病理性新生血管形成是因一系列促血管生成信号和抑制血管生成信号共同维持的动态平衡受到破坏,导致血管内皮增生、延伸而形成新血管的过程,可见于多种病理性疾病[1]。近年来随着中药复方及其有效成分研究的不断深入,越来越多中药小分子被发现具有抑制新生血管形成的作用,对其机制研究已深入至细胞分子层面[2]。本文综述了中药小分子抑制新生血管形成机制的研究进展。
1 新生血管形成人体中新血管的形成分为2种形式,即血管发生和新生血管形成。血管发生是指从内皮祖细胞开始从头分化并形成新的血管,通常发生于不存在既有血管系统的情况下;与血管发生对应,从既有血管系统萌发新的毛细血管继而形成新的血管系统的过程称为新生血管形成[3]。一般来说,新生血管形成的过程主要包括血管内皮细胞激活、尖细胞与茎细胞分化、新生血管腔形成、血管成熟[4]。研究揭示多种生长因子或物质具有促新生血管形成的作用,主要包括血管内皮生长因子(vascular endothelial growth factor,VEGF)、血小板源生长因子(platelet-derived growth factor,PDGF)、胎盘生长因子(placental growth factor,PLGF)、成纤维细胞生长因子(fibroblast growth factor,FGF)、血管生成素(angiopoietin,Ang)等[5]。其中VEGF最为重要,它与其特异性受体结合可激活下游一系列信号转导通路,包括MAPK/ERK、PI3K/Akt等,从而增强血管内皮细胞的增殖、迁移、成管等功能,并最终促进新生血管的形成[6]。
在以伤口愈合为代表的特定情形下,新生血管形成具有重要的病理生理学意义。在伤口愈合的生长阶段,随着炎症的消退,促炎的M1型巨噬细胞转化为抗炎的M2型巨噬细胞,并提高VEGF和PDGF的表达,增强血管内皮细胞的增殖、迁移、成管等功能,最终促进新生血管和肉芽组织的形成[7]。增强特定情形下的新生血管形成也是许多疾病治疗的重要切入点,如Ning等[8]的研究显示氩气能够在体内和体外实验中提高TGF-β和VEGF的表达,加速糖尿病模型小鼠的伤口愈合。
成年人体内血管系统在生理条件下基本保持静止,很少形成新的分支。新生血管形成过程的异常激活在许多疾病的发生、发展中有重要的作用,是一系列新生血管性疾病共同的病理特征。如在糖尿病性视网膜病变中,高血糖导致视网膜毛细血管周细胞凋亡、血管内皮细胞凋亡与基底膜增厚,使视网膜毛细血管闭塞缺血,继而上调缺氧诱导因子1α(hypoxia-inducible factor 1α,HIF-1α)水平、促进VEGF表达,最终促进视网膜新生血管形成,加重糖尿病性视网膜病变[9]。恶性肿瘤的发生、发展也存在明显的病理性新生血管形成[10],除肿瘤特征性的缺氧微环境能够上调HIF-1α外[11],恶性肿瘤中癌基因与抑癌基因的突变还可以通过不同途径上调VEGF等促新生血管形成因子的表达[12-13]。因此,针对性地选择能够抑制VEGF表达或与其特异性受体结合的药物以抑制新生血管形成是相关疾病的一种重要治疗思路。
2 中药复方与中药小分子在临床实践中,一系列中药复方被证实具有抗新生血管形成的疗效。如四妙勇安汤通过抑制NF-κB/TNF-α与HIF-1α/VEGF通路降低一系列炎症因子及VEGF的水平,从而抑制糖尿病模型小鼠视网膜新生血管的形成[14]。三黄汤能够通过与极光激酶A作用抑制MAPK/ERK信号通路、降低VEGF的表达,从而抑制乳腺癌异种移植模型小鼠的肿瘤新生血管形成[15]。十全大补汤能够使鼠结肠癌模型小鼠的VEGF表达降低、内皮抑素表达升高,从而抑制肿瘤的生长、血管形成和转移[16]。近年来随着对中药有效成分认识的不断深入,结合现代生物医学研究方法,中药复方中许多具有抑制新生血管形成活性的中药小分子被发现[2]。
中药小分子主要指分子量<2 500的中药活性成分,通常不具有免疫原性,但有较好的生物相容性[17-18],常见的如黄酮类、皂苷类、生物碱等。中药小分子发挥抑制新生血管形成作用的机制相对复杂,同一种中药小分子对于不同疾病可能存在不同甚至相反的作用,如人参皂苷Rg1被发现能够借由PI3K/Akt信号通路促进缺血性脑卒中患者的血管新生[19],还可通过调节lncRNA核仁小RNA宿主基因7(small nucleolar RNA host gene 7,SNHG7)/miRNA-2116-5p/线粒体去乙酰化酶3(sirtuin 3,SIRT3)信号通路抑制高糖诱导的视网膜内皮细胞中VEGF的表达,呈现出抗新生血管形成的作用[20]。总体来说,中药小分子抑制新生血管形成的机制需要更为全面、深入的研究。
