涤,加入4%多聚甲醛溶液固定。然后用结晶紫染液染色,在光学显微镜下观察、拍照,每组随机选取5个视野计数细胞。

1.11 统计学处理

采用SPSS 20.0软件进行统计学分析。计量资料若呈正态分布以x±s表示,两组间比较采用独立样本t检验,多组间比较采用单因素方差分析;若呈偏态分布则以中位数表示,两组间比较采用Wilcoxon秩和检验。计数资料以例数和百分数表示,组间比较采用χ2检验。应用在线工具OncoLnc,采用ROC曲线分析TPT1在RCC诊断中的价值,采用Kaplan-Meier生存曲线分析TPT1在RCC预后预测中的价值。检验水准(α)为0.05。

2 结果 2.1 生物信息学分析

差异表达基因分析结果表明,与正常肾脏组织相比,TPT1在RCC组织中表达上调(P<0.000 1,log2(FC)为5 438.821,图 1)。京都基因与基因组百科全书通路富集分析结果显示,TPT1在MAPK信号通路和神经活性配体-受体相互作用中显著富集。基因本体功能富集分析结果表明,TPT1在小分子分解代谢过程中显著富集。

图 1 微阵列数据集GSE15641中RCC与正常肾脏组织的差异表达基因分析 Fig 1 Differential expression gene analysis between RCC and normal kidney tissue from microarray dataset GSE15641 A: The volcano plot of differential expression gene analysis; B: The heatmap of differential expression gene analysis. RPL41/S23/L13A/S18/L23A/S15/S4X/S2: Ribosomal protein L41/S23/L13A/S18/L23A/S15/S4X/S2; TPT1: Translationally-controlled tumor protein 1; EEF1A1: Eukaryotic translation elongation factor 1 α 1; TMSB10: Thymosin β 10; UBC: Ubiquitin C; HLA-A/B/C: Human leukocyte antigen-A/B/C; VIM: Vimentin; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; G1: RCC tissue; G2: Normal kidney tissue.

2.2 TPT1在RCC组织中的表达及其与RCC患者临床病理特征的关系

对南通大学附属医院的90例RCC患者组织样本的qPCR检测结果显示,与癌旁正常组织相比,RCC组织中TPT1 mRNA表达增高(P<0.01,图 2A)。蛋白质印迹法检测结果显示,TPT1在RCC组织中的表达量为1.474±0.094,在癌旁正常组织中的表达量为0.910±0.088,差异有统计学意义(P<0.01,图 2B)。根据TPT1蛋白表达平均值将RCC患者分为TPT1高表达(TPT1蛋白表达水平≥1.474,39例)与低表达(<1.474,51例)组,采用χ2检验分析TPT1表达与RCC患者临床病理特征的关系,结果显示,TPT1表达水平与RCC患者年龄、性别、肿瘤分化程度无关,但TPT1表达水平低的RCC患者肿瘤大小及转移发生率均低于TPT1表达水平高的患者(P=0.048、0.017)。见表 1

图 2 TPT1在RCC组织中的表达情况 Fig 2 Expression of TPT1 in RCC tissue A: Quantitative polymerase chain reaction analysis of TPT1 mRNA expression in 90 pairs of RCC tissue and adjacent normal tissue (**P < 0.01. n=90, median); B: Western blotting of TPT1 expression in RCC tissue and adjacent normal tissue. TPT1: Translationally-controlled tumor protein 1; RCC: Renal cell carcinoma; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.

表 1 不同TPT1表达水平RCC患者的临床病理特征分析 Tab 1 Clinical and pathological characteristics of RCC patients with different TPT1 expression levels  

2.3 TPT1在RCC诊断及预后中的价值

对TCGA数据库中522例RCC患者的临床信息及TPT1表达情况进行ROC曲线分析,结果显示,TPT1对RCC具有较高的诊断价值(AUC=0.856 9,95% CI 0.804 5~0.909 3,P<0.001,图 3A)。采用Kaplan-Meier生存曲线分析TPT1在RCC中的预后价值,结果表明低TPT1表达组RCC患者的总生存期长于高TPT1表达组(P=0.018 4,图 3B)。

图 3 TPT1在RCC诊断及预后评估中的价值 Fig 3 Value of TPT1 in diagnosis and prognosis evaluation of RCC A: Receiver operating characteristic curve of TPT1 in diagnosing RCC; B: Kaplan-Meier survival analysis of TPT1 in evaluating prognosis of RCC. TPT1: Translationally-controlled tumor protein 1; RCC: Renal cell carcinoma; AUC: Area under curve.

