随着靶向细胞毒性T淋巴细胞相关蛋白4(cytotoxic T lymphocyte-associated protein 4,CTLA-4)和程序性死亡蛋白1(programmed death 1,PD-1)/程序性死亡蛋白配体1(programmed death-ligand 1,PD-L1)轴等免疫检查点药物在临床上的应用,肿瘤免疫治疗取得重大突破[1]。目前大多数免疫检查点抑制剂的作用机制为刺激适应性免疫系统尤其是T细胞以攻击肿瘤细胞,然而固有免疫系统特别是巨噬细胞在抗肿瘤免疫反应中也发挥着重要作用[2]。CD47又称整合素相关蛋白,是目前研究最广泛的固有免疫检查点之一,其主要配体是表达于巨噬细胞表面的信号调节蛋白α(signal regulatory protein α,SIRPα)[3]。肿瘤细胞通过高表达CD47与巨噬细胞表面的SIRPα结合抑制巨噬细胞的吞噬作用,介导肿瘤免疫逃逸[4]。近年来,CD47已被证实在各种恶性肿瘤细胞中过表达并与患者不良预后密切相关,靶向CD47/SIRPα轴的药物在多种恶性肿瘤治疗中表现出良好的效果[5]。但是,由于正常细胞如红细胞等也表达CD47,加上复杂的肿瘤免疫微环境和肿瘤异质性,单独靶向CD47/SIRPα信号轴的药物存在不良反应较严重和响应率较低等问题。为了克服上述问题,增强抗肿瘤效果,越来越多的研究开始关注靶向CD47/SIRPα信号轴药物与其他疗法的联合治疗策略,包括其与放射治疗、化学治疗、肿瘤靶向治疗抗体、其他免疫治疗药物的联合治疗,以及双重免疫调节CD47的双功能融合蛋白的治疗等。本文对近年来CD47/SIRPα信号通路的研究进展及基于靶向CD47/SIRPα信号轴药物的肿瘤联合治疗策略进行综述。
1 CD47/SIRPα信号轴与肿瘤CD47是一种由整合素、胆固醇和G蛋白组成的跨膜蛋白,其结构包含一个氨基端胞外可变区、一个高疏水跨膜段形成的跨膜区和一个亲水的羧基端细胞质尾[6]。CD47的配体主要有血栓反应蛋白1(thrombospondin-1,TSP-1)、SIRPα、整合素αvβ3和整合素α2β1[6]。SIRPα是目前研究最多的一种CD47配体,主要表达于髓系细胞如巨噬细胞的表面。SIRPα是一种跨膜蛋白,其胞内区域具有4个免疫受体酪氨酸抑制基序(immunoreceptor tyrosine-based inhibition motif,ITIM),胞外区域包含3个Ig样区域——2个IgSF结构域和一个氨基端结构域,其中氨基端结构域能够与CD47结合[7]。巨噬细胞表面的SIRPα胞外结构域与CD47结合后,其胞内ITIM发生酪氨酸磷酸化,并激活抑制性磷酸酶Src同源2结构域蛋白酪氨酸磷酸酶(Src homology 2 domain-containing protein tyrosine phosphatase,SHP)-1和SHP-2,然后抑制吞噬突触中肌球蛋白ⅡA的积累,转导“不要吃我”信号,从而抑制巨噬细胞的吞噬功能[8]。
在血液系统恶性肿瘤中,急性髓系白血病和慢性髓系白血病细胞CD47表达上调以逃避巨噬细胞介导的吞噬作用,CD47高表达与较差的治疗反应和不良预后密切相关[3, 9]。阻断CD47/SIRPα信号轴在体外能促进巨噬细胞对急性髓系白血病细胞的吞噬,在人源肿瘤细胞异种移植瘤模型上也能产生显著的抗肿瘤作用[10]。此外,CD47在多种恶性血液系统肿瘤包括急性淋巴细胞白血病、非霍奇金淋巴瘤和多发性骨髓瘤中均高表达,且为潜在的治疗靶点[11-13]。在实体瘤包括胃癌、结肠癌、乳腺癌、卵巢癌、膀胱癌、平滑肌肉瘤、胰腺神经内分泌肿瘤和小细胞肺癌等肿瘤细胞中,CD47表达也上调,且高表达的CD47与临床不良预后有关;同时,在这些实体瘤的临床前模型中,靶向CD47的药物均能够在体外促进巨噬细胞对肿瘤细胞的吞噬、在体内抑制移植瘤的生长[5, 14-17]。在黑色素瘤和膀胱癌模型中,抗CD47治疗还表现出了明显的抑制肿瘤转移的作用[5, 18]。目前已有多种CD47抗体(Hu5F9-G4、CC-9002、AK117、IBI188、SRF231、AO-176)以及一些衍生自SIRPα的重组融合蛋白(ALX148、TTI621)等CD47靶向药物进入临床试验,以探索抗CD47治疗在各种血液系统肿瘤和实体瘤中的临床抗肿瘤效果。