3 对新生血管形成有抑制作用的中药小分子 3.1 黄酮类黄酮类化合物广泛存在于自然植物中,在植物中常与糖结合以糖苷的形式存在,常见的对病理性新生血管形成有抑制作用的黄酮类中药小分子包括黄芩苷、槲皮素、橙皮苷等[21]。
黄芩苷提取自植物黄芩的干燥根中。Shehatta等[22]研究发现,在小鼠艾氏实体瘤模型中黄芩苷能够通过抑制NF-κB/IL-1β信号通路及VEGF表达水平的升高抑制新生血管形成。Zhu等[23]研究发现,黄芩苷可以使鸡胚绒毛尿囊膜模型的细胞增殖能力呈现剂量依赖性降低,抑制模型新血管形成,基因测序结果发现以基质金属蛋白酶(matrix metallopeptidase,MMP)-9为代表的一系列基因表达下调。结合血管发生与新生血管形成在过程和机制上的相似性,以及MMP-9在新生血管形成等其他病理生理过程中溶解细胞外基质的功能[24-25],可以推测黄芩苷能够通过下调MMP-9的水平抑制新生血管形成。此外还有证据表明黄芩苷在氧化应激中能够调节氧自由基水平、抑制蛋白激酶C表达,从而降低VEGF等促新生血管形成细胞因子的水平[26]。
槲皮素广泛分布于植物茎、皮、叶、芽中,多以芦丁或槲皮苷的形式存在。槲皮素能够使人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)及前列腺癌转基因大鼠模型的VEGF、MMP-2水平降低,抑制PI3K/Akt信号通路,从而抑制HUVEC的迁移、成管能力和肿瘤新生血管形成[27]。也有研究显示在链脲霉素诱导的糖尿病小鼠模型中,槲皮素能够经Toll样受体4(Toll-like receptor,TLR4)/NF-κB信号通路降低VEGF的表达,抑制视网膜新生血管的形成[28]。
橙皮苷主要提取自酸橙、甜橙的干燥幼果中。Kim等[29]发现橙皮苷能够抑制紫外线诱导的VEGF表达和PI3K/Akt信号通路激活,从而抑制无毛小鼠皮肤新生血管形成。
3.2 皂苷类人参皂苷是分离自人参的一组皂苷化合物,分为原人参二醇和原人参三醇两组[30],前者具有不同程度的抑制病理性新生血管形成活性,主要包括人参皂苷Rb1、Rh2、Rg3等。人参皂苷Rb1是人参中含量最高的皂苷,Lu等[31]发现人参皂苷Rb1能够通过调节miRNA-33a和色素上皮源性因子(pigment epithelial-derived factor,PEDF)的表达,经过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor γ,PPAR-γ)/NF-κB通路在体外细胞实验中抑制HUVEC成管能力,具有抑制新生血管形成的潜力。有研究显示,人参皂苷Rh2在前列腺癌荷瘤小鼠模型中能够下调细胞周期调节蛋白1的水平,通过影响细胞周期抑制VEGF、PDGF等因子的表达,具有抑制新生血管形成的活性[32]。人参皂苷Rg3则在体外实验中通过抑制环氧合酶2和VEGF的表达抑制肺癌细胞的活力与迁移、侵袭、血管生成功能[33]。此外,Sun和Zhou[34]的研究发现人参皂苷Rg3能够降低链脲佐菌素诱导的糖尿病小鼠模型TNF-α与VEGF的表达,具有抑制视网膜新生血管形成的活性。
除人参皂苷外,源于桔梗的桔梗皂苷D也能够抑制病理性新生血管形成。Li等[35]发现桔梗皂苷D能够在非小细胞肺癌A549细胞中降低VEGF和MMP-2的表达,具有抑制新生血管形成的活性。
3.3 生物碱类长春新碱是提取自长春花的生物碱,对新生血管形成和肿瘤细胞生长具有强烈抑制作用,在淋巴瘤、横纹肌肉瘤、白血病、小细胞肺癌等恶性肿瘤的治疗中作为化疗药物应用[36-39]。长春新碱发挥药理作用的主要机制为抑制微管蛋白聚合、干扰细胞周期,进而抑制细胞的增殖及其他功能[40]。有研究发现,用低于IC50的长春新碱处理缺氧状态下的胶质母细胞瘤细胞,能够下调过表达的HIF-1α水平并抑制VEGF的表达,从而发挥抑制肿瘤新生血管形成的作用[41]。
