胰腺癌恶性程度高,预后差,是恶性肿瘤诊治领域的重点和难点。美国癌症协会2022年发布数据显示,胰腺癌预估死亡人数占所有恶性肿瘤的8%,5年生存率在所有癌症中最低[1]。WHO癌症研究机构指出,2020年中国新发胰腺癌124 994例,胰腺癌患者全年死亡121 853例,死亡率极高[2]。胰腺癌死亡率高与肿瘤微环境复杂、癌细胞恶性度高、重要脏器及血管毗邻紧密等息息相关,同时诊断困难也是重要原因之一。研究表明胰腺癌诊断时有47%的患者已发生了远处转移[1]。
2022年第2版美国国立综合癌症网络临床实践指南认为,发生转移的胰腺癌患者一线治疗方案应采取临床试验、单药化学治疗、靶向治疗、姑息性放射治疗、姑息性手术和系统疗法等[3]。当胰腺癌发生转移时,对无消化道梗阻的患者行剖腹探查及根治性切除术势必造成不必要的手术创伤,甚至延误新辅助治疗和转化治疗的时机。因此,术前分期及可切除性的准确评估对于存在远处转移的胰腺癌患者至关重要。目前,国内外已有大量关于各检查、检验手段在胰腺癌转移诊断中使用效果的报道,笔者就最新研究进展进行综述,旨在为提高胰腺癌分期诊断的准确性提供更多思路。
1 影像学检查 1.1 CTCT增强检查提升了肿瘤与正常组织间的对比度,能准确显示肿瘤对周围脏器、重要血管及神经的侵犯情况,是对胰腺癌临床分期和可切除性评估最常用的影像学手段。增强CT对肝脏转移病灶的整体灵敏度为74.7%,当转移灶直径<10 mm时其灵敏度仅为62.7%[4]。CT对腹膜微小转移病灶的灵敏度低于肝脏转移病灶,仅为7%~50%;在复杂的解剖部位如膈下间隙、肝门等处其灵敏度可能更低,仅为25%~37%[5]。因此,尽管高分辨率CT得到广泛运用,仍有11%的患者在术前未能及时发现远处转移[6]。CT对淋巴结转移的判断基于淋巴结密度、大小和强化程度。由于淋巴结转移常早于形态改变,且炎症和水肿可使其发生类似转移的形态变化,CT对转移淋巴结的检测效能有一定局限性。国内学者报道,CT增强检查对淋巴结转移的诊断准确度为62.1%,特异度为61.5%[7]。双能CT(dual-energy CT)可基于不同元素对不同能量射线的吸收差异进行组织分析,同时能准确度量不同组织间血液的供应差异。研究显示,碘浓度为2.0 mg/mL时转移淋巴结的碘浓度明显更低,双能CT对其灵敏度为87%,特异度为89%[8]。研究胰腺导管腺癌(pancreatic ductal adenocarcinoma,PDAC)的CT影像学特征发现,转移性和非转移性疾病在定性和定量指标上差异有统计学意义,转移性病灶边缘不清、门静脉期低密度、肿瘤体积较大及动脉灌注和通透性指数较低等情况更为常见(P均<0.05),这种简化的放射组学方法在胰腺癌的早期发现和正确分期中也能起到关键作用[9]。
1.2 MRIMRI可通过不同序列图像提供丰富的组织信息,其对小肿瘤、同等强化的胰腺癌、局灶性脂肪浸润等特殊情况的检出优于CT。近年来,随着肝胆特异度造影剂钆塞酸二钠的使用,肝脏微小转移病灶的检出率显著提高,钆塞酸二钠-MRI与增强CT比较尽管特异度相当(98.6% vs 100%),但灵敏度(71.7% vs 34%)和ROC AUC值(85.1% vs 66.9%)更高,可使不适宜手术患者的检出率提高7.6%,使潜在的无效开腹手术减少13.6%以上[10]。MRI在鉴别以囊性肿块为主的胰腺小病灶方面也较CT具有优势,但肝转移瘤和脓肿由于有相似的T1低信号、T2高信号和边缘强化等特征,MRI对两者较难鉴别。肿瘤细胞密集、细胞外空间减少、组织纤维化限制了肿瘤组织中水分子的自由扩散,使其具有较低的表观扩散系数,由于血管黑血效应和运动伪影的影响相对较低,弥散加权成像特别适用于检测直径<10 mm的肝转移病灶,且较传统T2加权成像更加灵敏和准确[11]。国外一项多中心前瞻性研究证实,通过常规弥散加权成像在10.2%的可切除PDAC患者中发现了经病理证实的肝转移灶,其中91.7%的病灶直径<10 mm,而这些患者在术前CT检查中并未发现异常[12]。meta分析显示,MRI对肝转移瘤的总体灵敏度和特异度分别为85%和97%;不同场强下其诊断效能有所差异,3.0 T MRI的信噪比和对比度较高,但化学伪影和运动伪影显著,其灵敏度为89%、特异度为88%,而1.5 T MRI的灵敏度为80%、特异度为100%[13]。