2 抗CD47治疗单独应用的局限性尽管CD47阻断疗法在肿瘤治疗方面取得很大进展,单一的抗CD47治疗仍面临很多的限制。在胰腺导管腺癌中,CD47抗体在体外能有效增强巨噬细胞对肿瘤细胞的吞噬作用,而在患者来源的异种移植瘤模型中,单独靶向CD47治疗并未产生明显肿瘤抑制作用。导致肿瘤耐药的因素可能是胰腺导管腺癌较强的侵袭性生长性质以及致密肿瘤对药物吸收的限制[19]。也有研究表明肿瘤细胞主要组织相容性复合体Ⅰ的表达能够有效抵抗CD47阻断治疗诱导的巨噬细胞吞噬作用[20]。此外,在相关临床试验中,单独抗CD47治疗也仅显示出有限的抗肿瘤作用。在一项Hu5F9-G4治疗血液肿瘤和实体瘤的临床试验中,62例患者接受Hu5F9-G4单药治疗,仅2例卵巢癌患者观察到部分缓解,1例弥漫性大B细胞淋巴瘤患者观察到混合反应[21]。单独靶向CD47治疗引起的不良反应也限制了其在肿瘤治疗中的应用。CD47不仅在恶性肿瘤细胞中表达,也在造血系统的非恶性细胞表达,包括正常红细胞和血小板等。鉴于CD47在多种正常细胞中表达,使用CD47抗体进行抗肿瘤治疗存在的潜在问题包括贫血、血小板减少等脱靶效应[22]。因为出现了较严重的不良反应,CD47单克隆抗体Ti-061的Ⅰ/Ⅱ期临床试验及CC-90002治疗急性髓系白血病的临床试验分别在2017年和2018年被停止。
3 基于靶向CD47/SIRPα信号轴药物的联合治疗鉴于抗CD47治疗单独应用的局限性,靶向CD47/SIRPα信号轴药物与其他抗肿瘤疗法联合应用成为研究者们关注的焦点。巨噬细胞的吞噬依赖于促吞噬和抗吞噬信号的整合,靶向CD47/SIRPα信号轴药物与其他抗肿瘤疗法的联合应用能够通过不同的作用机制协同增强抗肿瘤效果并减轻单独用药可能存在的治疗耐受。同时,以抗CD47治疗为基础的联合疗法可以通过减少相关药物使用剂量或其他机制来减弱不良反应。
3.1 与放射治疗联合应用放射治疗是许多恶性肿瘤的姑息性或治愈性治疗方法[23]。放射治疗不仅可以直接杀死肿瘤细胞,还可以刺激抗肿瘤免疫反应来间接杀死肿瘤细胞。放射治疗刺激肿瘤细胞释放损伤相关分子模式并诱导免疫源性细胞死亡,激活增强免疫治疗效果所需的全身免疫应答。然而,相关研究表明放射治疗能增加乳腺癌细胞CD47的表达,抑制巨噬细胞的吞噬作用,产生放射治疗耐受。CD47阻断疗法能增强巨噬细胞介导的吞噬作用,与放射治疗联用可产生协同抗肿瘤作用[24]。靶向CD47药物联合放射治疗可保护正常细胞对抗辐射,同时提高肿瘤细胞对放射治疗的敏感性,增强放射治疗效果[25-27]。在一项关于胶质瘤的研究中,放射治疗能够增强肿瘤细胞表面的免疫源性信号,联合抗CD47药物治疗后在体外和体内临床前模型中均能增强巨噬细胞对肿瘤细胞的吞噬,产生协同抗肿瘤作用[28]。在最近的一项研究中,CD47阻断治疗联合放射治疗能通过增加肿瘤微环境中的M1型巨噬细胞和CD8+ T细胞、减少M2型巨噬细胞和髓源性抑制细胞浸润来增强小鼠的抗肿瘤反应,明显抑制结肠癌移植瘤的生长,并显著延长了小鼠生存期[29]。
