破骨细胞是一种单核造血髓系细胞来源的多核巨细胞,具有骨吸收功能。在骨重塑过程中,骨吸收和骨形成保持动态平衡,称为骨平衡,骨平衡的破坏会导致类风湿关节炎和骨质疏松症等疾病的发生[1]。TGF-β具有支持破骨细胞形成和促进成骨细胞分化增殖的双重作用,其经典信号转导途径由Smad介导,TGF-β/Smad信号通路在骨代谢的调节中起着不可或缺的作用[2]。本文针对TGF-β1/Smad信号通路在破骨细胞分化发育中的作用进行综述。
1 破骨细胞的分化调节破骨细胞的形成主要依赖2种细胞因子:集落刺激因子1(colony-stimulating factor 1,CSF-1)和核因子κB受体激活蛋白配体(receptor activator of nuclear factor κB ligand,RANKL)。CSF-1可在成脂间充质基质细胞(脂肪细胞介导的瘦素受体阳性细胞)、骨内膜细胞、成骨细胞、微血管内皮细胞等多种细胞中表达。CSF-1与其受体结合后,激活PI3K/Akt和生长因子受体结合蛋白2/ERK通路,促进破骨细胞前体增殖和存活[3]。RANKL也被称为破骨细胞分化因子、护骨因子配体或肿瘤坏死因子相关激活诱导的细胞因子,在成骨基质细胞、成骨细胞、增殖软骨细胞和衬细胞中表达[4]。RANKL被蛋白酶裂解后,能够以跨膜蛋白或可溶性形式存在[5],通过与破骨细胞前体细胞表面的核因子κB受体激活蛋白(receptor activator of nuclear factor κB,RANK)结合,促进成熟破骨细胞的形成、激活和生存[6]。
TGF-β与破骨细胞的产生和分化密切相关。一方面,TGF-β能够直接作用于骨髓巨噬细胞,促进破骨细胞的形成;另一方面,它也能间接调节RANKL与护骨因子的平衡来影响破骨细胞的分化[7]。RANKL/RANK通路的下游介质通过一个共同的转录因子——活化T细胞核因子c1(nuclear factor of activated T cells c1,NFATc1)来调节破骨细胞的形成[8]。TGF-β已被证明可通过增加小鼠单核细胞中RANK的表达刺激破骨细胞的形成[9]。
2 TGF-β/Smad通路概述TGF-β超家族是一类进化保守的分泌多肽因子,分为2个功能组:TGF-β样组和骨形态发生蛋白(bone morphogenetic protein,BMP)样组。TGF-β样组由所有TGF-β、激活素和少量生长分化因子(growth differentiation factor,GDF)组成,而BMP样组包括BMP、大多数GDF和抗米勒管激素(anti-Müllerian hormone,AMH)[10]。这些结构相关的多肽由1个信号肽、1个大的前结构域和1个包含7或9个半胱氨酸残基的羧基末端构成,成熟的多肽形成以二硫键结合的二聚体,参与生物组织发育和生理活动[11]。TGF-β广泛表达于各类组织,从多方面调控细胞生物学行为,其具体调控作用受细胞周围环境及细胞类型等因素影响。在不同条件下,TGF-β能够促进或抑制细胞增殖,诱导或阻断细胞程序性死亡,调控细胞自噬、休眠和衰老等[12]。
人TGF-β有3种亚型,即TGF-β1、TGF-β2和TGF-β3,分别由19、1和14号染色体中的基因编码,其中以TGF-β1最为重要[13-14]。TGF-β家族的信号转导是在细胞外质膜水平上,通过与相应的受体结合发挥作用。TGF-β家族受体是由细胞表面丝氨酸/苏氨酸激酶受体Ⅰ型和Ⅱ型组成的异二聚体,Ⅰ型受体包括转化生长因子β受体(transforming growth factor β receptor,TβR)-Ⅰ[又称激活素受体样激酶(activin receptor-like kinase,Alk)-4]、激活素受体(activin receptor,ActR)-Ⅰ(又称Alk-2)、ActR-ⅠB(又称Alk-4)等,Ⅱ型受体包括TβR-Ⅱ、ActR-Ⅱ、ActR-ⅡB等。这些受体激酶介导磷酸化依赖的信号转导途径,通过下游介质(主要是Smad蛋白)与其他信号蛋白之间相互作用,调控靶基因的表达、RNA多水平加工、mRNA翻译等过程[15]。
