心房颤动(atrial fibrillation,AF)是临床最常见的心律失常之一,也是造成心血管疾病发病率、死亡率和医疗支出增加的重要原因。尽管有关AF发生机制的研究较多,但其确切的发生机制仍未完全阐明[1]。心外膜脂肪组织(epicardial adipose tissue,EAT)作为一种特殊的内脏脂肪组织,对心血管系统发挥着多种生理作用[2],研究显示EAT与AF的发生有关[3]。本文主要从EAT特点、定量检测及其与心肌结构和电重构的关系等方面进行综述,以期进一步认识AF的发病机制,为治疗AF提供新的思路。
1 EAT的特点 1.1 EAT的解剖特点EAT位于脏层心包和心肌之间,是心外膜表面或心外膜之下的一种特殊脂肪组织[4],可覆盖心脏表面积的80%,约占心脏总质量的20%,横跨心房、心室、冠状动脉、房室沟和室间沟[5]。EAT与位于纤维性心包以外的心包旁脂肪共同组成心周脂肪[6]。Chau等[7]将Wilm’s肿瘤基因1-GFP(Wilm’s tumor gene 1-GFP,WT1-GFP)基因敲入小鼠,应用荧光激活细胞分选技术发现,EAT与肾周脂肪、性腺脂肪、腹膜后脂肪、网膜和肠系膜脂肪一起归属于内脏白色脂肪组织(white adipose tissue,WAT),并精确定位内脏WAT的主要起源是侧中胚层,妊娠晚期表达WT1的细胞在内脏WAT的形成中发挥了重要作用。Suffee等[4]研究发现,心外膜中的多能祖细胞是EAT的来源,其可以通过上皮-间充质转化程序分化为脂肪细胞,且心房利钠尿多肽(atrial natriuretic polypeptide,ANP)参与这个过程。EAT与心外膜直接接触,共用一套血液供应系统,因此EAT分泌的细胞因子和脂肪因子能够通过旁分泌或自分泌的方式进入邻近的心肌细胞,并发挥相应的生物学功能[2]。
1.2 EAT的生理学特点除分泌功能外,EAT还具有与棕色脂肪组织相关的产热效应,并且能在游离脂肪酸(free fatty acid,FFA)代谢中发挥作用,能够直接为心肌提供能量,滋养邻近组织,保护心肌细胞免受FFA介导的炎症反应影响[8]。在轻度氧化应激状态下,EAT能够分泌脂联素保护心肌细胞免受肥大刺激,限制心肌的炎症反应和纤维化[6]。生理状态下,EAT分泌的网膜素-1能够抑制心肌成纤维细胞激活和脐静脉内皮细胞的内皮-间充质转化,对抗心肌纤维化[9-10]。
1.3 EAT的病理生理学特点由于EAT与心肌细胞之间没有固有屏障,EAT能通过自分泌和旁分泌等途径影响心力衰竭、心肌纤维化以及AF的发生[2]。在肥胖患者体内,EAT具有白色脂肪组织的特征,其脂解作用能够使心肌细胞处于高水平FFA环境当中,进而导致炎症反应。此外,病理状态下(如发生糖尿病、冠心病时)EAT保护性脂肪因子分泌减少,促炎脂肪因子分泌增多[6]。EAT中不仅含有脂肪细胞,还富含大量自主神经节丛(ganglionated plexus,GP),GP能够调节正常的心脏功能,也参与心律失常等病理过程的发生[11]。
2 EAT的定量检测EAT的定量检测方法主要有CT、MRI以及超声心动图等,这3种测量方法各有优劣。
2.1 CTCT是临床中最常应用的测量EAT数据的成像技术,其图像具有较高的密度分辨力。CT值可以量化评估密度的高低,EAT的正常CT值在-190~-30 HU之间,利用半自动化软件还可计算EAT容积[12]。El Mahdiui等[13]针对首次接受导管消融治疗的AF患者采用单变量分析,结果显示与未复发AF患者相比,复发AF患者左心房后壁的脂肪组织具有更高的CT值(≥-96.4 HU,P<0.05),提示左心房后壁脂肪组织的CT值可能是导管消融治疗后AF复发的预测指标。但是,CT检查具有一定的辐射损伤,也存在患者对造影剂注射产生不适感和过敏等不良反应的风险。
2.2 MRIMRI对软组织具有较高的分辨率,而且没有辐射损害,目前是定量化评估EAT的金标准[6],但因其检查时间较长、费用较高而且容易发生不同类型伪影等缺点,限制了其广泛应用。Henningsson等[14]发现,与标准单相Dixon技术相比,心脏磁共振电影成像(Cine MRI)能更好地描绘收缩期或舒张期的EAT边界,而且观察者内与观察者间变异性较低。