1.3 正电子发射断层显像(positron emission tomography,PET)PET通过放射性示踪剂18F-氟代脱氧葡萄糖(18F-fluorodeoxyglucose,18F-FDG)被人体组织摄取并参与葡萄糖新陈代谢,可显示各部位的代谢活动强度。由于恶性肿瘤具有较高的葡萄糖代谢率,能够通过示踪剂与周围正常组织形成良好对比,而且PET能覆盖全身,在检测远处转移性疾病方面比常规检查更有优势。然而,PET的空间分辨率低,往往需要以PET-CT或PET-MRI的形式对示踪剂摄取密度高的部位进行准确定位,两者在肝转移瘤诊断方面也优于单独的PET检查。对于远处转移,PET-CT表现良好,灵敏度为85%~89%,特异度为55%~100%[14],且能够检测出CT初始分期诊断时未发现的病灶,可使远处隐匿性转移的检出率增加33%[15]。MRI的软组织分辨率远高于CT,与PET-CT相比,PET-MRI对肝转移瘤的检出具有更高的准确度(98.6% vs 78.6%)、灵敏度(98.2% vs 76.8%)和特异度(100.0% vs 85.7%),能够发现更多的转移灶,且检出病变的平均面积明显小于PET-CT(P<0.001)[16]。Joo等[17]研究发现,PET-MRI对胰腺癌非肝脏远处转移的灵敏度和特异度分别为75%和100%,高于PET-CT的50%和96.2%。然而该研究病例数较少,结果值得商榷。xC−系统是一种异源二聚转运体,高表达于正常胰腺组织,低表达于肝脏组织,且在恶性转化或转移过程中不会丢失,示踪剂18F-氟丙基谷氨酸[(4S)-4-(3-18F-fluoropropyl)-L-glutamate,18F-FSPG]可用于成像显示xC−系统活性,因此,18F-FSPG PET是检测PDAC转移尤其是肝转移的理想工具。文献报道,对转移的PDAC患者18F-FSPG PET表现出比18F-FDG PET更高的灵敏度、特异度和诊断准确度,前者分别为95.0%、100.0%和95.7%,后者分别为90.0%、66.7%和90.0%[18]。
1.4 超声内镜(endoscopic ultrasonography)超声内镜可以提供高分辨率的胰腺图像,能比CT和MRI筛查出更多的实性和囊性病变。文献报道,超声内镜能比CT、MRI多发现5%的肝转移性病变,且漏检率降低5%[19]。超声内镜及其相关技术,如增强超声内镜、超声内镜弹性成像和超声内镜引导细针穿刺也可用于胰腺不同病变的鉴别诊断和胰腺癌的临床分期。Miyata等[20]应用增强超声内镜对109例胰腺癌患者的143枚淋巴结进行分析,发现其诊断淋巴结转移的灵敏度和特异度分别为83%和91%。腹腔淋巴结的评估对判断胰腺癌手术适应证极为重要。对于腹主动脉旁淋巴结,超声内镜引导下穿刺活检诊断淋巴结转移的灵敏度和特异度分别为96.7%和100%,而PET-CT的灵敏度仅为53.3%[21]。传统超声内镜和超声内镜引导穿刺可能无法发现微小的淋巴结转移,但超声内镜弹性成像能够无创性地显示淋巴结皮质和髓质的硬度和均质性。超声内镜弹性成像能够识别组织质地因淋巴结转移导致的微小变化,尤其当超声内镜引导穿刺针不能进入靶淋巴结或不能获得用于病理评估的样本时,其也可提供有关靶淋巴结良恶性的有用信息[22]。随着技术发展,使用造影剂提高对比效果的谐波造影增强超声内镜(contrast-enhanced harmonic endoscopic ultrasound)可能拥有更好的诊断效果。有研究报道,增强CT和谐波造影增强超声内镜对肝左叶转移灶的总体灵敏度分别为69.8%和98.4%;对直径<10 mm的转移灶,谐波造影增强超声内镜的灵敏度为88.9%,显著高于增强CT的11.1%,有19.0%的肝左叶转移患者仅用谐波造影增强超声内镜发现了远处转移[23]。
2 实验室检查 2.1 肿瘤标志物随着肿瘤病理分期和远处转移能力的增加,血清癌胚抗原(carcinoembryonic antigen,CEA)、糖类抗原(carbohydrate antigen,CA)19-9、CA125等的水平均升高,由于各标志物存在一定的细胞间黏附作用,高水平表达往往预示着肿瘤发生隐匿转移。文献报道,CA19-9>192 U/mL可作为胰腺癌腹腔隐匿性转移的独立危险因素[24]。CA19-9是由胰腺癌细胞表达的糖蛋白,同时也存在于正常的胰腺和胆管细胞及胃、结肠、子宫内膜和唾液腺上皮细胞中,在10%~30%的胰腺炎患者中也发现了CA19-9升高的情况[25]。以37 U/mL为临界值,CA19-9对晚期胰腺癌的灵敏度为80.6%、特异度为61.8%、准确度为65.6%[26]。研究指出,3%~7%的胰腺癌患者为路易斯抗原(Lewis antigen)阴性血型,不表达CA19-9[27],并非所有患者都存在CA19-9升高,其检出率仅为75%[25]。因此,CA19-9在临床中主要作为监测疾病进展和治疗反应的标志物。在路易斯抗原阴性血型的胰腺癌患者中,CEA和CA125比其他标志物具有更高的灵敏度(CEA、CA125、CA72-4、CA15-3、CA19-9、CA50、CA242的灵敏度分别为63.8%、51.1%、25.5%、21.3%、19.1%、12.8%、10.6%),而且CEA和CA125的特异度也较高,分别为98.0%、93.8%,甚至CA125对Ⅲ、Ⅳ期患者的灵敏度可达到75%[28]。CA125水平与转移相关基因信号的表达及与胰腺癌转移相关的“驱动”基因表达是一致的,当CA125≥18.4 U/mL时,淋巴结和远处器官转移尤其是肝脏转移的风险大大增加,且与术前隐匿性转移高度相关[29]。另外,中性粒细胞胞外陷阱、前列腺癌相关转录物1、F-box/LRR-重复蛋白7、正五聚蛋白3、肿瘤基质等生物标志物已被证实可调节肿瘤细胞迁移,在预测胰腺癌影像学隐匿的转移中值得重点关注[30]。