Smad蛋白是TGF-β家族下游信号转导蛋白,目前发现的Smad蛋白分为3类8种:(1)特异受体调节型Smad(receptor-regulated Smad,R-Smad),包括Smad1、Smad2、Smad3、Smad5和Smad8,是TβR激酶的直接底物,主动参与特异性信号传递;(2)抑制型Smad(inhibitory Smad,I-Smad),包括Smad6和Smad7,通过与TβR-Ⅰ竞争性结合在TGF-β信号转导过程中发挥抑制作用;(3)通用转导型Smad(co-mediator SMAD,Co-Smad),即Smad4,是TGF-β家族共同需要的下游信号分子。TGF-β通过与Ⅱ型受体结合招募并磷酸化Ⅰ型受体进而激活下游信号,如TGF-β1与TβR-Ⅰ及TβR-Ⅱ结合形成TβR-Ⅱ-TGF-β1-TβR-Ⅰ三聚体,识别Smad2和Smad3并将其磷酸化,使其构象改变,随后Smad2、Smad3与Smad4结合形成Smad复合物,该复合物作为转录因子发挥作用,转移到细胞核以调节靶基因转录[13-14, 16]。
TGF-β信号通路下游目的基因的转录及相关的生物学调控结果在很大程度上取决于特定的背景因素[12],如受体类型、Smad复合体的形式和转录辅因子等[17]。既往研究发现,Smad2、Smad3既有一系列共同的靶基因,同时也有各自不同的靶基因谱,由此导致TGF-β的激活可能诱导完全相反的细胞增殖调控结果[18]。尽管Smad2、Smad3通过不同靶基因介导下游调控作用这一观点已被广泛接受[19],但Smad蛋白在TGF-β调控破骨细胞分化与功能中的具体作用机制尚不明确。
3 TGF-β1通路调节破骨细胞分化的机制 3.1 破骨细胞与TGF-β1的激活TGF-β1是骨基质中含量最丰富(200 μg/kg)的细胞因子之一,在组织修复和免疫细胞调节中起着重要作用,能够调节破骨细胞的分化、增殖、迁移、凋亡和自噬。初始被分泌到骨基质中的TGF-β1是成熟TGF-β1及潜在相关蛋白(latent-associated protein,LAP)的复合体。LAP发挥隔绝成熟TGF-β1与骨细胞外基质接触的作用,使TGF-β1维持在未激活状态[20]。在骨重建过程中,破骨细胞激活发挥骨吸收作用的同时能够解离LAP与TGF-β1,进而激活TGF-β1[21]。
3.2 TGF-β1对破骨细胞分化和成熟的双相效应RANK-RANKL信号通路在破骨细胞分化中至关重要。当TGF-β1与RANKL和CSF-1一起加入培养物时,TGF-β1能刺激破骨细胞前体细胞表达NF-κB和RANK[22-23]。而另一方面,TGF-β也可通过下调NFATc1来抑制RANKL诱导的破骨细胞分化[24]。
有研究表明,TGF-β1在破骨细胞生成过程中可发挥抑制和刺激2种截然相反的作用,这些相反的功能分别由Smad1和Smad3信号介导[25]。护骨因子是一种可溶性诱饵受体,可以通过结合RANKL阻断破骨细胞前体分化[26]。当破骨细胞前体细胞与成骨细胞一起培养时,高浓度(1~10 ng/mL)TGF-β1通过成骨细胞上调护骨因子的表达与分泌及下调RANKL的表达与分泌,从而抑制破骨细胞前体细胞的成熟和分化;而低浓度(1~10 pg/mL)TGF-β1则能促进破骨细胞成熟[27]。Song等[28]研究显示成骨不全症患者存在过量的TGF-β信号转导,采用TGF-β中和抗体非苏木单抗(fresolimumab)对8例成骨不全症患者进行治疗后,部分患者的腰椎骨密度较治疗前明显增加,提示抗TGF-β疗法可能是一种潜在的疾病特异性疗法。
3.3 TGF-β1与Smad2/3和转录因子c-Fos之间的相互协作TGF-β1通过与肿瘤坏死因子受体相关蛋白6(tumor necrosis factor receptor associated factor 6,TRAF6)/转化生长因子β活化激酶结合蛋白1(transforming growth factor β-activated kinase binding protein 1,TAB1)/转化生长因子β激活激酶1(transforming growth factor β-activated kinase 1,TAK1)复合物结合及Smad2/3和c-Fos之间的相互协作,启动经典Smad2/3途径[16],已有研究证实该途径在小鼠破骨细胞的形成中发挥核心作用[29]。所有的TGF-β异构体都能与TβR-Ⅱ发生特异性作用,其中TGF-β1和TGF-β3与TβR-Ⅱ的亲和力高,而TGF-β2与TβR-Ⅱ的亲和力低。在破骨细胞分化过程中,TGF-β1与其Ⅱ型受体结合,诱发受体的构象变化,募集并磷酸化Ⅰ型受体。Ⅰ型受体通过其激酶域的L45环和MH2域的L3环与Smad2/3蛋白之间产生特定作用,对Smad2/3蛋白进行磷酸化,磷酸化的Smad2/3与Smad4的MH2结构域上的L3环相互作用,形成活性Smad复合物[30-32]。该复合物转移到细胞核中并诱导下游靶基因的转录。活化的Smad复合物与共转录因子c-Fos的合作对于核移位和随后的DNA结合非常重要,具体来说,TGF-β1增强了RANKL介导的活化Smad复合物向细胞核的移位,随后c-Fos介导活化Smad复合物与NFATc1基因的结合,驱动NFATc1的表达,从而调节破骨细胞的分化[33-34]。