3.2 与化学治疗联合应用在化学治疗药物杀死癌细胞的过程中,大量的“吃我”信号(如磷脂酰丝氨酸、钙网蛋白和高迁移率族蛋白B1)移位到癌细胞表面或分泌出来,促进机体对死亡细胞的吞噬清除。CD47阻断疗法联合化学治疗可能有助于巨噬细胞吞噬平衡向吞噬清除癌细胞的方向改变。钙网蛋白是一种重要的促吞噬信号,一些化学治疗药物能够诱导钙网蛋白移位到细胞膜表面,增强CD47阻断剂的抗肿瘤活性[22, 30]。在一项脑胶质瘤的研究中,替莫唑胺和顺铂均能诱导肿瘤细胞的内质网应激和钙网蛋白移位,与CD47阻断疗法联合能显著增强巨噬细胞对肿瘤细胞的吞噬,产生协同的抗肿瘤作用[31]。抗CD47药物与化学治疗药物多柔比星联合的抗肿瘤作用已在不同癌症模型中得到证明。在4T1乳腺癌模型中,多柔比星联合CD47单克隆抗体可通过巨噬细胞介导的吞噬作用显著抑制肿瘤生长[32-33]。与CD47单克隆抗体或多柔比星单独治疗相比,多柔比星和CD47单克隆抗体联合治疗可明显增强骨髓来源的巨噬细胞对骨肉瘤细胞系的吞噬作用[34]。在这些研究中,化学治疗药物处理后细胞表面的“吃我”信号钙网蛋白表达上调,而抗CD47药物则能阻断“不要吃我”信号,两者联合作用可以使吞噬平衡向“吃我”改变,以增加巨噬细胞对肿瘤细胞的吞噬清除。还有研究表明,阻断CD47能诱发肿瘤细胞保护性自噬[25, 35],抗CD47药物与自噬抑制剂氯喹的联合应用能显著提升巨噬细胞吞噬非小细胞肺癌细胞的能力[36]。
3.3 与肿瘤靶向治疗抗体联合应用目前,许多临床前或临床研究将CD47阻断疗法与肿瘤靶向治疗抗体联合应用。这些联合治疗的效果与肿瘤免疫微环境密切相关,例如“不要吃我”和“吃我”信号的改变。肿瘤靶向治疗抗体Fc链能为巨噬细胞激活提供强有力的刺激,也能诱导许多促吞噬信号包括磷脂酰丝氨酸和钙网蛋白的产生以增强巨噬细胞吞噬作用。在非霍奇金淋巴瘤异种移植瘤小鼠模型中,CD20抗体利妥昔单抗通过结合Fc受体依赖性作用,与CD47抗体联合协同增强了巨噬细胞的吞噬作用并介导了肿瘤消除[11]。一项Ⅰb期临床研究结果显示,CD47单克隆抗体联合利妥昔单抗在弥漫性大B细胞淋巴瘤中达到了40%的客观缓解率和33%的完全缓解率,在滤泡性淋巴瘤中达到了71%的客观缓解率和43%的完全缓解率[37]。这些临床效果与各种临床前研究一致。同样,在乳腺癌中,人表皮生长因子受体2(human epidermal growth factor receptor 2,Her2)抗体曲妥珠单抗与CD47/SIRPα阻断剂联合使用显著提高了巨噬细胞对Her2+乳腺癌细胞系的吞噬率,并且在乳腺癌移植瘤模型中产生了协同抗肿瘤作用[38-39]。目前,曲妥珠单抗和SIRPα-Fc融合蛋白(ALX148)的联合治疗正在进行Ⅰ期临床试验(NCT03013218)。在一项神经母细胞瘤的研究中,神经节苷脂GD-2抗体联合抗CD47治疗可以通过肿瘤微环境中促吞噬和抗吞噬信号的改变介导肿瘤消除,产生协同抗肿瘤作用[40]。
3.4 与其他免疫治疗药物联合应用固有免疫系统和适应性免疫系统在抗肿瘤免疫中都发挥着重要作用,两者缺一不可。联合阻断CD47/SIRPα信号轴和PD-1/PD-L1信号通路可同时激活固有免疫和适应性免疫反应,可能是一种有潜力的联合治疗策略。2016年,Sockolosky等[41]将CD47单克隆抗体与PD-L1单克隆抗体联合使用,在体外和体内的临床前模型中均显示出显著的抗肿瘤活性,证明了固有免疫检查点抑制剂联合适应性免疫检查点抑制剂的协同抗肿瘤作用。CTLA-4是另一个重要的适应性免疫检查点。在一项关于食管癌的研究中,CD47阻断治疗增加了CTLA-4和PD-1的表达,与单独CD47阻断治疗相比,CD47阻断联合CTLA-4单克隆抗体显著抑制了小鼠异种移植瘤的生长[42]。在胰腺癌小鼠模型中也观察到类似的效果,抗CD47治疗能够增强抗原呈递并刺激T细胞活化,与抗CTLA-4治疗联合应用能产生更强的抑制肿瘤生长作用[43]。因此,针对PD-1/PD-L1或CTLA-4的免疫检查点抑制剂与CD47阻断疗法相结合可能成为基于CD47/SIRPα阻断疗法更有效的联合治疗策略。