2.2 miRNAmiRNA是一种小的非编码RNA,于翻译后水平调控基因表达,在人类基因组中已发现超过1 000个不同的miRNA基因,每个miRNA平均识别大约100个不同的mRNA靶标,作用机制复杂。多种miRNA已被证实在胰腺肿瘤的发生、发展和转移中发挥重要作用。目前,对miRNA-21的研究较多,文献报道,其在肿瘤相关成纤维细胞和PDAC细胞中的表达增强了细胞的转移潜能,与晚期PDAC、淋巴结和肝脏转移、生存期短显著相关[31]。Hu等[32]研究发现miRNA-21表达水平与淋巴结转移相关(OR=1.45,95% CI 1.02~2.06,P=0.038),可作为预测PDAC预后不良的指标。miRNA不仅调控已知的蛋白编码癌基因和抑癌基因的表达,而且可作为癌基因和抑癌基因发挥作用,因此,miRNA又被分为致癌miRNA和肿瘤抑制miRNA。有文献报道,miRNA-323-3p在PDAC组织和细胞系中的表达水平明显低于正常胰腺组织;miRNA-323-3p直接靶向并抑制Sma和Mad相关蛋白(Sma- and Mad-related protein,SMAD)2和SMAD3的表达,两者是TGF-β信号转导中的关键成分,而TGF-β信号转导途径是肿瘤转移的重要途径,异位过表达miRNA-323-3p可显著抑制PDAC细胞的迁移和侵袭能力,而沉默miRNA-323-3p可增强PDAC细胞的迁移和侵袭能力[33]。有学者调查了494个miRNA与胰腺癌患者总生存期的相关性,根据P值对其进行排序,排前5位的miRNA分别为miRNA-1301、miRNA-125a、miRNA-376c、miRNA-328和miRNA-376b,均与总生存期显著相关,且5种miRNA组合是理想的预后指标(HR=0.139,95% CI 0.043~0.443,P<0.001)[34],这为预测胰腺癌微转移提供了新的重要指标。
2.3 循环肿瘤细胞(circulating tumor cell,CTC)原发肿瘤的脱落细胞是转移性疾病最直接的诊断指标。文献报道,原发肿瘤未被发现时即已出现的转移占所有临床转移的4%~5%,这表明CTC源于肿瘤发展的早期[35]。研究发现,术前升高的CTC计数(≥3 CTCs/4 mL)能够显著区分隐匿性转移瘤患者和潜在可治愈的局部肿瘤患者,灵敏度为85%,特异度为80%[36]。对于目前常用的影像学检查手段无法检测出转移的壶腹周围癌和胰腺癌患者,当门静脉中有较高的CTC计数时术后6个月内发生肝转移的可能性较大,其预测灵敏度为64.7%,特异度为95.4%[37]。不同CTC表型在癌症的转移机制中作用不同。上皮间质转化是胰腺癌发生转移的重要一环。在上皮间质转化过程中,细胞表型从高度极化的上皮型CTC转变为间充质状态的活动性间叶型CTC代表着转移过程的开始。与上皮型CTC不同,间叶型CTC是外周血液循环系统中一种有效的转运蛋白,允许CTC广泛浸润全身,形成远端肿瘤。通过间充质上皮转化从间叶型CTC逆转为上皮型CTC是肿瘤完成进展和转移的先决条件[38]。更重要的是,在上皮和间充质状态之间的正向和反向转化过程中会产生杂交型CTC,杂交型CTC由于其固有的不稳定性表现出较强的干性[39]。因此,有学者以此3类CTC表型建立多变量模型,当杂交型CTC计数≥15.0 CTCs/2 mL或上皮型CTC计数≥11.0 CTCs/2 mL时拥有最佳的转移预测效果,灵敏度为100%,特异度为88.6%,且其对转移和预后的预测效果优于总CTC计数,其中上皮型CTC是总生存期的重要独立预测因子[40]。另一项研究检测到36.4%的患者同时表达上皮型和间叶型CTC,但在该研究中,间叶型CTC而不是上皮型CTC与晚期和存在远处转移显著相关[41]。
2.4 基因检测(gene detection)血液中循环肿瘤DNA(circulating tumor DNA,ctDNA)是一种无细胞状态的细胞外DNA。与蛋白质类标志物相比,ctDNA检测较少出现假阳性,且ctDNA的半衰期短,能准确反映肿瘤当前情况。研究发现,在未检测到CTC的患者中可存在ctDNA,表明其与CTC为不同实体;另外,在超过75%的晚期胰腺癌患者中检测到了ctDNA,在局限性肿瘤患者中检出率仅为48%,说明通过检测ctDNA能够对肿瘤转移扩散状况做出相应评估[42]。在PDAC转移的级联过程中,每一步都有不同基因参与,鼠类肉瘤病毒癌基因(kirsten rat sarcoma viral oncogene,KRAS)、肿瘤蛋白p53(tumor protein p53,TP53)、周期蛋白依赖性激酶抑制因子2A(cyclin dependentkinase inhibitor 2A,CDKN2A)和SMAD4突变是PDAC常见的基因突变,占PDAC所有基因突变的50%以上[43]。目前使用最广泛的遗传标志物是致癌基因KRAS和抑癌基因TP53,在约73%的患者和50%无症状的胰腺癌高危个体的胰液中检测到了KRAS突变[44],在近70%的胰腺癌患者中KRAS突变与TP53突变同时发生[45]。研究发现,胰腺癌Ⅳ期患者ctDNA中KRAS突变等位基因片段显著高于Ⅰ、Ⅱ期患者(P=0.001、0.031),Ⅰ期和Ⅱ期患者的KRAS突变等位基因片段均低于2%;ctDNA检测对胰腺癌Ⅳ期患者的诊断灵敏度为83%,对Ⅰ~Ⅲ期的灵敏度分别为30%、46%、40%[46]。文献报道,在影像学可见转移的胰腺癌患者中ctDNA的检出率非常高,为78.3%;而且在影像学隐匿性转移患者中ctDNA的检出率也明显高于无隐匿性转移的患者(41.0% vs 14.6%,P=0.001),ctDNA是发生隐匿性转移的独立预测因子[47]。