2.4 TPT1在RCC细胞中表达上调

qPCR检测结果显示,与HEK293相比,RCC细胞株769-P、786-O、ACHN和Caki-1细胞中TPT1 mRNA的表达均上调(P<0.05或P<0.01),见图 4

图 4 TPT1在正常人胚肾细胞HEK293和RCC细胞(769-P、786-O、ACHN和Caki-1)中的表达 Fig 4 Expression of TPT1 in normal embryonic kidney cell HEK293 and RCC cells (769-P, 786-O, ACHN, and Caki-1) Quantitative polymerase chain reaction analysis results. *P < 0.05, **P < 0.01. n=3, x±s. TPT1: Translationally-controlled tumor protein 1; RCC: Renal cell carcinoma.

2.5 TPT1 siRNA转染效率的验证

qPCR检测结果显示,空白对照组和siRNA NC组HEK293细胞中TPT1 mRNA表达差异无统计学意义(P>0.05);与siRNA NC组相比,HEK293细胞转染TPT1 siRNA-1和TPT1 siRNA-2后TPT1 mRNA表达均下调(P<0.05或P<0.01,图 5A),说明TPT1 siRNA-1和TPT1 siRNA-2均转染成功。两者相比TPT1 siRNA-2对TPT1表达的干扰效果更好,因此选择TPT1 siRNA-2进行后续实验。与siRNA NC组相比,将TPT1 siRNA-2转染到786-O和Caki-1细胞后TPT1 mRNA表达量分别降低(64.89±6.14)%、(63.90±5.41)%,差异均有统计学意义(P均<0.01)。蛋白质印迹法检测结果显示,TPT1 siRNA-2和siRNA NC组786-O细胞中TPT1蛋白的表达量分别为0.835±0.038和1.032±0.004,Caki-1细胞中TPT1蛋白的表达量分别为1.190±0.040和1.461±0.031,差异均有统计学意义(均P<0.01,图 5B)。

图 5 TPT1干扰效率验证结果 Fig 5 Verification results of TPT1 interference efficiency A: Expression of TPT1 mRNA in normal embryonic kidney cell HEK293 after transfection detected by quantitative polymerase chain reaction; B: Expression of TPT1 protein in renal cell carcinoma cells 786-O and Caki-1 after transfection detected by Western blotting. *P < 0.05, **P < 0.01. n=3, x±s. TPT1: Translationally-controlled tumor protein 1; siRNA: Small interfering RNA; NC: Negative control.

2.6 TPT1对RCC细胞增殖的影响

CCK-8实验结果显示,与siRNA NC组相比,在TPT1 siRNA-2转染48 h和72 h后786-O和Caki-1细胞的增殖活力均降低(均P<0.01,图 6),表明抑制TPT1表达能降低RCC细胞的增殖能力。

图 6 CCK-8法分析TPT1对RCC细胞786-O(A)和Caki-1(B)增殖活力的影响 Fig 6 Effects of TPT1 on proliferation of RCC cells 786-O (A) and Caki-1 (B) detected by CCK-8 assay **P < 0.01 vs siRNA NC group at the same time point. n=3, x±s. CCK-8: Cell counting kit 8; TPT1: Translationally-controlled tumor protein 1; RCC: Renal cell carcinoma; siRNA: Small interfering RNA; NC: Negative control.

2.7 TPT1对RCC细胞迁移的影响

划痕实验结果显示,siRNA NC组786-O细胞在24 h后划痕面积缩小到原来的(26.52±1.98)%,TPT1 siRNA-2组划痕面积缩小到原来的(55.41±0.29)%;siRNA NC组Caki-1细胞在24 h后划痕面积缩小到原来的(56.72±5.28)%,TPT1 siRNA-2组划痕面积缩小到原来的(72.81±0.39)%。与siRNA NC组相比,转染TPT1 siRNA-2后786-O及Caki-1细胞的迁移能力均降低(P均<0.01)。见图 7

图 7 划痕实验验证抑制TPT1表达后RCC细胞786-O(A)及Caki-1(B)迁移能力的变化(200×) Fig 7 Migration ability of RCC cells 786-O (A) and Caki-1 (B) after inhibiting TPT1 detected by scratch test (200×) TPT1: Translationally-controlled tumor protein 1; RCC: Renal cell carcinoma; siRNA: Small interfering RNA; NC: Negative control.