3.4 TGF-β1和Smad2/3对RANKL/RANK途径下游介质的作用RANKL/RANK途径下游基因的表达离不开TGF-β1及其激活的Smad蛋白。当TGF-β信号被阻断时,RANKL诱导的破骨细胞生成几乎被完全抑制。Yasui等[35]的研究结果显示,Smad2/3直接与TRAF6/TAB1/TAK1复合物结合,这对于RANKL诱导的破骨细胞生成信号转导至关重要;TRAF6/TAB1/TAK1复合物是在RANKL刺激下产生的,当TGF-β信号转导被阻断时该复合物不能形成。因此,TGF-β在RANKL诱导的破骨细胞生成中不可或缺。此外,抑制TGF-β1会损害RANKL诱导的TRAF6复合物的形成,导致通过p38/MAPK、JNK或NF-κB信号通路的细胞内信号转导受损,进而影响破骨细胞的存活和功能[36]。
RANKL/RANK信号通路的下游介质包括TRAF6、NF-κB、MAPK和激活蛋白1等,所有这些分子都被认为通过NFATc1来影响破骨细胞[37]。NFATc1已经被证明是调节破骨细胞分化的关键因子,NFATc1缺乏的胚胎干细胞不能分化为破骨细胞,靶向破坏小鼠造血细胞中的NFATc1会增加骨量并减少破骨细胞数量[38]。TGF-β1可以增强RANKL介导的Smad2或Smad3与Smad4形成的复合物向细胞核的移位,并与靶基因NFATc1结合,驱动NFATc1的表达,在这个过程中,TRAF6与Smad3的MH2结构域的结合对于RANKL/RANK信号转导至关重要[15, 39]。
3.5 TGF-β1和Smad1/5对破骨细胞分化的作用TGF-β1通常诱导Smad2和Smad3的磷酸化,但TGF-β1不仅能激活Smad2/3介导的信号转导,还可激活Smad1/5/8介导的信号转导[40]。Smad1/5软骨特异性敲除小鼠具有增强的破骨细胞分化活性和较少的骨小梁体积。鞘氨醇激酶1在破骨细胞分化过程中由RANKL上调,与野生型小鼠相比,Smad1/5软骨特异性敲除小鼠鞘氨醇激酶1表达显著增加,表明TGF-β1介导的破骨细胞分化成熟的抑制作用是通过Smad1所依赖的信号转导通路实现的[41]。
4 小结本文着重讨论了TGF-β1及Smad蛋白在调节破骨细胞分化中的作用。这是一个极其复杂的过程,涉及若干细胞因子及信号通路的参与。目前有关破骨细胞分化成熟及骨吸收的研究主要局限于动物实验,很少有针对骨质疏松患者的临床研究。TGF-β1与Smad1/2/3/5/8之间的精确调控机制尚需进一步探讨。TGF-β1/Smad信号通路在破骨细胞分化与功能调控中起着重要作用,具有深入研究的价值,相关研究可能为今后抗骨质疏松症的靶向治疗提供依据。
[1] |
赖立勇, 徐圣焱, 夏天爽, 蒋益萍, 辛海量. 基于抗氧化机制的中药及其化学成分在骨质疏松中的应用[J]. 海军军医大学学报, 2022, 43: 943-950. LAI L Y, XU S Y, XIA T S, JIANG Y P, XIN H L. Application of Chinese materia medica and chemical constituents in osteoporosis based on antioxidant mechanism[J]. Acad J Naval Med Univ, 2022, 43: 943-950. |
[2] |
XU X, ZHENG L W, YUAN Q, ZHEN G H, CRANE J L, ZHOU X D, et al. Transforming growth factor-β in stem cells and tissue homeostasis[J/OL]. Bone Res, 2018, 6: 2. DOI: 10.1038/s41413-017-0005-4.
