[1] |
PHAM D, BHANDARI S, OECHSLI M, et al. Lung cancer screening rates: data from the lung cancer screening registry[J]. J Clin Oncol, 2018, 36(15_suppl): 6504. DOI:10.1200/jco.2018.36.15_suppl.6504 |
[2] |
HOREWEG N, VAN DER AALST C M, THUNNISSEN E, et al. Characteristics of lung cancers detected by computer tomography screening in the randomized NELSON trial[J]. Am J Respir Crit Care Med, 2013, 187(8): 848-854. DOI:10.1164/rccm.201209-1651OC |
[3] | |
[4] | |
[5] |
BAAKLINI W A, REINOSO M A, GORIN A B, et al. Diagnostic yield of fiberoptic bronchoscopy in evaluating solitary pulmonary nodules[J]. Chest, 2000, 117(4): 1049-1054. DOI:10.1378/chest.117.4.1049 |
[6] |
ALI M S, SETHI J, TANEJA A, et al. Computed tomography bronchus sign and the diagnostic yield of guided bronchoscopy for peripheral pulmonary lesions. A systematic review and meta-analysis[J]. Ann Am Thorac Soc, 2018, 15(8): 978-987. DOI:10.1513/AnnalsATS.201711-856OC |
[7] |
TANNER N T, YARMUS L, CHEN A, et al. Standard bronchoscopy with fluoroscopy vs thin bronchoscopy and radial endobronchial ultrasound for biopsy of pulmonary lesions: a multicenter, prospective, randomized trial[J]. Chest, 2018, 154(5): 1035-1043. DOI:10.1016/j.chest.2018.08.1026 |
[8] |
RIVERA M P, MEHTA A C, WAHIDI M M. Establishing the diagnosis of lung cancer: diagnosis and management of lung cancer, 3 rd Ed: American College of Chest Physicians evidence-based clinical practice guidelines[J]. Chest, 2013, 143(5 Suppl): e142S-e165S. DOI:10.1378/chest.12-2353 |
[9] |
OST D E, ERNST A, LEI X, et al. Diagnostic yield and complications of bronchoscopy for peripheral lung lesions. results of the AQuIRE registry[J]. Am J Respir Crit Care Med, 2016, 193(1): 68-77. DOI:10.1164/rccm.201507-1332OC |
[10] |
GASPARINI S, FERRETTI M, SECCHI E B, et al. Integration of transbronchial and percutaneous approach in the diagnosis of peripheral pulmonary nodules or masses. Experience with 1, 027 consecutive cases[J]. Chest, 1995, 108(1): 131-137. DOI:10.1378/chest.108.1.131 |
[11] |
CHAO T Y, CHIEN M T, LIE C H, et al. Endobronchial ultrasonography-guided transbronchial needle aspiration increases the diagnostic yield of peripheral pulmonary lesions: a randomized trial[J]. Chest, 2009, 136(1): 229-236. DOI:10.1378/chest.08-0577 |
[12] |
OKI M, SAKA H, ASANO F, et al. Use of an ultrathin vsthin bronchoscope for peripheral pulmonary lesions: a randomized trial[J]. Chest, 2019, 156(5): 954-964. DOI:10.1016/j.chest.2019.06.038 |
[13] |
ISHIDA T, ASANO F, YAMAZAKI K, et al. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial[J]. Thorax, 2011, 66(12): 1072-1077. DOI:10.1136/thx.2010.145490 |
[14] |
TAY J H, IRVING L, ANTIPPA P, et al. Radial probe endobronchial ultrasound: factors influencing visualization yield of peripheral pulmonary lesions[J]. Respirology, 2013, 18(1): 185-190. DOI:10.1111/j.1440-1843.2012.02276.x |
[15] |
MINEZAWA T, OKAMURA T, YATSUYA H, et al. Bronchus sign on thin-section computed tomography is a powerful predictive factor for successful transbronchial biopsy using endobronchial ultrasound with a guide sheath for small peripheral lung lesions: a retrospective observational study[J]. BMC Med Imaging, 2015, 15: 21. DOI:10.1186/s12880-015-0060-5 |
[16] |
CHEN A, CHENNA P, LOISELLE A, et al. Radial probe endobronchial ultrasound for peripheral pulmonary lesions. A 5-year institutional experience[J]. Ann Am Thorac Soc, 2014, 11(4): 578-582. DOI:10.1513/AnnalsATS.201311-384OC |