近年来,嵌合抗原受体T细胞(chimeric antigen receptor T-cell,CAR-T)免疫疗法在肿瘤治疗领域有了巨大突破,CD47阻断疗法与CAR-T的结合也逐渐被关注。CD47-CAR-T对高表达CD47的肿瘤细胞系可产生明显的细胞毒性作用,产生与CD47表达水平相关的细胞因子,并且显著抑制胰腺癌异种移植肿瘤的生长[44]。2021年,Shu等[45]构建了同时靶向CD47和肿瘤相关糖蛋白72(tumor-associated glycoprotein 72,TAG-72)的CAR-T,它在卵巢癌的体外和体内模型中均表现出强大的抗肿瘤作用,同时TAG-72的特异性靶向作用也能降低该CAR-T对正常组织的杀伤作用。鉴于靶向CD47在诱导激活固有免疫和适应性免疫反应中的作用,一种分泌SIRPα-Fc融合蛋白的CAR-T被开发出来,并且在多种肿瘤模型中表现出显著的抗肿瘤作用。CD47阻断剂SIRPα-Fc融合蛋白能够通过降低CAR-T表面PD-1的表达,减少骨髓来源的干细胞、增加肿瘤组织树突状细胞和M1型巨噬细胞,改善肿瘤微环境,提高CAR-T的抗肿瘤效果[46]。2020年,Xie等[47]开发出一种分泌抗CD47重链抗体重链可变区(variable domain of heavy chain of heavy-chain antibody,VHH)的CAR-T。该CAR-T能局部递送抗CD47 VHH,促进巨噬细胞吞噬肿瘤细胞,提高抗肿瘤作用,减轻全身不良反应,CAR-T也显示出更少的耗竭和更长的持久性。
3.5 双功能融合蛋白为实现对肿瘤更高特异性的靶向治疗,减弱对表达CD47的健康细胞的毒性,双功能融合蛋白药物已经被开发出来。一种靶向CD19和CD47的双功能融合蛋白在临床前研究中表现出疗效[48]。2015年,Majeti研究团队构建了同时靶向CD20和CD47的双功能融合蛋白,其表现出较低的CD47亲和力和较高的CD20亲和力,能显著抑制人类非霍奇金淋巴瘤移植瘤小鼠的肿瘤生长,而且能明显减少对正常血细胞的破坏[49]。已有研究通过将SIRPα的结合域融合到肿瘤靶向抗体开发出其他双功能融合蛋白,包括同时靶向CD47和CD20或CD33或血管内皮生长因子的双功能融合蛋白等,并且在临床前模型中证明了其有效性[50-52]。它们可以在肿瘤细胞上结合CD47,借助双特异性分子对另一个肿瘤靶点的更高亲和力,在体外有效抑制CD47/SIRPα信号,引发强烈的肿瘤细胞吞噬,但对CD47单阳性细胞(如人红细胞)影响很小。针对CD47和PD-L1的双免疫检查点阻断剂也已经被开发出来。这种双功能融合蛋白通过增强对PD-L1的亲和力、适当减弱对CD47的亲和力,选择性结合CD47+PD-L1+肿瘤细胞,减少对CD47单阳性细胞如人红细胞的结合以限制毒性,并且还能有效阻断PD-1/PD-L1和CD47/SIRPα信号转导,增强巨噬细胞对肿瘤细胞的吞噬,提高抗原呈递功能,刺激T细胞活化,同时激活固有免疫和适应性免疫应答,产生协同抗肿瘤作用[53-56]。
4 结语基于CD47/SIRPα信号轴阻断疗法的联合治疗虽然显示出了更强的抗肿瘤疗效,并减弱了阻断CD47/SIRPα信号轴的不良反应,但依然存在不良反应发生风险和响应率不足等问题。随着生物技术和肿瘤个体化治疗的发展,通过CD47/SIRPα阻断剂激活固有免疫系统、通过其他免疫检查点抑制剂同时激活适应性免疫系统,并且根据肿瘤类型更精确地与其他肿瘤靶向疗法相结合,降低毒性和不良反应,提高抗肿瘤活性,可能是基于靶向CD47/SIRPα疗法的联合治疗策略的发展方向。
[1] |
BAXI S, YANG A N, GENNARELLI R L, KHAN N, WANG Z W, BOYCE L, et al. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis[J/OL]. BMJ, 2018: k793. DOI: 10.1136/bmj.k793.