3 联合评估不同手段的检测效能不同,在诊断较为困难时联合运用多种检查、检验方式,再结合转移发生的高危因素,对胰腺癌是否发生腹腔转移进行风险评估,能在一定程度上降低各方法的局限性,提高临床诊断的灵敏度和特异度。
国内学者研究发现,采用血清CA19-9联合γ谷氨酰转肽酶、碱性磷酸酶、天冬氨酸转氨酶等5项肝功能指标诊断胰腺癌早期肝转移的准确度、灵敏度及特异度分别为96.15%、96.88%、95.65%,均高于血清CA19-9单独检测(分别为78.21%、71.88%、82.61%)[48]。刘忠和李志军[49]研究发现,CEA、CA242及CA19-9联合检测胰腺癌患者淋巴结转移时灵敏度和特异度分别为91.7%和96.6%,也高于各指标单独检测,具有较高的临床参考价值。CRP作为炎症因子,在恶性肿瘤引发组织炎症损伤时其血清浓度往往增高;而乳酸脱氢酶参与糖酵解过程,在肿瘤患者中也有显著上升。联合运用血清乳酸脱氢酶、CA19-9及CRP检测时,3项指标均高表达的患者转移发生率(83.7%,36/43)较仅1或2个指标高表达的患者更高(P<0.05),1、2、3年生存率均更低(P<0.05)[50]。在预测影像学隐匿性转移的表现中,尽管ctDNA的灵敏度仅为41.0%,但其与CEA和CA19-9相比表现出了更高的特异度,为85.4%,使用联合CEA、CA19-9及ctDNA的组合测定法提高了整体诊断性能(AUC=0.755),具有66.7%的灵敏度、81.6%的特异度和77.5%的准确度[47]。Wang等[46]采用ctDNA中KRAS突变等位基因片段检测胰腺癌Ⅳ期患者的灵敏度为83%,当采用了突变体KRAS ctDNA与CA19-9的组合后,对胰腺癌检测的总体灵敏度提高到82%,特异度为81%,对Ⅳ期患者的灵敏度则提高到了89%。
多项研究证实,某些影像学表现如肿瘤原发灶大小、侵犯血管种类、肿瘤生长部位与胰腺癌腹腔转移高度相关,能够用于评估远处转移的发生风险,在结合其他有效指标的情况下能显著提升分期诊断的准确度[51-53]。对于CT显示为可切除的胰腺癌患者,当CA19-9≥150 U/mL、肿瘤直径≥3 cm时往往提示患者实际为不可切除,发生腹腔隐匿性转移的风险较高,术前应行腔镜探查术[54]。一项涉及1 423例PDAC患者的研究指出,腹痛、术前CA19-9>192 U/mL、原发肿瘤直径>30 mm、术前CT发现不确定性病灶是腹腔隐匿性转移的独立预测因素,依此所建立的预测模型灵敏度为80%,特异度为50%[24]。Sakaguchi等[55]将CA19-9≥150 U/mL和肿瘤直径≥30 mm作为预测影像学可切除和交界性可切除PDAC患者存在腹腔隐匿性转移的高危标志物,建立由胰腺体尾部肿瘤(有=1,无=0)和高危标志物(有=1,无=0)组成的评分体系,当对评分为1和2的患者进行腹腔镜检查时,腹腔隐匿性转移的符合率、灵敏度和阴性预测值分别为55%、91%和96%。
4 小结手术是目前根治胰腺癌的必需手段,但胰腺癌起病隐匿,相当一部分患者在剖腹探查时才发现存在远处转移。术前准确评估胰腺癌分期,特别是有无转移,将有助于制定合理的治疗方案,并能较大程度改善Ⅳ期患者的预后。随着CT、MRI、超声等影像学技术的发展,胰腺癌的早期诊断率不断提升,但对于转移到肝脏、腹膜等部位的微小病灶通过影像学技术仍无法做出十分有效的诊断,漏诊率不容忽视。PET可显示肿瘤的代谢活性和代谢负荷,在发现胰腺外转移和评价全身肿瘤负荷方面具有明显优势,然而用于常规术前筛查会对患者及医疗系统造成过重的医疗负担。近年来,随着基础研究的不断深入和突破,肿瘤标志物、miRNA、CTC等实验室检查手段为胰腺癌远处转移的诊断提供了更加灵敏的方法。研究显示,影像学可切除及交界性可切除胰腺癌患者腹腔隐匿性转移的发生率分别为19.4%和27.9%[55]。由此可见,目前各种非侵入性手段对胰腺癌远处转移的诊断和评估效果仍需进一步提高。胰腺癌的分期应参考高质量临床资料,进行多学科会诊评估,并结合影像学和其他临床指标做出综合评判。放射组学、机器学习及建立评分系统[56]等方法的使用越来越广泛,这为进一步利用有限的资源和手段提高胰腺癌腹腔转移的诊断效能提供了依据和研究思路。
[1] |