[17] | |
[18] |
ZHANG S J, ZHANG M, ZHOU J, et al. Comparison of radial endobronchial ultrasound with a guide sheath and with distance by thin bronchoscopy for the diagnosis of peripheral pulmonary lesions: a prospective randomized crossover trial[J]. J Thorac Dis, 2016, 8(11): 3112-3118. DOI:10.21037/jtd.2016.11.77 |
[19] |
WANG MEMOLI J S, NIETERT P J, SILVESTRI G A. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule[J]. Chest, 2012, 142(2): 385-393. DOI:10.1378/chest.11-1764 |
[20] |
YARMUS L B, MALLOW C, PASTIS N, et al. First-in-human use of a hybrid real-time ultrasound-guided fine-needle acquisition system for peripheral pulmonary lesions: a multicenter pilot study[J]. Respiration, 2019, 98(6): 527-533. DOI:10.1159/000504025 |
[21] |
IZUMO T, SASADA S, CHAVEZ C, et al. The diagnostic utility of endobronchial ultrasonography with a guide sheath and tomosynthesis images for ground glass opacity pulmonary lesions[J]. J Thorac Dis, 2013, 5(6): 745-750. DOI:10.3978/j.issn.2072-1439.2013.11.30 |
[22] |
IKEZAWA Y, SUKOH N, SHINAGAWA N, et al. Endobronchial ultrasonography with a guide sheath for pure or mixed ground-glass opacity lesions[J]. Respiration, 2014, 88(2): 137-143. DOI:10.1159/000362885 |
[23] |
STEINFORT D P, KHOR Y H, MANSER R L, et al. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: systematic review and meta-analysis[J]. Eur Respir J, 2011, 37(4): 902-910. DOI:10.1183/09031936.00075310 |
[24] |
ISHIWATA T, GREGOR A, INAGE T, et al. Bronchoscopic navigation and tissue diagnosis[J]. Gen Thorac Cardiovasc Surg, 2020, 68(7): 672-678. DOI:10.1007/s11748-019-01241-0 |
[25] |
ASANO F, SHINAGAWA N, ISHIDA T, et al. Virtual bronchoscopic navigation combined with ultrathin bronchoscopy. A randomized clinical trial[J]. Am J Respir Crit Care Med, 2013, 188(3): 327-333. DOI:10.1164/rccm.201211-2104OC |
[26] |
OKI M, SAKA H, KITAGAWA C, et al. Endobronchial ultrasound-guided transbronchial biopsy using novel thin bronchoscope for diagnosis of peripheral pulmonary lesions[J]. J Thorac Oncol, 2009, 4(10): 1274-1277. DOI:10.1097/JTO.0b013e3181b623e1 |
[27] |
OKI M, SAKA H, ANDO M, et al. Ultrathin bronchoscopy with multimodal devices for peripheral pulmonary lesions. A randomized trial[J]. Am J Respir Crit Care Med, 2015, 192(4): 468-476. DOI:10.1164/rccm.201502-0205OC |
[28] |
OKI M, SAKA H, KITAGAWA C, et al. Visceral pleural perforation in two cases of ultrathin bronchoscopy[J]. Chest, 2005, 127(6): 2271-2273. DOI:10.1378/chest.127.6.2271 |
[29] |
CHEN K C, LEE J M. Photodynamic therapeutic ablation for peripheral pulmonary malignancy via electromagnetic navigation bronchoscopy localization in a hybrid operating room (OR): a pioneering study[J]. J Thorac Dis, 2018, 10(Suppl 6): S725-S730. DOI:10.21037/jtd.2018.03.139 |
[30] |
GIRI M, PURI A, WANG T, et al. Virtual bronchoscopic navigation versus non-virtual bronchoscopic navigation assisted bronchoscopy for the diagnosis of peripheral pulmonary lesions: a systematic review and meta-analysis[J]. Ther Adv Respir Dis, 2021, 15: 17534666211017048. DOI:10.1177/17534666211017048 |
[31] |
PRITCHETT M A, BHADRA K, CALCUTT M, et al. Virtual or reality: divergence between preprocedural computed tomography scans and lung anatomy during guided bronchoscopy[J]. J Thorac Dis, 2020, 12(4): 1595-1611. DOI:10.21037/jtd.2020.01.35 |
[32] |