|
[2] |
WOO S R, CORRALES L, GAJEWSKI T F. Innate immune recognition of cancer[J]. Annu Rev Immunol, 2015, 33: 445-474. DOI:10.1146/annurev-immunol-032414-112043 |
[3] |
JAISWAL S, JAMIESON C H M, PANG W W, PARK C Y, CHAO M P, MAJETI R, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis[J]. Cell, 2009, 138: 271-285. DOI:10.1016/j.cell.2009.05.046 |
[4] |
LOGTENBERG M E W, MARCO JANSEN J H, RAABEN M, TOEBES M, FRANKE K, BRANDSMA A M, et al. Glutaminyl cyclase is an enzymatic modifier of the CD47-SIRPα axis and a target for cancer immunotherapy[J]. Nat Med, 2019, 25: 612-619. DOI:10.1038/s41591-019-0356-z |
[5] |
WILLINGHAM S B, VOLKMER J P, GENTLES A J, SAHOO D, DALERBA P, MITRA S S, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors[J]. Proc Natl Acad Sci USA, 2012, 109: 6662-6667. DOI:10.1073/pnas.1121623109 |
[6] |
BROWN E J, FRAZIER W A. Integrin-associated protein (CD47) and its ligands[J]. Trends Cell Biol, 2001, 11: 130-135. DOI:10.1016/S0962-8924(00)01906-1 |
[7] |
BARCLAY A N, BROWN M H. The SIRP family of receptors and immune regulation[J]. Nat Rev Immunol, 2006, 6: 457-464. DOI:10.1038/nri1859 |
[8] |
BARCLAY A N, VAN DEN BERG T K. The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target[J]. Annu Rev Immunol, 2014, 32: 25-50. DOI:10.1146/annurev-immunol-032713-120142 |
[9] |
RUSS A, HUA A B, MONTFORT W R, RAHMAN B, BIN RIAZ I, KHALID M U, et al. Blocking "don't eat me" signal of CD47-SIRPα in hematological malignancies, an in-depth review[J]. Blood Rev, 2018, 32: 480-489. DOI:10.1016/j.blre.2018.04.005 |
[10] |
MAJETI R, CHAO M P, ALIZADEH A A, PANG W W, JAISWAL S, GIBBS K D, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells[J]. Cell, 2009, 138: 286-299. DOI:10.1016/j.cell.2009.05.045 |
[11] |
CHAO M P, ALIZADEH A A, TANG C, MYKLEBUST J H, VARGHESE B, GILL S, et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma[J]. Cell, 2010, 142: 699-713. DOI:10.1016/j.cell.2010.07.044 |
[12] |
CHAO M P, ALIZADEH A A, TANG C, JAN M, WEISSMAN-TSUKAMOTO R, ZHAO F F, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia[J]. Cancer Res, 2011, 71: 1374-1384. DOI:10.1158/0008-5472.CAN-10-2238 |
[13] |
KIM D, WANG J, WILLINGHAM S B, MARTIN R, WERNIG G, WEISSMAN I L. Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells[J]. Leukemia, 2012, 26: 2538-2545. DOI:10.1038/leu.2012.141 |
[14] |
EDRIS B, WEISKOPF K, VOLKMER A K, VOLKMER J P, WILLINGHAM S B, CONTRERAS-TRUJILLO H, et al. Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma[J]. Proc Natl Acad Sci USA, 2012, 109: 6656-6661. DOI:10.1073/pnas.1121629109 |
[15] |
KRAMPITZ G W, GEORGE B M, WILLINGHAM S B, VOLKMER J P, WEISKOPF K, JAHCHAN N, et al. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors[J]. Proc Natl Acad Sci USA, 2016, 113: 4464-4469. DOI:10.1073/pnas.1600007113 |
[16] |
WEISKOPF K, JAHCHAN N S, SCHNORR P J, CRISTEA S, RING A M, MAUTE R L, et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer[J]. J Clin Invest, 2016, 126: 2610-2620. DOI:10.1172/JCI81603 |