2.3 超声心动图超声检查具有无放射性损伤、安全性高的特点,能够实时动态进行任意方向的断面成像,操作便捷,费用相对低廉。在心脏舒张末期的胸骨旁长轴切面中,右心室游离壁心肌外层与脏层心包之间无回声区域的垂直距离即为EAT厚度[15-16]。Yamaguchi等[17]应用经胸超声心动图研究发现,EAT厚度与左心耳排空速度呈负相关(ρ=-0.56, P<0.01),与左心耳开口面积呈正相关(ρ=0.38,P=0.014)。Dursun等[18]对122例新发AF患者进行超声心动图检查,并测量其静注胺碘酮后转复为窦性心率的时间,发现EAT厚度与AF的转复时间呈正相关(ρ=0.267,P=0.017)。超声心动图的敏感度低于CT和MRI,因此只能用于测量EAT厚度,无法测量EAT容积。
3 EAT与AF心肌结构重构 3.1 EAT通过分泌细胞因子影响心肌纤维化AF发生的病理生理改变包括电重构和结构重构。AF患者的心脏CT和电解剖标测证据显示,EAT与低电压、碎裂电位有关[19],且低电压区主要存在于左心房后壁,与EAT的位置相似[20]。Shaihov-Teper等[21]通过体外实验发现,EAT来源的细胞外囊泡(extracellular vesicle,EV)能缩短心肌细胞的动作电位时程,AF患者EAT中含有更多的EV、促炎和促纤维化的细胞因子。纤维化是心脏结构重构的重要特征,EAT脂肪浸润和分泌的脂肪因子如激活素A(activin A)影响纤维化的发生[22]。Kira等[23]发现人重组血管生成素样蛋白2(angiopoietin-like protein 2,Angptl2)能促进大鼠心房纤维化,提示EAT分泌的Angptl2在心房纤维化中起重要作用。Wang等[24]发现,YKL-40蛋白作为一种新的炎症与纤维化标志物,YKL-40 mRNA在AF患者EAT中的表达高于皮下脂肪、心包旁脂肪和无AF患者的EAT,且其表达量与心房肌胶原体积分数呈线性关系。EAT分泌众多脂肪细胞因子,其中仍有多种因子与AF发生之间的关系未得到深入研究,进一步研究这类因子也许能为预测AF的发生拓展新的空间。
纤维化成分主要是Ⅰ型和Ⅲ型胶原蛋白,主要由成纤维细胞产生。研究发现,当静息态的心肌成纤维细胞转变为激活态的肌成纤维细胞时特异性表达成纤维细胞激活蛋白(fibroblast activation protein,FAP),FAP可以作为激活状态肌成纤维细胞的特异性标志[25],提示FAP的表达水平可以作为心肌纤维化发生的评价指标。但在EAT影响心肌纤维化过程中FAP能否作为AF发生的预测指标,目前尚未见报道。
3.2 EAT通过分泌EV影响心肌纤维化EV是一类具有膜结构的细胞器,携带具有生物学功能的蛋白质、核酸、脂质,传递其来源细胞的特征[26]。脂肪细胞来源的EV早有学者研究,但是EAT来源的EV(EAT-EV)在AF中的作用近期才得到证实。研究表明,miRNA-146b[27]的上调和miRNA-133a、miRNA-29a[28]的下调促进心脏纤维化的发生,EAT-EV中也存在miRNA-146的上调、miRNA-133a和miRNA-29a的下调,提示EAT-EV可能通过促进心脏纤维化从而促进AF的发生[21]。此外,EAT-EV可以增强血管生成能力,诱导持续性折返产生的作用[21]。但是EAT-EVs引起的上述病理生理过程的机制仍未明确。尽管EAT分泌的外泌体能够与心肌细胞融合并释放其中的核酸、蛋白质等大分子物质,但有关AF患者EAT外泌体中差异生物大分子的筛选研究相对较少,值得深入研究。
4 EAT与AF心肌电重构 4.1 EAT通过脂肪浸润影响心肌电重构组织学证据表明,AF患者的心肌中存在脂肪浸润[29-30],脂肪浸润为AF基质的形成提供了基础[31]。Otsuka等[32]研究比格犬AF模型发现,脂肪浸润的程度为肥胖-AF组>AF组>对照组,提示脂肪浸润参与了AF的发生。另一项研究表明,脂肪浸润的程度(尤其是左心房后壁)与EAT的容积呈正相关[19]。脂肪浸润影响心肌细胞的传导功能,包括减慢传导速度和增加传导异质性,其中传导异质性由心肌细胞间不均衡的脂肪浸润所致[33]。Nalliah等[30]研究发现,心肌细胞间脂肪浸润并不规则,脂肪浸润而非纤维化与心肌传导异质性增加有关,EAT通过旁分泌的细胞因子减慢心肌传导速度并延长动作电位时程。