|
[3] |
SØE K, DELAISSE J M, BORGGAARD X G. Osteoclast formation at the bone marrow/bone surface interface: importance of structural elements, matrix, and intercellular communication[J]. Semin Cell Dev Biol, 2021, 112: 8-15. DOI:10.1016/j.semcdb.2020.05.016 |
[4] |
MATIC I, MATTHEWS B G, WANG X, DYMENT N A, WORTHLEY D L, ROWE D W, et al. Quiescent bone lining cells are a major source of osteoblasts during adulthood[J]. Stem Cells, 2016, 34: 2930-2942. DOI:10.1002/stem.2474 |
[5] |
JANN J, GASCON S, ROUX S, FAUCHEUX N. Influence of the TGF-β superfamily on osteoclasts/osteoblasts balance in physiological and pathological bone conditions[J/OL]. Int J Mol Sci, 2020, 21: 7597. DOI: 10.3390/ijms21207597.
|
[6] |
ZOU M L, CHEN Z H, TENG Y Y, LIU S Y, JIA Y, ZHANG K W, et al. The smad dependent TGF-β and BMP signaling pathway in bone remodeling and therapies[J/OL]. Front Mol Biosci, 2021, 8: 593310. DOI: 10.3389/fmolb.2021.593310.
|
[7] |
SRIARJ W, AOKI K, OHYA K, TAKAHASHI M, TAKAGI Y, SHIMOKAWA H. TGF-β in dentin matrix extract induces osteoclastogenesis in vitro[J]. Odontology, 2015, 103: 9-18. DOI:10.1007/s10266-013-0140-3 |
[8] |
BAE S, LEE M J, MUN S H, GIANNOPOULOU E G, YONG-GONZALEZ V, CROSS J R, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα[J]. J Clin Invest, 2017, 127: 2555-2568. DOI:10.1172/JCI89935 |
[9] |
QUINN J M, ITOH K, UDAGAWA N, HAUSLER K, YASUDA H, SHIMA N, et al. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions[J]. J Bone Miner Res, 2001, 16: 1787-1794. DOI:10.1359/jbmr.2001.16.10.1787 |
[10] |
WEISS A, ATTISANO L. The TGFbeta superfamily signaling pathway[J]. Wiley Interdiscip Rev Dev Biol, 2013, 2: 47-63. DOI:10.1002/wdev.86 |
[11] |
XU P L, LIU J M, DERYNCK R. Post-translational regulation of TGF-β receptor and Smad signaling[J]. FEBS Lett, 2012, 586: 1871-1884. DOI:10.1016/j.febslet.2012.05.010 |
[12] |
ZHANG Y, ALEXANDER P B, WANG X F. TGF-β family signaling in the control of cell proliferation and survival[J/OL]. Cold Spring Harb Perspect Biol, 2017, 9: a022145. DOI: 10.1101/cshperspect.a022145.