[17] |
YOSHIDA K, TSUJIMOTO H, MATSUMURA K, KINOSHITA M, TAKAHATA R, MATSUMOTO Y, et al. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer[J]. Cancer Med, 2015, 4: 1322-1333. DOI:10.1002/cam4.478 |
[18] |
NGO M, HAN A, LAKATOS A, SAHOO D, HACHEY S J, WEISKOPF K, et al. Antibody therapy targeting CD47 and CD271 effectively suppresses melanoma metastasis in patient-derived xenografts[J]. Cell Rep, 2016, 16: 1701-1716. DOI:10.1016/j.celrep.2016.07.004 |
[19] |
CIOFFI M, TRABULO S, HIDALGO M, COSTELLO E, GREENHALF W, ERKAN M, et al. Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms[J]. Clin Cancer Res, 2015, 21: 2325-2337. DOI:10.1158/1078-0432.CCR-14-1399 |
[20] |
BARKAL A A, WEISKOPF K, KAO K S, GORDON S R, ROSENTAL B, YIU Y Y, et al. Engagement of MHC class Ⅰ by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy[J]. Nat Immunol, 2018, 19: 76-84. |
[21] |
SIKIC B I, LAKHANI N, PATNAIK A, SHAH S A, CHANDANA S R, RASCO D, et al. First-in-human, first-in-class phase Ⅰ trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers[J]. J Clin Oncol, 2019, 37: 946-953. DOI:10.1200/JCO.18.02018 |
[22] |
CHAO M P, JAISWAL S, WEISSMAN-TSUKAMOTO R, ALIZADEH A A, GENTLES A J, VOLKMER J, et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47[J/OL]. Sci Transl Med, 2010, 2: 63ra94. DOI: 10.1126/scitranslmed.3001375.
|
[23] |
JAFFRAY D A. Image-guided radiotherapy: from current concept to future perspectives[J]. Nat Rev Clin Oncol, 2012, 9: 688-699. DOI:10.1038/nrclinonc.2012.194 |
[24] |
CANDAS-GREEN D, XIE B W, HUANG J, FAN M, WANG A J, MENAA C, et al. Dual blockade of CD47 and HER2 eliminates radioresistant breast cancer cells[J/OL]. Nat Commun, 2020, 11: 4591. DOI: 10.1038/s41467-020-18245-7.
|
[25] |
MAXHIMER J B, SOTO-PANTOJA D R, RIDNOUR L A, SHIH H B, DEGRAFF W G, TSOKOS M, et al. Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling[J/OL]. Sci Transl Med, 2009, 1: 3ra7. DOI: 10.1126/scitranslmed.3000139.
|
[26] |
SOTO-PANTOJA D R, TERABE M, GHOSH A, RIDNOUR L A, DEGRAFF W G, WINK D A, et al. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy[J]. Cancer Res, 2014, 74: 6771-6783. DOI:10.1158/0008-5472.CAN-14-0037-T |
[27] |
NISHIGA Y, DRAINAS A P, BARON M, BHATTACHARYA D, BARKAL A A, AHRARI Y, et al. Radiotherapy in combination with CD47 blockade elicits a macrophage-mediated abscopal effect[J]. Nat Cancer, 2022, 3: 1351-1366. DOI:10.1038/s43018-022-00456-0 |
[28] |
GHOLAMIN S, YOUSSEF O A, RAFAT M, ESPARZA R, KAHN S, SHAHIN M, et al. Irradiation or temozolomide chemotherapy enhances anti-CD47 treatment of glioblastoma[J]. Innate Immun, 2020, 26: 130-137. DOI:10.1177/1753425919876690 |
[29] |
ROSTAMI E, BAKHSHANDEH M, GHAFFARI-NAZARI H, ALINEZHAD M, ALIMOHAMMADI M, ALIMOHAMMADI R, et al. Combining ablative radiotherapy and anti CD47 monoclonal antibody improves infiltration of immune cells in tumor microenvironments[J/OL]. PLoS One, 2022, 17: e0273547. DOI: 10.1371/journal.pone.0273547.