苦参碱是一类提取自苦参的生物碱,Ao等[42]研究发现苦参碱能够在体外实验中降低HUVEC中HIF-1α水平,并抑制VEGF的表达,经由PI3K/Akt信号通路抑制HUVEC的增殖与成管能力,且在以关节滑膜新生血管形成为病理特征的类风湿关节炎大鼠模型中具有抑制新生血管形成的作用。
另一种具有抑制病理性新生血管形成活性的生物碱类小分子为汉防己甲素,Chen等[43]的研究显示汉防己甲素在肺癌A549细胞中通过下调HIF-1α的水平抑制VEGF表达,进而抑制新生血管形成。
3.4 其他丹参素与丹参酮均提取自丹参,丹参素为水溶性芳香酸类化合物,丹参酮为脂溶性二萜醌类化合物。Zhang等[44]发现丹参素能够抑制HUVEC的迁移、成管能力,并降低B16F10黑色素瘤细胞中VEGF、MMP-2等促血管生成因子的表达,具有抑制新生血管形成的活性。Zhou等[45]发现丹参酮ⅡA能够抑制人卵巢癌细胞A2780中VEGF和环氧合酶2的表达,且在基于荷瘤小鼠模型的体内实验中抑制新生血管的形成。
姜黄素是一种提取自姜黄根茎的黄色色素,Pan等[46]发现姜黄素通过抑制VEGF的表达抑制PI3K/Akt信号通路,进而抑制新生血管形成。Yang等[47]发现姜黄素在体外实验中能够抑制人视网膜微血管内皮细胞的增殖,还能降低氧诱导视网膜病变模型小鼠的VEGF表达水平,从而抑制视网膜新生血管形成。
雷公藤红素和雷公藤甲素均提取自雷公藤的根皮,具有很强的抗氧化作用和毒性[48]。Li等[49]发现雷公藤红素可抑制HUVEC中HIF-1α和VEGF表达,在鸡胚绒毛尿囊膜实验中具有抑制血管形成活性。Luo等[50]的研究发现雷公藤甲素能够诱导内源性线粒体途径细胞凋亡,具有细胞毒性,且它还可通过下调VEGF水平抑制4T1乳腺癌细胞荷瘤模型小鼠的肿瘤新生血管形成。
4 小结新生血管形成在一系列恶性肿瘤与视网膜新生血管性疾病的发生、发展中扮演重要角色,抑制新生血管形成是治疗这些疾病的重要切入点之一。贝伐珠单抗和雷珠单抗作为VEGF单克隆抗体的代表性药物多年来被广泛应用于多种恶性肿瘤和视网膜新生血管性疾病的治疗中,其对新生血管形成的抑制作用切实有效,但其作用机制单纯针对VEGF,而不涉及VEGF上游或下游的信号通路,需要多次重复治疗且药效难以长久维持,单独使用甚至可能发生耐药[51-53]。因此,探寻新的能够从VEGF上下游信号通路抑制新生血管形成的治疗药物具有重大的现实意义,也是当前和未来抑制新生血管形成药物的主要研究方向之一。
在长期的临床实践中,中药复方被证实对各类血管新生疾病有明显的抑制作用,其药效在细胞和动物实验中也得到验证。中药小分子是中药复方或单药发挥药效的物质基础,随着对其认识的深入及分离、提取方法的进步,越来越多的中药小分子的作用机制被揭示。综合本文整理的研究结果,中药小分子抑制新生血管形成的主要途径包括对NF-κB信号通路及HIF-1α的抑制、下调VEGF和MMP的表达、抑制下游PI3K/Akt信号通路的激活,或通过干扰细胞周期影响细胞增殖、迁移能力,最终抑制新生血管形成。在未来,对于这些蛋白和信号通路的深入研究或发现更多受中药小分子作用调控的蛋白和信号通路,将有助于更全面地了解中药小分子抑制新生血管形成的作用机制,为临床治疗血管新生疾病提供新思路。
[1] |
APTE R S, CHEN D S, FERRARA N. VEGF in signaling and disease: beyond discovery and development[J]. Cell, 2019, 176: 1248-1264. DOI:10.1016/j.cell.2019.01.021 |
[2] |
陈荣荣, 郭浩, 徐砚通, 贺爽, 朱彦. 中药复方和有效成分对血管新生促进或抑制作用的研究进展[J]. 中草药, 2013, 44: 3413-3421. |
[3] |
VIALLARD C, LARRIVÉE B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets[J]. Angiogenesis, 2017, 20: 409-426. DOI:10.1007/s10456-017-9562-9 |