2.8 TPT1对RCC细胞侵袭的影响

Transwell实验结果显示,TPT1 siRNA-2组786-O细胞的侵袭细胞数为(114±5)个,少于siRNA NC组的(417±4)个(P<0.01);TPT1 siRNA-2组Caki-1细胞的侵袭细胞数为(99±4)个,少于siRNA NC组的(412±3)个(P<0.01),表明转染TPT1 siRNA-2后786-O及Caki-1细胞的侵袭能力均降低。见图 8

图 8 Transwell实验验证TPT1对RCC细胞786-O及Caki-1侵袭能力的影响(200×) Fig 8 Effects of TPT1 on migration of RCC cells 786-O and Caki-1 detected by Transwell assay (200×) TPT1: Translationally-controlled tumor protein 1; RCC: Renal cell carcinoma; siRNA: Small interfering RNA; NC: Negative control.

2.9 TPT1对RCC细胞中凋亡相关蛋白表达的影响

蛋白质印迹法检测结果显示,siRNA NC组786-O细胞Bcl-2、Bax、MMP9的表达量分别为0.998±0.002、0.402±0.019和1.339±0.054,TPT1 siRNA-2组分别为0.923±0.028、0.678±0.016和0.795±0.015;siRNA NC组Caki-1细胞Bcl-2、Bax、MMP9的表达量分别为1.230±0.044、0.288±0.014和0.842±0.022,TPT1 siRNA-2组分别为0.952±0.017、1.043±0.006和0.663±0.026。与siRNA NC组相比,转染TPT1 siRNA-2后786-O及Caki-1细胞中Bcl-2、MMP9蛋白表达均降低,而Bax蛋白表达均增加(P<0.05或P<0.01),说明抑制TPT1表达能增强RCC细胞的凋亡能力。见图 9

图 9 蛋白质印迹法检测抑制TPT1表达后RCC细胞786-O和Caki-1中的Bcl-2、Bax、MMP9蛋白表达情况 Fig 9 Expression of Bcl-2, Bax, and MMP9 in RCC cells 786-O and Caki-1 after inhibiting TPT1 detected by Western blotting TPT1: Translationally-controlled tumor protein 1; RCC: Renal cell carcinoma; Bcl-2: B-cell lymphoma gene 2; Bax: Bcl-2associated X protein; MMP9: Matrix metalloproteinase-9; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; siRNA: Small interfering RNA; NC: Negative control.

3 讨论

RCC是全世界的重要公共卫生问题之一[14]。近年来,TPT1的临床价值得到了越来越多的关注,在一些肿瘤中TPT1过表达被认为是一个潜在预后因素[15-16],但人们对其在RCC进展中的作用仍然缺乏认识。

RCC的病因包括遗传改变、染色体不稳定性及生长因子通路激活等[1]。为了明确TPT1在RCC中的病理作用,本研究评估了TPT1在RCC组织和细胞中的表达情况。本研究结果显示在RCC组织中TPT1表达上调,TPT1表达水平低的RCC患者总生存期比TPT1表达水平高的RCC患者长,而且肿瘤大小和转移发生率均低于TPT1表达水平高的患者,说明TPT1可能在RCC中发挥促肿瘤作用。

本研究结果与以往在多种肿瘤中的研究结果一致,即TPT1表现为促肿瘤基因,如Sun等[17]报道TPT1在结直肠癌中能够促进肿瘤细胞增殖和细胞分裂,Zhu等[18]研究报道TPT1表达增强与宫颈癌进展相关。本研究结果显示,TPT1在RCC组织和细胞中表达上调,干扰TPT1表达可抑制RCC细胞的体外增殖、迁移和侵袭,并增强其凋亡,表明TPT1可能是RCC潜在的治疗靶点。