HERTH F J F, EBERHARDT R, STERMAN D, et al. Bronchoscopic transparenchymal nodule access (BTPNA): first in human trial of a novel procedure for sampling solitary pulmonary nodules[J]. Thorax, 2015, 70(4): 326-332. DOI:10.1136/thoraxjnl-2014-206211 |
[33] |
SUN J, CRINER G J, DIBARDINO D, et al. Efficacy and safety of virtual bronchoscopic navigation with fused fluoroscopy and vessel mapping for access of pulmonary lesions[J]. Respirology, 2022, 27(5): 357-365. DOI:10.1111/resp.14224 |
[34] |
BOWLING M R, BROWN C, ANCIANO C J. Feasibility and safety of the transbronchial access tool for peripheral pulmonary nodule and mass[J]. Ann Thorac Surg, 2017, 104(2): 443-449. DOI:10.1016/j.athoracsur.2017.02.035 |
[35] |
MAHAJAN A K, PATEL S, HOGARTH D K, et al. Electromagnetic navigational bronchoscopy: an effective and safe approach to diagnose peripheral lung lesions unreachable by conventional bronchoscopy in high-risk patients[J]. J Bronchology Interv Pulmonol, 2011, 18(2): 133-137. DOI:10.1097/LBR.0b013e318216cee6 |
[36] |
GEX G, PRALONG J A, COMBESCURE C, et al. Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: a systematic review and meta-analysis[J]. Respiration, 2014, 87(2): 165-176. DOI:10.1159/000355710 |
[37] |
BOWLING M R, KOHAN M W, WALKER P, et al. The effect of general anesthesia versus intravenous sedation on diagnostic yield and success in electromagnetic navigation bronchoscopy[J]. J Bronchology Interv Pulmonol, 2015, 22(1): 5-13. DOI:10.1097/LBR.0000000000000120 |
[38] |
SEIJO L M, DE TORRES J P, LOZANO M D, et al. Diagnostic yield of electromagnetic navigation bronchoscopy is highly dependent on the presence of a bronchus sign on CT imaging: results from a prospective study[J]. Chest, 2010, 138(6): 1316-1321. DOI:10.1378/chest.09-2708 |
[39] |
EBERHARDT R, ANANTHAM D, ERNST A, et al. Multimodality bronchoscopic diagnosis of peripheral lung lesions: a randomized controlled trial[J]. Am J Respir Crit Care Med, 2007, 176(1): 36-41. DOI:10.1164/rccm.200612-1866OC |
[40] |
FOLCH E E, PRITCHETT M A, NEAD M A, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, multicenter NAVIGATE study[J]. J Thorac Oncol, 2019, 14(3): 445-458. DOI:10.1016/j.jtho.2018.11.013 |
[41] |
CHEN A, PASTIS N, FURUKAWA B, et al. The effect of respiratory motion on pulmonary nodule location during electromagnetic navigation bronchoscopy[J]. Chest, 2015, 147(5): 1275-1281. DOI:10.1378/chest.14-1425 |
[42] |
LEIRA H O, LANGØ T, SORGER H, et al. Bronchoscope-induced displacement of lung targets: first in vivo demonstration of effect from wedging maneuver in navigated bronchoscopy[J]. J Bronchology Interv Pulmonol, 2013, 20(3): 206-212. DOI:10.1097/LBR.0b013e31829cb2b5 |
[43] |
ISHIWATA T, UJIIE H, GREGOR A, et al. Pilot study using virtual 4-D tracking electromagnetic navigation bronchoscopy in the diagnosis of pulmonary nodules: a single center prospective study[J]. J Thorac Dis, 2021, 13(5): 2885-2895. DOI:10.21037/jtd-21-141 |
[44] | |
[45] |
HOHENFORST-SCHMIDT W, ZAROGOULIDIS P, VOGL T, et al. Cone beam computertomography (CBCT) in interventional chest medicine-high feasibility for endobronchial realtime navigation[J]. J Cancer, 2014, 5(3): 231-241. DOI:10.7150/jca.8834 |
[46] |
PRITCHETT M A, SCHAMPAERT S, DE GROOT J A H, et al. Cone-beam CT with augmented fluoroscopy combined with electromagnetic navigation bronchoscopy for biopsy of pulmonary nodules[J]. J Bronchology Interv Pulmonol, 2018, 25(4): 274-282. DOI:10.1097/LBR.0000000000000536 |