[4] |
KRETSCHMER M, RÜDIGER D, ZAHLER S. Mechanical aspects of angiogenesis[J/OL]. Cancers, 2021, 13: 4987. DOI: 10.3390/cancers13194987.
|
[5] |
CARMELIET P, JAIN R K. Molecular mechanisms and clinical applications of angiogenesis[J]. Nature, 2011, 473: 298-307. DOI:10.1038/nature10144 |
[6] |
MABETA P, STEENKAMP V. The VEGF/VEGFR axis revisited: implications for cancer therapy[J/OL]. Int J Mol Sci, 2022, 23: 15585. DOI: 10.3390/ijms232415585.
|
[7] |
RODRIGUES M, KOSARIC N, BONHAM C A, GURTNER G C. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99: 665-706. DOI:10.1152/physrev.00067.2017 |
[8] |
NING J, ZHAO H, CHEN B, MI E Z, YANG Z, QING W, et al. Argon mitigates impaired wound healing process and enhances wound healing in vitro and in vivo[J/OL]. Theranostics, 2019, 9: 477-490.
|
[9] |
HUANG H, HE J, JOHNSON D, WEI Y, LIU Y, WANG S, et al. Deletion of placental growth factor prevents diabetic retinopathy and is associated with akt activation and HIF1α-VEGF pathway inhibition[J]. Diabetes, 2015, 64: 200-212. DOI:10.2337/db14-0016 |
[10] |
ZHU A X, ABBAS A R, DE GALARRETA M R, GUAN Y, LU S, KOEPPEN H, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma[J]. Nat Med, 2022, 28: 1599-1611. DOI:10.1038/s41591-022-01868-2 |
[11] |
KORBECKI J, SIMIŃSKA D, GĄSSOWSKA-DOBROWOLSKA M, LISTOS J, GUTOWSKA I, CHLUBEK D, et al. Chronic and cycling hypoxia: drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: a review of the molecular mechanisms[J/OL]. Int J Mol Sci, 2021, 22: 10701. DOI: 10.3390/ijms221910701.
|
[12] |
ZHANG H, MA R R, WANG X J, SU Z X, CHEN X, SHI D B, et al. KIF26B, a novel oncogene, promotes proliferation and metastasis by activating the VEGF pathway in gastric cancer[J/OL]. Oncogene, 2017, 36: 5609-5619.