4.2 EAT通过影响GP功能影响心肌电重构心脏内自主神经系统(intrinsic cardiac nervous system,ICNS)参与AF的发生和维持,其大部分GP分布于心房和心室的EAT中[34]。心脏交感神经与副交感神经的共同作用影响着AF的发生与维持[35]。Kawasaki等[36]发现,阵发性AF患者消融治疗后AF的晚期复发、左心房EAT占总EAT的比值均与更明显的交感神经活动有关。ICNS的作用影响EAT,心外膜间质细胞在儿茶酚胺刺激之下能够分泌蛋白质,从而对周围组织产生影响,为AF的发生提供了一种新机制[37-38]。EAT分泌的脂肪因子也能影响ICNS,并调节心房起搏引起的AF[39]。
4.3 EAT通过基因调控影响心肌电重构Gaborit等[9]对心外膜不同部位脂肪组织的转录组进行比较,发现心房周围脂肪组织中心肌肌浆网Ca2+-ATP酶1(sarcoplasmic and endoplasmic reticulum Ca2+ ATPase 1,SERCA1)基因过度表达,该基因编码了与兴奋-收缩偶联相关的Ca2+/ATP依赖的细胞内离子泵。凝溶胶蛋白的缺失会引起L型Ca2+离子流的变化,Viviano等[40]研究发现,术后AF患者的EAT中凝溶胶蛋白的基因表达量降低。Shi等[41]比较了6例AF患者和6例窦性心律患者EAT的RNA序列数据发现,前者的同源盒基因[尤其是反义RNAs,同源盒A转录本反义RNA1(homeobox A transcript antisense RNA myeloid-specific 1,HOTAIRM1)、同源盒A簇反义RNA 2(homeobox A cluster antisense RNA 2,HOXA-AS2)和同源盒B反义RNA2(homeobox B antisense RNA 2,HOXB-AS2)]下调,大部分表达失调IncRNA参与的信号通路为炎症相关的信号通路,这些改变均会促进AF的发生。基因调控在EAT介导AF的发病中发挥重要作用,利用全基因筛选技术有望发现影响心肌重构的关键基因,阐明AF的发生及发展机制。
5 EAT与炎症反应炎症反应在AF的发生和维持中发挥重要作用[42-45],AF患者的血清或血浆中炎症标志物如CRP、IL-1、IL-6、TNF-α等水平升高[42]。Mazurek等[43]应用PET检测AF组和对照组的EAT炎症活动,结果显示AF组EAT对氟代脱氧葡萄糖(18F-FDG)的摄取量高于对照组;Xie等[44]对32例持续性AF、16例阵发性AF患者的研究也发现EAT的活动与AF患者心房18F-FDG摄取量增加有关,提示AF患者的EAT中炎症反应程度增高。
Canpolat等[45]发现,孤立性阵发性AF患者EAT的厚度与CRP水平呈正相关;Liu等[46]发现,持续性AF患者EAT中IL-1β表达水平高于无AF的对照组,这些可能归因于EAT促进炎症因子分泌,从而影响AF的发生。Agra-Bermejo等[47]对29例接受心脏手术的心力衰竭患者随访5年发现,男性AF患者巨噬细胞凋亡抑制因子(apoptosis inhibitor of macrophage,AIM/CD5L)表达水平较所有患者更高(0.44±0.05 vs 0.18±0.15,P<0.016),提示EAT中的CD5L可能是男性心力衰竭患者AF发生的介质。
6 EAT作为治疗AF的潜在靶点EAT参与AF的发生与维持,对EAT进行干预也是治疗AF的潜在靶点。
6.1 降糖药物对AF的影响Li等[48]研究AF比格犬模型发现,二甲双胍(metformin,MET)能够降低AF易发性和心房纤维化程度,抑制活性氧和NF-κB的激活,降低左心房和EAT中IL-6、TNF-α、TGF-β1等促炎因子的表达,上调EAT中过氧化物酶体增殖物激活受体γ和脂联素的表达。Sato等[49]发现,与传统治疗组相比,达格列净治疗组2型糖尿病患者血浆中TNF-α水平和EAT容积下降,上述结果提示MET和达格列净对预防和治疗AF可能具有潜在作用。Iacobellis等[50]发现接受利拉鲁肽治疗的2型糖尿病患者的EAT厚度从基线值(9.6±2.0)mm下降到治疗3个月时的(6.8±1.5)mm和治疗6个月时的(6.2±1.5)mm(P<0.01),提示利拉鲁肽引起的心血管代谢作用可能是由EAT介导。