|
[30] |
OBEID M, TESNIERE A, GHIRINGHELLI F, FIMIA G M, APETOH L, PERFETTINI J L, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death[J]. Nat Med, 2007, 13: 54-61. DOI:10.1038/nm1523 |
[31] |
VON ROEMELING C A, WANG Y, QIE Y, YUAN H, ZHAO H, LIU X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity[J/OL]. Nat Commun, 2020, 11: 1508. DOI: 10.1038/s41467-020-15129-8.
|
[32] |
LIU X J, LIU L C, REN Z H, YANG K T, XU H R, LUAN Y, et al. Dual targeting of innate and adaptive checkpoints on tumor cells limits immune evasion[J]. Cell Rep, 2018, 24: 2101-2111. DOI:10.1016/j.celrep.2018.07.062 |
[33] |
MOHANTY S, AGHIGHI M, YERNENI K, THERUVATH J L, DALDRUP-LINK H E. Improving the efficacy of osteosarcoma therapy: combining drugs that turn cancer cell 'don't eat me' signals off and 'eat me' signals on[J]. Mol Oncol, 2019, 13: 2049-2061. DOI:10.1002/1878-0261.12556 |
[34] |
FELIZ-MOSQUEA Y R, CHRISTENSEN A A, WILSON A S, WESTWOOD B, VARAGIC J, MELÉNDEZ G C, et al. Combination of anthracyclines and anti-CD47 therapy inhibit invasive breast cancer growth while preventing cardiac toxicity by regulation of autophagy[J]. Breast Cancer Res Treat, 2018, 172: 69-82. DOI:10.1007/s10549-018-4884-x |
[35] |
CHEN Z, TEO A, MCCARTY N. ROS-induced CXCR4 signaling regulates mantle cell lymphoma (MCL) cell survival and drug resistance in the bone marrow microenvironment via autophagy[J]. Clin Cancer Res, 2015, 22: 187-199. |
[36] |
ZHANG X, FAN J, WANG S, LI Y, WANG Y, LI S, et al. Targeting CD47 and autophagy elicited enhanced antitumor effects in non-small cell lung cancer[J]. Cancer Immunol Res, 2017, 5: 363-375. DOI:10.1158/2326-6066.CIR-16-0398 |
[37] |
ADVANI R, FLINN I, POPPLEWELL L, FORERO A, BARTLETT N L, GHOSH N, et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin's lymphoma[J]. N Engl J Med, 2018, 379: 1711-1721. DOI:10.1056/NEJMoa1807315 |
[38] |
UPTON R, BANUELOS A, FENG D D, BISWAS T, KAO K, MCKENNA K, et al. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance[J/OL]. Proc Natl Acad Sci USA, 2021, 118: e2026849118. DOI: 10.1073/pnas.2026849118.
|
[39] |
TSAO L C, CROSBY E J, TROTTER T N, AGARWAL P, HWANG B J, ACHARYA C, et al. CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis[J/OL]. JCI Insight, 2019, 4: e131882. DOI: 10.1172/jci.insight.131882.
|
[40] |
THERUVATH J, MENARD M, SMITH B A H, LINDE M H, COLES G L, DALTON G N, et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication[J]. Nat Med, 2022, 28: 333-344. DOI:10.1038/s41591-021-01625-x |
[41] |
SOCKOLOSKY J T, DOUGAN M, INGRAM J R, HO C C M, KAUKE M J, ALMO S C, et al. Durable antitumor responses to CD47 blockade require adaptive immune stimulation[J/OL]. Proc Natl Acad Sci USA, 2016, 113: E2646-E2654. DOI: 10.1073/pnas.1604268113.