|
[13] |
MARTINEZ-HACKERT E, SUNDAN A, HOLIEN T. Receptor binding competition: a paradigm for regulating TGF-β family action[J]. Cytokine Growth Factor Rev, 2021, 57: 39-54. DOI:10.1016/j.cytogfr.2020.09.003 |
[14] |
JIA S J, MENG A M. TGFβ family signaling and development[J/OL]. Development, 2021, 148: dev188490. DOI: 10.1242/dev.188490.
|
[15] |
FENNEN M, PAP T, DANKBAR B. Smad-dependent mechanisms of inflammatory bone destruction[J/OL]. Arthritis Res Ther, 2016, 18: 279. DOI: 10.1186/s13075-016-1187-7.
|
[16] |
TZAVLAKI K, MOUSTAKAS A. TGF-β signaling[J/OL]. Biomolecules, 2020, 10: 487. DOI: 10.3390/biom10030487.
|
[17] |
MACIAS M J, MARTIN-MALPARTIDA P, MASSAGUÉ J. Structural determinants of Smad function in TGF-β signaling[J]. Trends Biochem Sci, 2015, 40: 296-308. DOI:10.1016/j.tibs.2015.03.012 |
[18] |
YING Z, TIAN H, LI Y, LIAN R, LI W, WU S S, et al. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling[J]. J Clin Invest, 2017, 127: 1725-1740. DOI:10.1172/JCI90439 |
[19] |
SU J, MORGANI S M, DAVID C J, WANG Q, ER E E, HUANG Y H, et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1[J]. Nature, 2020, 577: 566-571. DOI:10.1038/s41586-019-1897-5 |
[20] |
YANG T, GRAFE I, BAE Y J, CHEN S, CHEN Y Q, BERTIN T K, et al. E-selectin ligand 1 regulates bone remodeling by limiting bioactive TGF-β in the bone microenvironment[J]. Proc Natl Acad Sci USA, 2013, 110: 7336-7341. DOI:10.1073/pnas.1219748110 |
[21] |
DALLAS S L, ROSSER J L, MUNDY G R, BONEWALD L F. Proteolysis of latent transforming growth factor-β (TGF-β)-binding protein-1 by osteoclasts[J]. J Biol Chem, 2002, 277: 21352-21360. DOI:10.1074/jbc.M111663200 |
[22] |
PILKINGTON M F, SIMS S M, DIXON S J. Transforming growth factor-beta induces osteoclast ruffling and chemotaxis: potential role in osteoclast recruitment[J]. J Bone Miner Res, 2001, 16: 1237-1247. DOI:10.1359/jbmr.2001.16.7.1237 |
[23] |
KARST M, GORNY G, GALVIN R J, OURSLER M J. Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-beta regulation of osteoclast differentiation[J]. J Cell Physiol, 2004, 200: 99-106. DOI:10.1002/jcp.20036 |
[24] |
TOKUNAGA T, MOKUDA S, KOHNO H, YUKAWA K, KURANOBU T, OI K, et al. TGFβ1 regulates human RANKL-induced osteoclastogenesis via suppression of NFATc1 expression[J/OL]. Int J Mol Sci, 2020, 21: 800. DOI: 10.3390/ijms21030800.
|
[25] |
LEE B, OH Y, JO S, KIM T H, JI J D. A dual role of TGF-β in human osteoclast differentiation mediated by Smad1 versus Smad3 signaling[J]. Immunol Lett, 2019, 206: 33-40. DOI:10.1016/j.imlet.2018.12.003 |
[26] |
SIMONET W S, LACEY D L, DUNSTAN C R, KELLEY M, CHANG M S, LÜTHY R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density[J]. Cell, 1997, 89: 309-319. DOI:10.1016/S0092-8674(00)80209-3 |
[27] |
KASAGI S, CHEN W J. TGF-β1 on osteoimmunology and the bone component cells[J/OL]. Cell Biosci, 2013, 3: 4. DOI: 10.1186/2045-3701-3-4.
|
[28] |
SONG I W, NAGAMANI S C, NGUYEN D, GRAFE I, SUTTON V R, GANNON F H, et al. Targeting TGF-β for treatment of osteogenesis imperfecta[J/OL]. J Clin Invest, 2022, 132: e152571. DOI: 10.1172/JCI152571.