Soucek等[51]对接受肺静脉隔离术的AF患者进行队列研究,治疗3个月后阿托伐他汀治疗组(n=38)的EAT容积下降[92.3(62.0~133.3)cm3 vs 86.9(64.1~124.8)cm3,P<0.05],安慰剂组(n=41)的改变没有统计学意义[81.9(55.5~110.9)cm3 vs 81.3(57.1~110.5)cm3,P>0.05],此外阿托伐他汀组CRP[2.4(0.7~3.7)mg/L vs 1.1(0.5~2.7)mg/L,P<0.05]、总胆固醇[1.86(1.62~2.01)g/L vs 1.23(0.99~1.62)g/L,P<0.01]、低密度脂蛋白胆固醇[1.16(0.96~1.32)g/L vs 0.56(0.40~0.81)g/L,P<0.01]水平也下降。
6.2 肉毒素对AF的影响肉毒杆菌毒素能够阻断突触前膜囊泡中乙酰胆碱的释放,从而干扰胆碱能神经传递,发挥去副交感神经作用。Romanov等[52]将60例阵发性AF患者分为术中EAT内注射肉毒素组和安慰剂(生理盐水)组,随访3年结果显示肉毒素组的AF负荷低于安慰剂组(12个月时:0.22% vs 1.88%,P=0.003;24个月时:1.6% vs 9.5%,P<0.01;36个月时:1.3% vs 6.9%,P=0.007);肉毒素组随访期间住院人数也少于安慰剂组(2例vs 10例,P=0.02),提示肉毒素可能作为影响AF发生与结局的潜在因素。
6.3 体重管理对AF的影响Mahajan等[53]将绵羊肥胖模型随机分为肥胖组、减重15%组、减重30%组,结果发现与其他两组相比,减重30%组绵羊的心房肌中炎症、纤维化、有效不应期、传导速度、传导异质性均有所改善,但是脂肪浸润的变化无统计学意义(P=0.34)。Altin等[54]对105例行腹腔镜袖状胃切除术的患者进行前瞻性研究,发现ΔEAT厚度与ΔBMI相关(r=0.431,P<0.01),ΔBMI是ΔEAT厚度的独立预测因子(β=153,P=0.001)。Javed等[55]研究认为,AF患者进行减重利于减缓阵发性AF向持续性AF进展,利于持续性AF向阵发性AF转变。上述结果提示体重干预可能是AF治疗的潜在方法。棕色脂肪组织能利用葡萄糖和脂肪产生热量,改善心血管代谢[56],因此寻找诱导白色脂肪褐变的关键因素有助于AF发生机制的阐明。
7 小结与展望EAT的解剖位置及生理特性独特,参与了AF的发生、发展,并可以通过影像学手段定量分析。尽管已有大量相关研究,但仍存在如下一些空白领域:(1)基因调控在EAT介导AF的发病中发挥重要作用,利用全基因筛选技术发现影响心肌重构的关键基因有助于阐明AF的发生及发展机制;(2)尽管研究表明EAT分泌的外泌体能够与心肌细胞融合,并释放其中的核酸、蛋白质,但仍需加强EAT外泌体中差异生物大分子的筛选研究;(3)利用单细胞测序技术对脂肪细胞进行亚群分类有助于探寻诱导EAT褐变的关键机制,为治疗AF寻找新的靶点;(4)EAT分泌许多脂肪细胞因子,其中一些特殊因子在预测、影响AF发生方面具有重要意义,具有可研究空间。虽然EAT引起AF的具体机制未完全阐明,但是EAT作为AF的独立危险因素对它进行干预可作为今后AF治疗新的方向。
[1] |
ZIMETBAUM P. Atrial fibrillation[J/OL]. Ann Intern Med, 2017, 166: ITC33-ITC48. DOI: 10.7326/AITC201703070.
|
[2] |
PACKER M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium[J]. J Am Coll Cardiol, 2018, 71: 2360-2372. DOI:10.1016/j.jacc.2018.03.509 |
[3] |