[47] |
SOBIESZCZYK M J, YUAN Z, LI W, et al. Biopsy of peripheral lung nodules utilizing cone beam computer tomography with and without trans bronchial access tool: a retrospective analysis[J]. J Thorac Dis, 2018, 10(10): 5953-5959. DOI:10.21037/jtd.2018.09.16 |
[48] |
KATSIS J, ROLLER L, LESTER M, et al. High accuracy of digital tomosynthesis-guided bronchoscopic biopsy confirmed by intraprocedural computed tomography[J]. Respiration, 2021, 1-8. DOI:10.1159/000512802 |
[49] |
CHENG G Z, LIU L, NOBARI M, et al. Cone beam navigation bronchoscopy: the next frontier[J]. J Thorac Dis, 2020, 12(6): 3272-3278. DOI:10.21037/jtd.2020.03.85 |
[50] |
CASAL R F, SARKISS M, JONES A K, et al. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: a prospective pilot study[J]. J Thorac Dis, 2018, 10(12): 6950-6959. DOI:10.21037/jtd.2018.11.21 |
[51] | |
[52] |
CHEN A C, PASTIS N J Jr, MAHAJAN A K, et al. Robotic bronchoscopy for peripheral pulmonary lesions: a multicenter pilot and feasibility study (BENEFIT)[J]. Chest, 2021, 159(2): 845-852. DOI:10.1016/j.chest.2020.08.2047 |
[53] |
MEGENS M, LEISTIKOW M D, VAN DUSSCHOTEN A, et al. Shape accuracy of fiber optic sensing for medical devices characterized in bench experiments[J]. Med Phys, 2021, 48(7): 3936-3947. DOI:10.1002/mp.14881 |
[54] |
KALCHIEM-DEKEL O, CONNOLLY J G, LIN I H, et al. Shape-sensing robotic-assisted bronchoscopy in the diagnosis of pulmonary parenchymal lesions[J]. Chest, 2022, 161(2): 572-582. DOI:10.1016/j.chest.2021.07.2169 |
[55] |
SAINZ ZUÑIGA P V, VAKIL E, MOLINA S, et al. Sensitivity of radial endobronchial ultrasound-guided bronchoscopy for lung cancer in patients with peripheral pulmonary lesions: an updated meta-analysis[J]. Chest, 2020, 157(4): 994-1011. DOI:10.1016/j.chest.2019.10.042 |
[56] |
KRAMER T, MANLEY C J, ANNEMA J T. Robotic bronchoscopy for diagnosing peripheral lung lesions: are we there yet?[J]. Chest, 2021, 160(3): e326-e327. DOI:10.1016/j.chest.2021.04.075 |
[57] |
YARMUS L, AKULIAN J, WAHIDI M, Interventional Pulmonary Outcomes Group (IPOG), et al. A prospective randomized comparative study of three guided bronchoscopic approaches for investigating pulmonary nodules: the PRECISION-1 study[J]. Chest, 2020, 157(3): 694-701. DOI:10.1016/j.chest.2019.10.016 |
[58] |
ZHANG L, TONG R, WANG J, et al. Improvements to bronchoscopic brushing with a manual mapping method: a three-year experience of 1 143 cases[J]. Thorac Cancer, 2016, 7(1): 72-79. DOI:10.1111/1759-7714.12279 |
[59] |
ZHONG C H, SU Z Q, LUO W Z, et al. Hierarchical clock-scale hand-drawn mapping as a simple method for bronchoscopic navigation in peripheral pulmonary nodule[J]. Respir Res, 2022, 23(1): 245. DOI:10.1186/s12931-022-02160-0 |
[60] |
HUANG H, WU N, TIAN S, et al. Application of bronchoscopy in the diagnosis and treatment of peripheral pulmonary lesions in China: a national cross-sectional study[J]. J Cancer, 2023, 14(8): 1398-1406. DOI:10.7150/jca.84220 |
[61] |
DE RUITER Q M B, MOLL F L, VAN HERWAARDEN J A. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair[J]. J Vasc Surg, 2015, 61(1): 256-264. DOI:10.1016/j.jvs.2014.08.069 |
[62] |
OST D, SHAH R, ANASCO E, et al. A randomized trial of CT fluoroscopic-guided bronchoscopy vs conventional bronchoscopy in patients with suspected lung cancer[J]. Chest, 2008, 134(3): 507-513. DOI:10.1378/chest.08-0160 |