SIEGEL R L, MILLER K D, FUCHS H E, JEMAL A. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72: 7-33. DOI:10.3322/caac.21708 |
[2] |
CAO W, CHEN H D, YU Y W, LI N, CHEN W Q. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134: 783-791. DOI:10.1097/CM9.0000000000001474 |
[3] |
National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: pancreatic adenocarcinoma. Version 2. 2022[EB/OL]. (2022-12-06)[2022-02-08]. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1455.
|
[4] |
MOTOSUGI U, ICHIKAWA T, MORISAKA H, SOU H, MUHI A, KIMURA K, et al. Detection of pancreatic carcinoma and liver metastases with gadoxetic acid-enhanced MR imaging: comparison with contrast-enhanced multi-detector row CT[J]. Radiology, 2011, 260: 446-453. DOI:10.1148/radiol.11103548 |
[5] |
IAFRATE F, CIOLINA M, SAMMARTINO P, BALDASSARI P, RENGO M, LUCCHESI P, et al. Peritoneal carcinomatosis: imaging with 64-MDCT and 3 T MRI with diffusion-weighted imaging[J]. Abdom Imaging, 2012, 37: 616-627. DOI:10.1007/s00261-011-9804-z |
[6] |
SCHNELLDORFER T, GAGNON A I, BIRKETT R T, REYNOLDS G, MURPHY K M, JENKINS R L. Staging laparoscopy in pancreatic cancer: a potential role for advanced laparoscopic techniques[J]. J Am Coll Surg, 2014, 218: 1201-1206. DOI:10.1016/j.jamcollsurg.2014.02.018 |
[7] |
冯广龙, 姜慧杰, 李金平, 姜昊, 潘文斌. 多层螺旋CT增强扫描在胰腺癌术前诊断中的价值[J]. 中华医学杂志, 2017, 97: 838-842. |
[8] |
MARTIN S S, CZWIKLA R, WICHMANN J L, ALBRECHT M H, LENGA L, SAVAGE R H, et al. Dual-energy CT-based iodine quantification to differentiate abdominal malignant lymphoma from lymph node metastasis[J]. Eur J Radiol, 2018, 105: 255-260. DOI:10.1016/j.ejrad.2018.06.017 |
[9] |
D'ONOFRIO M, DE ROBERTIS R, ALUFFI G, CADORE C, BELEÙ A, CARDOBI N, et al. CT simplified radiomic approach to assess the metastatic ductal adenocarcinoma of the pancreas[J/OL]. Cancers, 2021, 13: 1843. DOI: 10.3390/cancers13081843.
|
[10] |
JHAVERI K S, BABAEI JANDAGHI A, THIPPHAVONG S, ESPIN-GARCIA O, DODD A, HUTCHINSON S, et al. Can preoperative liver MRI with gadoxetic acid help reduce open-close laparotomies for curative intent pancreatic cancer surgery?[J/OL]. Cancer Imaging, 2021, 21: 45. DOI: 10.1186/s40644-021-00416-4.