|
[29] |
SU M T, ONO K, KEZUKA D, MIYAMOTO S, YU M R, TAKAI T. Fibronectin-LILRB4/gp49B interaction negatively regulates osteoclastogenesis through inhibition of RANKL-induced TRAF6/TAK1/NF-kB/MAPK signaling[J]. Int Immunol, 2023, 35: 135-145. DOI:10.1093/intimm/dxac051 |
[30] |
MIYAZAWA K, SHINOZAKI M, HARA T, FURUYA T, MIYAZONO K. Two major Smad pathways in TGF-beta superfamily signalling[J]. Genes Cells, 2002, 7: 1191-1204. DOI:10.1046/j.1365-2443.2002.00599.x |
[31] |
HUA X, MILLER Z A, BENCHABANE H, WRANA J L, LODISH H F. Synergism between transcription factors TFE3 and Smad3 in transforming growth factor-beta-induced transcription of the Smad7 gene[J]. J Biol Chem, 2000, 275: 33205-33208. DOI:10.1074/jbc.C000568200 |
[32] |
ARAGÓN E, WANG Q, ZOU Y L, MORGANI S M, RUIZ L, KACZMARSKA Z, et al. Structural basis for distinct roles of SMAD2 and SMAD3 in FOXH1 pioneer-directed TGF-β signaling[J]. Genes Dev, 2019, 33: 1506-1524. DOI:10.1101/gad.330837.119 |
[33] |
OMATA Y, YASUI T, HIROSE J, IZAWA N, IMAI Y, MATSUMOTO T, et al. Genomewide comprehensive analysis reveals critical cooperation between Smad and c-Fos in RANKL-induced osteoclastogenesis[J]. J Bone Miner Res, 2015, 30: 869-877. DOI:10.1002/jbmr.2418 |
[34] |
TRIVEDI T, PAGNOTTI G M, GUISE T A, MOHAMMAD K S. The role of TGF-β in bone metastases[J/OL]. Biomolecules, 2021, 11: 1643. DOI: 10.3390/biom11111643.
|
[35] |
YASUI T, KADONO Y, NAKAMURA M, OSHIMA Y, MATSUMOTO T, MASUDA H, et al. Regulation of RANKL-induced osteoclastogenesis by TGF-β through molecular interaction between Smad3 and Traf6[J]. J Bone Miner Res, 2011, 26: 1447-1456. DOI:10.1002/jbmr.357 |
[36] |
GINGERY A, BRADLEY E W, PEDERSON L, RUAN M, HORWOOD N J, OURSLER M J. TGF-beta coordinately activates TAK1/MEK/AKT/NFκB and SMAD pathways to promote osteoclast survival[J]. Exp Cell Res, 2008, 314: 2725-2738. DOI:10.1016/j.yexcr.2008.06.006 |
[37] |
NAKASHIMA T, TAKAYANAGI H. New regulation mechanisms of osteoclast differentiation[J/OL]. Ann N Y Acad Sci, 2011, 1240: E13-E18. DOI: 10.1111/j.1749-6632.2011.06373.x.
|
[38] |
DING M N, CHO E, CHEN Z H, PARK S W, LEE T H. (S)-2-(cyclobutylamino)-N-(3-(3, 4-dihydroisoquinolin-2(1H)-yl)-2-hydroxypropyl)isonicotinamide attenuates RANKL-induced osteoclast differentiation by inhibiting NF-κB nuclear translocation[J/OL]. Int J Mol Sci, 2023, 24: 4327. DOI: 10.3390/ijms24054327.
|
[39] |
GREENE B, RUSSO R J, DWYER S, MALLEY K, ROBERTS E, SERRIELO J, et al. Inhibition of TGF-β increases bone volume and strength in a mouse model of osteogenesis imperfecta[J/OL]. JBMR Plus, 2021, 5: e10530. DOI: 10.1002/jbm4.10530.
|
[40] |
GRATCHEV A. TGF-β signalling in tumour associated macrophages[J]. Immunobiology, 2017, 222: 75-81. DOI:10.1016/j.imbio.2015.11.016 |
[41] |
QI B, CONG Q, LI P, MA G, GUO X Z, YEH J, et al. Ablation of Tak1 in osteoclast progenitor leads to defects in skeletal growth and bone remodeling in mice[J/OL]. Sci Rep, 2014, 4: 7158. DOI: 10.1038/srep07158.
|