参考文献
[1]
POWLES T, ALBIGES L, BEX A, et al. Renal cell carcinoma: ESMO clinical practice guideline for diagnosis, treatment and follow-up[J]. Ann Oncol, 2024, 35(8): 692-706. DOI:10.1016/j.annonc.2024.05.537
[2]
WANG Y, ZHANG X, WANG S, et al. Predicting first-line VEGFR-TKI resistance and survival in metastatic clear cell renal cell carcinoma using a clinical-radiomic nomogram[J]. Cancer Imaging, 2024, 24(1): 151. DOI:10.1186/s40644-024-00792-7
[3]
JONASCH E, WALKER C L, RATHMELL W K. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality[J]. Nat Rev Nephrol, 2021, 17(4): 245-261. DOI:10.1038/s41581-020-00359-2
[4]
TSIMAFEYEU I. Management of non-clear cell renal cell carcinoma: current approaches[J]. Urol Oncol, 2017, 35(1): 5-13. DOI:10.1016/j.urolonc.2016.07.011
[5]
WANG J, ZOU Y, DU B, et al. SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1α signaling[J]. Cell Death Dis, 2021, 12(7): 672. DOI:10.1038/s41419-021-03958-4
[6]
HAN B, ZHENG R, ZENG H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI:10.1016/j.jncc.2024.01.006
[7]
ROSSI E, BERSANELLI M, GELIBTER A J, et al. Combination therapy in renal cell carcinoma: the best choice for every patient?[J]. Curr Oncol Rep, 2021, 23(12): 147. DOI:10.1007/s11912-021-01140-9
[8]
PAL S K, FIGLIN R A. Targeted therapies for renal cell carcinoma: understanding their impact on survival[J]. Target Oncol, 2010, 5(2): 131-138. DOI:10.1007/s11523-010-0145-6
[9]
LI R, ZHU H, YANG D, et al. Long noncoding RNA lncBRM promotes proliferation and invasion of colorectal cancer by sponging miR-204-3p and upregulating TPT1[J]. Biochem Biophys Res Commun, 2019, 508(4): 1259-1263. DOI:10.1016/j.bbrc.2018.12.053
[10]
WANG N, YANG Y, JIA G Z, et al. Long non-coding RNA Down syndrome cell adhesion molecule-anti-sense 1 promotes gastric carcinoma cell proliferation and migration by regulating the miR-204/TPT1 axis[J]. Hum Exp Toxicol, 2021, 40(12_suppl): S187-S195. DOI:10.1177/09603271211036037
[11]
ZHANG L, WANG Q, WANG F, et al. LncRNA LINC01446 promotes glioblastoma progression by modulating miR-489-3p/TPT1 axis[J]. Biochem Biophys Res Commun, 2018, 503(3): 1484-1490. DOI:10.1016/j.bbrc.2018.07.067
[12]
ZHANG J, GAO S, ZHANG Y, et al. MiR-216a-5p inhibits tumorigenesis in pancreatic cancer by targeting TPT1/mTORC1 and is mediated by LINC01133[J]. Int J Biol Sci, 2020, 16(14): 2612-2627. DOI:10.7150/ijbs.46822
[13]
WU W, GAO H, LI X, et al. LncRNA TPT1-AS1 promotes tumorigenesis and metastasis in epithelial ovarian cancer by inducing TPT1 expression[J]. Cancer Sci, 2019, 110(5): 1587-1598. DOI:10.1111/cas.14009
[14]
WOLF M M, KIMRYN RATHMELL W, BECKERMANN K E. Modeling clear cell renal cell carcinoma and therapeutic implications[J]. Oncogene, 2020, 39(17): 3413-3426. DOI:10.1038/s41388-020-1234-3
[15]
JIAN M, DU Q, ZHU D, et al. Tumor suppressor miR-145-5p sensitizes prolactinoma to bromocriptine by downregulating TPT1[J]. J Endocrinol Invest, 2019, 42(6): 639-652. DOI:10.1007/s40618-018-0963-4
[16]
WANG W, YANG F, ZHANG L, et al. LncRNA profile study reveals four-lncRNA signature associated with the prognosis of patients with anaplastic gliomas[J]. Oncotarget, 2016, 7(47): 77225-77236. DOI:10.18632/oncotarget.12624
[17]
SUN Y, WANG Y, YANG H, et al. MiR-455-3p functions as a tumor suppressor in colorectal cancer and inhibits cell proliferation by targeting TPT1[J]. Int J Clin Exp Pathol, 2018, 11(5): 2522-2529.
[18]
ZHU X, REN J, XU D, et al. Upregulation of translationally controlled tumor protein is associated with cervical cancer progression[J]. Front Mol Biosci, 2021, 8: 686718. DOI:10.3389/fmolb.2021.686718