|
[42] |
TAO H, QIAN P D, WANG F J, YU H L, GUO Y S. Targeting CD47 enhances the efficacy of anti-PD-1 and CTLA-4 in an esophageal squamous cell cancer preclinical model[J]. Oncol Res, 2017, 25: 1579-1587. DOI:10.3727/096504017X14900505020895 |
[43] |
SONG X, LU Z, XU J. Targeting cluster of differentiation 47 improves the efficacy of anti-cytotoxic T-lymphocyte associated protein 4 treatment via antigen presentation enhancement in pancreatic ductal adenocarcinoma[J]. Exp Ther Med, 2020, 20: 3301-3309. |
[44] |
GOLUBOVSKAYA V, BERAHOVICH R, ZHOU H, XU S, HARTO H, LI L, et al. CD47-CAR-T cells effectively kill target cancer cells and block pancreatic tumor growth[J/OL]. Cancers, 2017, 9: 139. DOI: 10.3390/cancers9100139.
|
[45] |
SHU R Z, EVTIMOV V J, HAMMETT M V, NGUYEN N Y N, ZHUANG J L, HUDSON P J, et al. Engineered CAR-T cells targeting TAG-72 and CD47 in ovarian cancer[J]. Mol Ther Oncolytics, 2021, 20: 325-341. DOI:10.1016/j.omto.2021.01.002 |
[46] |
CHEN H, YANG Y, DENG Y, WEI F, ZHAO Q, LIU Y, et al. Delivery of CD47 blocker SIRPα-Fc by CAR-T cells enhances antitumor efficacy[J/OL]. J Immunother Cancer, 2022, 10: e003737. DOI: 10.1136/jitc-2021-003737.
|
[47] |
XIE Y, DOUGAN M, INGRAM J, PISHESHA N, FANG T, MOMIN N, et al. Improved antitumor efficacy of chimeric antigen receptor T cells that secrete single-domain antibody fragments[J]. Cancer Immunol Res, 2020, 8: 518-529. DOI:10.1158/2326-6066.CIR-19-0734 |
[48] |
FISCHER N, ELSON G, MAGISTRELLI G, DHEILLY E, FOUQUE N, LAURENDON A, et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG[J/OL]. Nat Commun, 2015, 6: 6113. DOI: 10.1038/ncomms7113.
|
[49] |
PICCIONE E C, JUAREZ S, LIU J, TSENG S, RYAN C E, NARAYANAN C, et al. A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells[J]. mAbs, 2015, 7: 946-956. DOI:10.1080/19420862.2015.1062192 |
[50] |
PICCIONE E, JUÁREZ S, TSENG S, LIU J, STAFFORD M, NARAYANAN C, et al. SIRPα-antibody fusion proteins selectively bind and eliminate dual antigen-expressing tumor cells[J]. Clin Cancer Res, 2016, 22: 5109-5119. DOI:10.1158/1078-0432.CCR-15-2503 |
[51] |
PONCE L P, FENN N C, MORITZ N, KRUPKA C, KOZIK J H, LAUBER K, et al. SIRPα-antibody fusion proteins stimulate phagocytosis and promote elimination of acute myeloid leukemia cells[J]. Oncotarget, 2017, 8: 11284-11301. DOI:10.18632/oncotarget.14500 |
[52] |
ZHANG X Y, WANG Y C, FAN J J, CHEN W, LUAN J Y, MEI X B, et al. Blocking CD47 efficiently potentiated therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer[J/OL]. J Immunother Cancer, 2019, 7: 346. DOI: 10.1186/s40425-019-0812-9.
|
[53] |
CHEN S H, DOMINIK P K, STANFIELD J, DING S, YANG W, KURD N, et al. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity[J/OL]. J Immunother Cancer, 2021, 9: e003464. DOI: 10.1136/jitc-2021-003464.
|
[54] |
WANG Y, NI H Q, ZHOU S X, HE K J, GAO Y R, WU W W, et al. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity[J]. Cancer Immunol Immunother, 2021, 70: 365-376. DOI:10.1007/s00262-020-02679-5 |
[55] |
LIU B N, GUO H Z, XU J, QIN T, GUO Q C, GU N N, et al. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses[J]. mAbs, 2018, 10: 315-324. DOI:10.1080/19420862.2017.1409319 |
[56] |
WANG R J, ZHANG C, CAO Y T, WANG J C, JIAO S S, ZHANG J, et al. Blockade of dual immune checkpoint inhibitory signals with a CD47/PD-L1 bispecific antibody for cancer treatment[J]. Theranostics, 2023, 13: 148-160. DOI:10.7150/thno.79367 |