|
[13] |
SINGH R D, PATEL K A, PATEL J B, PATEL P S. Alterations in p53 influence hTERT, VEGF and MMPs expression in oral cancer patients[J]. Asian Pac J Cancer Prev, 2022, 23: 3141-3149. DOI:10.31557/APJCP.2022.23.9.3141 |
[14] |
DU A, XIE Y, OUYANG H, LU B, JIA W, XU H, et al. Si-Miao-Yong-An decoction for diabetic retinopathy: a combined network pharmacological and in vivo approach[J/OL]. Frontiers in pharmacology, 2021, 12: 763163. DOI: 10.3389/fphar.2021.763163.
|
[15] |
XU Y, WANG C, CHEN X, LI Y, BIAN W, YAO C. San Huang decoction targets aurora kinase a to inhibit tumor angiogenesis in breast cancer[J/OL]. Integr Cancer Ther, 2020, 19: 1534735420983463. DOI: 10.1177/1534735420983463.
|
[16] |
郭刚, 许建华, 韩建宏, 梁芳, 张勇, 张强, 等. 十全大补汤对荷瘤小鼠结肠癌原发肿瘤切除后转移瘤生长及血管生成的影响[J]. 中西医结合学报, 2012, 10: 436-447. |
[17] |
LUO S, SONG S, ZHENG C, WANG Y, XIA X, LIANG B, et al. Biocompatibility of Bletilla striata microspheres as a novel embolic agent[J/OL]. Evid Based Complement Alternat Med, 2015, 2015: 840896. DOI: 10.1155/2015/840896.
|
[18] |
屈会化, 赵琰, 李翼飞, 杨爱玲, 王庆国. 中药活性小分子人工抗原合成的技术要点[J]. 中草药, 2012, 43: 1880-1885. |
[19] |
CHEN J, ZHANG X, LIU X, ZHANG C, SHANG W, XUE J, et al. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice[J/OL]. Eur J Pharmacol, 2019, 856: 172418. DOI: 10.1016/j.ejphar.2019.172418.
|
[20] |
XUE L, HU M, LI J, LI Y, ZHU Q, ZHOU G, et al. Ginsenoside Rg1 inhibits high glucose-induced proliferation, migration, and angiogenesis in retinal endothelial cells by regulating the lncRNA SNHG7/miR-2116-5p/SIRT3 axis[J/OL]. J Oncol, 2022, 2022: 6184631. DOI: 10.1155/2022/6184631.
|
[21] |
俞文英, 张欢欢, 吴月国, 赵铮蓉, 余陈欢. 黄酮类化合物的构效关系及其在肺部炎症疾病中的应用[J]. 中草药, 2018, 20: 4912-4918. |
[22] |
SHEHATTA N H, OKDA T M, OMRAN G A, ABD-ALHASEEB M M. Baicalin; a promising chemopreventive agent, enhances the antitumor effect of 5-FU against breast cancer and inhibits tumor growth and angiogenesis in Ehrlich solid tumor[J/OL]. Biomed Pharmacother, 2022, 146: 112599. DOI: 10.1016/j.biopha.2021.112599.
|
[23] |
ZHU D, WANG S, LAWLESS J, HE J, ZHENG Z. Dose dependent dual effect of baicalin and herb Huang Qin extract on angiogenesis[J/OL]. PLoS One, 2016, 11: e0167125. DOI: 10.1371/journal.pone.0167125.
|
[24] |
HUANG H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances[J/OL]. Sensors (Basel), 2018, 18: 3249. DOI: 10.3390/s18103249.
|
[25] |
BRUNI-CARDOSO A, JOHNSON L C, VESSELLA R L, PETERSON T E, LYNCH C C. Osteoclast-derived matrix metalloproteinase-9 directly affects angiogenesis in the prostate tumor-bone microenvironment[J]. Mol Cancer Res, 2010, 8: 459-470. DOI:10.1158/1541-7786.MCR-09-0445 |
[26] |
YINGRUI W, ZHENG L, GUOYAN L, HONGJIE W. Research progress of active ingredients of Scutellaria baicalensis in the treatment of type 2 diabetes and its complications[J/OL]. Biomed Pharmacother, 2022, 148: 112690. DOI: 10.1016/J.BIOPHA.2022.112690.