|
[11] |
MESSINA C, BIGNONE R, BRUNO A, BRUNO A, BRUNO F, CALANDRI M, et al. Diffusion-weighted imaging in oncology: an update[J/OL]. Cancers, 2020, 12: 1493. DOI: 10.3390/cancers12061493.
|
[12] |
MARION-AUDIBERT A M, VULLIERME M P, RONOT M, MABRUT J Y, SAUVANET A, ZINS M, et al. Routine MRI with DWI sequences to detect liver metastases in patients with potentially resectable pancreatic ductal carcinoma and normal liver CT: a prospective multicenter study[J]. AJR Am J Roentgenol, 2018, 211: W217-W225. DOI:10.2214/AJR.18.19640 |
[13] |
HONG S B, CHOI S H, KIM K W, KIM S Y, KIM J H, KIM S, et al. Meta-analysis of MRI for the diagnosis of liver metastasis in patients with pancreatic adenocarcinoma[J]. J Magn Reson Imaging, 2020, 51: 1737-1744. DOI:10.1002/jmri.26969 |
[14] |
WARTSKI M, SAUVANET A. 18F-FDG PET/CT in pancreatic adenocarcinoma: a role at initial imaging staging?[J]. Diagn Interv Imaging, 2019, 100: 735-741. DOI:10.1016/j.diii.2019.07.006 |
[15] |
CHANG J S, CHOI S H, LEE Y, KIM K H, PARK J Y, SONG S Y, et al. Clinical usefulness of 18F-fluorodeoxyglucose-positron emission tomography in patients with locally advanced pancreatic cancer planned to undergo concurrent chemoradiation therapy[J]. Int J Radiat Oncol Biol Phys, 2014, 90: 126-133. DOI:10.1016/j.ijrobp.2014.05.030 |
[16] |
ZHOU N N, MENG X X, ZHANG Y, YU B Q, YUAN J M, YU J Y, et al. Diagnostic value of delayed PET/MR in liver metastasis in comparison with PET/CT[J/OL]. Front Oncol, 2021, 11: 717687. DOI: 10.3389/fonc.2021.717687.
|
[17] |
JOO I, LEE J M, LEE D H, LEE E S, PAENG J C, LEE S J, et al. Preoperative assessment of pancreatic cancer with FDG PET/MR imaging versus FDG PET/CT plus contrast-enhanced multidetector CT: a prospective preliminary study[J]. Radiology, 2017, 282: 149-159. DOI:10.1148/radiol.2016152798 |
[18] |
CHENG M F, HUANG Y Y, HO B Y, KUO T C, HSIN L W, SHIUE C Y, et al. Prospective comparison of (4S)-4-(3-18F-fluoropropyl)-L-glutamate versus 18F-fluorodeoxyglucose PET/CT for detecting metastases from pancreatic ductal adenocarcinoma: a proof-of-concept study[J]. Eur J Nucl Med Mol Imaging, 2019, 46: 810-820. DOI:10.1007/s00259-018-4251-5 |
[19] |
OKASHA H H, WIFI M N, AWAD A, ABDELFATAH Y, ABDELFATAH D, EL-SAWY S S, et al. Role of EUS in detection of liver metastasis not seen by computed tomography or magnetic resonance imaging during staging of pancreatic, gastrointestinal, and thoracic malignancies[J]. Endosc Ultrasound, 2021, 10: 344-354. DOI:10.4103/EUS-D-20-00178 |
[20] |
MIYATA T, KITANO M, OMOTO S, KADOSAKA K, KAMATA K, IMAI H, et al. Contrast-enhanced harmonic endoscopic ultrasonography for assessment of lymph node metastases in pancreatobiliary carcinoma[J]. World J Gastroenterol, 2016, 22: 3381-3391. DOI:10.3748/wjg.v22.i12.3381 |
[21] |
KURITA A, KODAMA Y, NAKAMOTO Y, ISODA H, MINAMIGUCHI S, YOSHIMURA K, et al. Impact of EUS-FNA for preoperative para-aortic lymph node staging in patients with pancreatobiliary cancer[J/OL]. Gastrointest Endosc, 2016, 84: 467-475. e1. DOI: 10.1016/j.gie.2016.02.045.
|
[22] |
KITANO M, YOSHIDA T, ITONAGA M, TAMURA T, HATAMARU K, YAMASHITA Y. Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer[J]. J Gastroenterol, 2019, 54: 19-32. DOI:10.1007/s00535-018-1519-2 |
[23] |
MINAGA K, KITANO M, NAKAI A, OMOTO S, KAMATA K, YAMAO K, et al. Improved detection of liver metastasis using Kupffer-phase imaging in contrast-enhanced harmonic EUS in patients with pancreatic cancer (with video)[J]. Gastrointest Endosc, 2021, 93: 433-441. DOI:10.1016/j.gie.2020.06.051 |
[24] |
GEMENETZIS G, GROOT V P, BLAIR A B, DING D, THAKKER S S, FISHMAN E K, et al. Incidence and risk factors for abdominal occult metastatic disease in patients with pancreatic adenocarcinoma[J]. J Surg Oncol, 2018, 118: 1277-1284. DOI:10.1002/jso.25288 |
[25] |
ENGLE D D, TIRIAC H, RIVERA K D, POMMIER A, WHALEN S, ONI T E, et al. The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice[J]. Science, 2019, 364: 1156-1162. DOI:10.1126/science.aaw3145 |
[26] |
ZHANG J Y, WANG Y, ZHAO T C, LI Y Z, TIAN L L, ZHAO J M, et al. Evaluation of serum MUC5AC in combination with CA19-9 for the diagnosis of pancreatic cancer[J/OL]. World J Surg Oncol, 2020, 18: 31. DOI: 10.1186/s12957-020-1809-z.
|
[27] |
中华医学会外科学分会胰腺外科学组. 中国胰腺癌诊治指南(2021)[J]. 中国实用外科杂志, 2021, 41: 725-738. DOI:10.19538/j.cjps.issn1005-2208.2021.07.02 |
[28] |
LUO G P, LIU C, GUO M, CHENG H, LU Y, JIN K Z, et al. Potential biomarkers in lewis negative patients with pancreatic cancer[J]. Ann Surg, 2017, 265: 800-805. DOI:10.1097/SLA.0000000000001741 |
[29] |
LIU L, XU H X, WANG W Q, WU C T, XIANG J F, LIU C, et al. Serum CA125 is a novel predictive marker for pancreatic cancer metastasis and correlates with the metastasis-associated burden[J]. Oncotarget, 2016, 7: 5943-5956. DOI:10.18632/oncotarget.6819 |
[30] |
CHEN X L, LIU F F, XUE Q P, WENG X C, XU F. Metastatic pancreatic cancer: mechanisms and detection[J/OL]. Oncol Rep, 2021, 46: 231. DOI: 10.3892/or.2021.8182.
|
[31] |
ABUE M, YOKOYAMA M, SHIBUYA R, TAMAI K, YAMAGUCHI K, SATO I, et al. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer[J]. Int J Oncol, 2015, 46: 539-547. DOI:10.3892/ijo.2014.2743 |
[32] |
HU G Y, TAO F, WANG W, JI K W. Prognostic value of microRNA-21 in pancreatic ductal adenocarcinoma: a meta-analysis[J/OL]. World J Surg Oncol, 2016, 14: 82. DOI: 10.1186/s12957-016-0842-4.
|
[33] |
WANG C Y, LIU P, WU H S, CUI P F, LI Y F, LIU Y, et al. microRNA-323-3p inhibits cell invasion and metastasis in pancreatic ductal adenocarcinoma via direct suppression of SMAD2 and SMAD3[J]. Oncotarget, 2016, 7: 14912-14924. DOI:10.18632/oncotarget.7482 |
[34] |
LIANG L, WEI D M, LI J J, LUO D Z, CHEN G, DANG Y W, et al. Prognostic microRNAs and their potential molecular mechanism in pancreatic cancer: a study based on The Cancer Genome Atlas and bioinformatics investigation[J]. Mol Med Rep, 2018, 17: 939-951. |
[35] |
RASSY E, PAVLIDIS N. The diagnostic challenges of patients with carcinoma of unknown primary[J]. Expert Rev Anticancer Ther, 2020, 20: 775-783. DOI:10.1080/14737140.2020.1807948 |
[36] |
COURT C M, ANKENY J S, SHO S, WINOGRAD P, HOU S, SONG M, et al. Circulating tumor cells predict occult metastatic disease and prognosis in pancreatic cancer[J]. Ann Surg Oncol, 2018, 25: 1000-1008. |
[37] |
TIEN Y W, KUO H C, HO B I, CHANG M C, CHANG Y T, CHENG M F, et al. A high circulating tumor cell count in portal vein predicts liver metastasis from periampullary or pancreatic cancer: a high portal venous CTC count predicts liver metastases[J/OL]. Medicine (Baltimore), 2016, 95: e3407. DOI: 10.1097/MD.0000000000003407.
|
[38] |
IKEDA S, SCHWAEDERLE M, MOHINDRA M, FONTES JARDIM D L, KURZROCK R. MET alterations detected in blood-derived circulating tumor DNA correlate with bone metastases and poor prognosis[J/OL]. J Hematol Oncol, 2018, 11: 76. DOI: 10.1186/s13045-018-0610-8.
|
[39] |
BIERIE B, PIERCE S E, KROEGER C, STOVER D G, PATTABIRAMAN D R, THIRU P, et al. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells[J/OL]. Proc Natl Acad Sci USA, 2017, 114: E2337-E2346. DOI: 10.1073/pnas.1618298114.