|
[27] |
SINGH C K, CHHABRA G, NDIAYE M A, SIDDIQUI I A, PANACKAL J E, MINTIE C A, et al. Quercetin-resveratrol combination for prostate cancer management in TRAMP mice[J/OL]. Cancers (Basel), 2020, 12: 2141. DOI: 10.3390/cancers12082141.
|
[28] |
CHAI G R, LIU S, YANG H W, CHEN X L. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression[J]. Neural Regen Res, 2021, 16: 1344-1350. DOI:10.4103/1673-5374.301027 |
[29] |
KIM K M, IM A R, LEE J Y, KIM T, JI K Y, PARK D H, et al. Hesperidin inhibits UVB-induced VEGF production and angiogenesis via the inhibition of PI3K/Akt pathway in HR-1 hairless mice[J]. Biol Pharm Bull, 2021, 44: 1492-1498. DOI:10.1248/bpb.b21-00367 |
[30] |
LÜ J M, YAO Q, CHEN C. Ginseng compounds: an update on their molecular mechanisms and medical applications[J]. Curr Vasc Pharmacol, 2009, 7: 293-302. DOI:10.2174/157016109788340767 |
[31] |
LU H, ZHOU X, KWOK H H, DONG M, LIU Z, POON P Y, et al. Ginsenoside-Rb1-mediated anti-angiogenesis via regulating PEDF and miR-33a through the activation of PPAR-γ pathway[J/OL]. Front Pharmacol, 2017, 8: 783. DOI: 10.3389/fphar.2017.00783.
|
[32] |
HUANG Y, HUANG H, HAN Z, LI W, MAI Z, YUAN R. Ginsenoside Rh2 inhibits angiogenesis in prostate cancer by targeting CNNM1[J]. J Nanosci Nanotechnol, 2019, 19: 1942-1950. DOI:10.1166/jnn.2019.16404 |
[33] |
LV Q, XIA Z, HUANG Y, RUAN Z, WANG J, HUANG Z. Ginsenoside Rg3 alleviates the migration, invasion, and angiogenesis of lung cancer cells by inhibiting the expressions of cyclooxygenase-2 and vascular endothelial growth factor[J]. Chem Biol Drug Des, 2023, 101: 937-951. DOI:10.1111/cbdd.14203 |
[34] |
SUN H Q, ZHOU Z Y. Effect of ginsenoside-Rg3 on the expression of VEGF and TNF-α in retina with diabetic rats[J]. Int J Ophthalmol, 2010, 3: 220-223. |
[35] |
LI J, MA A, LAN W, LIU Q. Platycodon D-induced A549 cell apoptosis through RRM1-regulated p53/VEGF/ MMP2 pathway[J/OL]. Anticancer Agents Med Chem, 2022, 22: 2458-2467.
|
[36] |
YOUNES A, SEHN L H, JOHNSON P, ZINZANI P L, HONG X, ZHU J, et al. Randomized phase Ⅲ trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell lymphoma[J]. J Clin Oncol, 2019, 37: 1285-1295. DOI:10.1200/JCO.18.02403 |
[37] |
DEFACHELLES A, BOGART E, CASANOVA M, MERKS J, BISOGNO G, CALARESO G, et al. Randomized phase Ⅱ trial of vincristine-irinotecan with or without temozolomide, in children and adults with relapsed or refractory rhabdomyosarcoma: a European paediatric soft tissue sarcoma study group and innovative therapies for children with cancer trial[J]. J Clin Oncol, 2021, 39: 2979-2990. DOI:10.1200/JCO.21.00124 |
[38] |
FARAGO A F, DRAPKIN B J, LOPEZ-VILARINO DE RAMOS J A, GALMARINI C M, NÚÑEZ R, KAHATT C, et al. ATLANTIS: a phase Ⅲ study of lurbinectedin/doxorubicin versus topotecan or cyclophosphamide/doxorubicin/vincristine in patients with small-cell lung cancer who have failed one prior platinum-containing line[J]. Future Oncol, 2019, 15: 231-239. DOI:10.2217/fon-2018-0597 |
[39] |
YANG W, CAI J, SHEN S, GAO J, YU J, HU S, et al. Pulse therapy with vincristine and dexamethasone for childhood acute lymphoblastic leukaemia (CCCG-ALL-2015): an open-label, multicentre, randomised, phase 3, non-inferiority trial[J]. Lancet Oncol, 2021, 22: 1322-1332. DOI:10.1016/S1470-2045(21)00328-4 |
[40] |
GEISLER S. Vincristine- and bortezomib-induced neuropathies—from bedside to bench and back[J]. Exp Neurol, 2021, 336: 113519. |
[41] |
PARK K J, YU M O, PARK D H, PARK J Y, CHUNG Y G, KANG S H. Role of vincristine in the inhibition of angiogenesis in glioblastoma[J]. Neurol Res, 2016, 38: 871-879. DOI:10.1080/01616412.2016.1211231 |
[42] |
AO L M, GAO H, JIA L F, LIU S M, GUO J, LIU B Z, et al. Matrine inhibits synovial angiogenesis in collagen-induced arthritis rats by regulating HIF-VEGF-Ang and inhibiting the PI3K/Akt signaling pathway[J]. Mol Immunol, 2022, 141: 13-20. DOI:10.1016/j.molimm.2021.11.002 |
[43] |
CHEN Z, ZHAO L, ZHAO F, YANG G, WANG J J. Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway[J]. Oncol Lett, 2018, 15: 7433-7437. |
[44] |
ZHANG L J, CHEN L, LU Y, WU J M, XU B, SUN Z G, et al. Danshensu has anti-tumor activity in B16F10 melanoma by inhibiting angiogenesis and tumor cell invasion[J]. Eur J Pharmacol, 2010, 643(2/3): 195-201. |
[45] |
ZHOU J, JIANG Y Y, WANG X X, WANG H P, CHEN H, WU Y C, et al. Tanshinone ⅡA suppresses ovarian cancer growth through inhibiting malignant properties and angiogenesis[J/OL]. Ann Transl Med, 2020, 8: 1295. DOI: 10.21037/atm-20-5741.
|
[46] |
PAN Z, ZHUANG J, JI C, CAI Z, LIAO W, HUANG Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression[J]. Oncol Lett, 2018, 15: 4821-4826. |
[47] |
YANG L, ZHANG X, LI D, ZHOU G, LIU J, GAO Y, et al. Comparative study of curcumin and lucentis on retinal neovascularization[J/OL]. Ophthalmic Res, 2022. DOI: 10.1159/000527470.
|
[48] |
LIU M, FAN Y, LI D, HAN B, MENG Y, CHEN F, et al. Ferroptosis inducer erastin sensitizes NSCLC cells to celastrol through activation of the ROS-mitochondrial fission-mitophagy axis[J]. Mol Oncol, 2021, 15: 2084-2105. |
[49] |
LI Z, GUO Z, CHU D, FENG H, ZHANG J, ZHU L, et al. Effectively suppressed angiogenesis-mediated retinoblastoma growth using celastrol nanomicelles[J]. Drug Deliv, 2020, 27: 358-366. |
[50] |
LUO Y, LI J, HU Y, GAO F, PAK-HENG LEUNG G, GENG F, et al. Injectable thermo-responsive nano-hydrogel loading triptolide for the anti-breast cancer enhancement via localized treatment based on "two strikes" effects[J]. Acta Pharm Sin B, 2020, 10: 2227-2245. |
[51] |
Writing Committee for the Diabetic Retinopathy Clinical Research Network, GROSS J G, GLASSMAN A R, JAMPOL L M, INUSAH S, AIELLO L P, ANTOSZYK A N, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial[J]. JAMA, 2015, 314: 2137-2146. |
[52] |
GARCIA J, HURWITZ H I, SANDLER A B, MILES D, COLEMAN R L, DEURLOO R, et al. Bevacizumab (Avastin®) in cancer treatment: a review of 15 years of clinical experience and future outlook[J/OL]. Cancer Treat Rev, 2020, 86: 102017. DOI: 10.1016/j.ctrv.2020.102017.
|
[53] |
COMUNANZA V, BUSSOLINO F. Therapy for cancer: strategy of combining anti-angiogenic and target therapies[J/OL]. Front Cell Dev Biol, 2017, 5: 101. DOI: 10.3389/fcell.2017.00101.
|