|
[40] |
SUN Y K, WU G D, CHENG K S, CHEN A Q, NEOH K H, CHEN S Y, et al. CTC phenotyping for a preoperative assessment of tumor metastasis and overall survival of pancreatic ductal adenocarcinoma patients[J]. EBioMedicine, 2019, 46: 133-149. DOI:10.1016/j.ebiom.2019.07.044 |
[41] |
ZHAO X H, WANG Z R, CHEN C L, DI L, BI Z F, LI Z H, et al. Molecular detection of epithelial-mesenchymal transition markers in circulating tumor cells from pancreatic cancer patients: potential role in clinical practice[J]. World J Gastroenterol, 2019, 25: 138-150. DOI:10.3748/wjg.v25.i1.138 |
[42] |
SHI Y, GAO W N, LYTLE N K, HUANG P W, YUAN X, DANN A M, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring[J]. Nature, 2019, 569: 131-135. DOI:10.1038/s41586-019-1130-6 |
[43] |
BHATTACHARYA A, SANTHOSHKUMAR A, KURAHARA H, HARIHAR S. Metastasis suppressor genes in pancreatic cancer: an update[J]. Pancreas, 2021, 50: 923-932. DOI:10.1097/MPA.0000000000001853 |
[44] |
ESHLEMAN J R, NORRIS A L, SADAKARI Y, DEBELJAK M, BORGES M, HARRINGTON C, et al. KRAS and GNAS mutations in pancreatic juice collected from the duodenum of patients at high risk for neoplasia undergoing endoscopic ultrasound[J/OL]. Clin Gastroenterol Hepatol, 2015, 13: 963-969. e4. DOI: 10.1016/j.cgh.2014.11.028.
|
[45] |
CONNOR A A, DENROCHE R E, JANG G H, LEMIRE M, ZHANG A, CHAN-SENG-YUE M, et al. Integration of genomic and transcriptional features in pancreatic cancer reveals increased cell cycle progression in metastases[J/OL]. Cancer Cell, 2019, 35: 267-282. e7. DOI: 10.1016/j.ccell.2018.12.010.
|
[46] |
WANG Z Y, DING X Q, ZHU H, WANG R X, PAN X R, TONG J H. KRAS mutant allele fraction in circulating cell-free DNA correlates with clinical stage in pancreatic cancer patients[J/OL]. Front Oncol, 2019, 9: 1295. DOI: 10.3389/fonc.2019.01295.
|
[47] |
HATA T, MIZUMA M, ISEKI M, TAKADATE T, ISHIDA M, NAKAGAWA K, et al. Circulating tumor DNA as a predictive marker for occult metastases in pancreatic cancer patients with radiographically non-metastatic disease[J]. J Hepatobiliary Pancreat Sci, 2021, 28: 648-658. DOI:10.1002/jhbp.993 |
[48] |
尹艳, 张学玲. 血清CA19-9联合肝功能检测在胰腺癌早期肝转移诊断中应用[J]. 国际医药卫生导报, 2019, 25: 2698-2700. |
[49] |
刘忠, 李志军. 肿瘤标志物CEA和CA242及CA199联合检测在胰腺癌患者淋巴结转移和预后中的应用价值[J]. 当代医学, 2021, 27: 108-110. |
[50] |
刘家栋, 张婷. 血清LDH, CA19-9, CRP联合检测与胰腺癌预后的相关性分析[J/CD]. 消化肿瘤杂志(电子版), 2019, 11: 109-112.
|
[51] |
OBA A, INOUE Y, ONO Y, IRIE S, SATO T, MISE Y, et al. Radiologically occult metastatic pancreatic cancer: how can we avoid unbeneficial resection?[J]. Langenbecks Arch Surg, 2020, 405: 35-41. DOI:10.1007/s00423-019-01846-2 |
[52] |
MIZUMOTO T, TOYAMA H, ASARI S, TERAI S, MUKUBO H, YAMASHITA H, et al. Pathological and radiological splenic vein involvement are predictors of poor prognosis and early liver metastasis after surgery in patients with pancreatic adenocarcinoma of the body and tail[J]. Ann Surg Oncol, 2018, 25: 638-646. |
[53] |
LOU X, LI J, WEI Y Q, JIANG Z J, CHEN M, SUN J J. Comparable prevalence of distant metastasis and survival of different primary site for LN+pancreatic tumor[J/OL]. J Transl Med, 2020, 18: 266. DOI: 10.1186/s12967-020-02438-1.
|
[54] |
DE ROSA A, CAMERON I C, GOMEZ D. Indications for staging laparoscopy in pancreatic cancer[J]. HPB (Oxford), 2016, 18: 13-20. DOI:10.1016/j.hpb.2015.10.004 |
[55] |
SAKAGUCHI T, SATOI S, HASHIMOTO D, YAMAMOTO T, YAMAKI S, HIROOKA S, et al. A simple risk score for detecting radiological occult metastasis in patients with resectable or borderline resectable pancreatic ductal adenocarcinoma[J]. J Hepatobiliary Pancreat Sci, 2022, 29: 262-270. DOI:10.1002/jhbp.1026 |
[56] |
孟尧, 马靖雯, 陈高齐, 何天霖. 胰腺导管腺癌腹腔隐匿性转移术前预测模型的构建[J]. 海军军医大学学报, 2023, 44: 178-187. MENG Y, MA J W, CHEN G Q, HE T L. Construction of preoperative predictive model for occult abdominal metastatic disease of pancreatic ductal adenocarcinoma[J]. Acad J Naval Med Univ, 2023, 44: 178-187. |