WONG C X, SUN M T, ODUTAYO A, EMDIN C A, MAHAJAN R, LAU D H, et al. Associations of epicardial, abdominal, and overall adiposity with atrial fibrillation[J/OL]. Circ Arrhythm Electrophysiol, 2016, 9: e004378. DOI: 10.1161/CIRCEP.116.004378.
|
[4] |
SUFFEE N, MOORE-MORRIS T, FARAHMAND P, RÜCKER-MARTIN C, DILANIAN G, FRADET M, et al. Atrial natriuretic peptide regulates adipose tissue accumulation in adult atria[J/OL]. Proc Natl Acad Sci U S A, 2017, 114: E771-E780. DOI: 10.1073/pnas.1610968114.
|
[5] |
VYAS V, HUNTER R J, LONGHI M P, FINLAY M C. Inflammation and adiposity: new frontiers in atrial fibrillation[J]. Europace, 2020, 22: 1609-1618. DOI:10.1093/europace/euaa214 |
[6] |
ZHOU M M, WANG H, CHEN J D, ZHAO L. Epicardial adipose tissue and atrial fibrillation: possible mechanisms, potential therapies, and future directions[J]. Pacing Clin Electrophysiol, 2020, 43: 133-145. DOI:10.1111/pace.13825 |
[7] |
CHAU Y Y, BANDIERA R, SERRELS A, MARTÍNEZ-ESTRADA O M, QING W, LEE M, et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source[J]. Nat Cell Biol, 2014, 16: 367-375. DOI:10.1038/ncb2922 |
[8] |
CHECHI, VOISINE P, MATHIEU P, LAPLANTE M, BONNET S, PICARD F, et al. Functional characterization of the Ucp1-associated oxidative phenotype of human epicardial adipose tissue[J/OL]. Sci Rep, 2017, 7: 15566. DOI: 10.1038/s41598-017-15501-7.
|
[9] |
GABORIT B, VENTECLEF N, ANCEL P, PELLOUX V, GARIBOLDI V, LEPRINCE P, et al. Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location[J]. Cardiovasc Res, 2015, 108: 62-73. DOI:10.1093/cvr/cvv208 |
[10] |
CHEN Y, LIU F, HAN F, LV L, TANG C E, XIE Z, et al. Omentin-1 is associated with atrial fibrillation in patients with cardiac valve disease[J/OL]. BMC Cardiovasc Disord, 2020, 20: 214. DOI: 10.1186/s12872-020-01478-1.
|
[11] |
KIM M Y, SIKKEL M B, HUNTER R J, HAYWOOD G A, TOMLINSON D R, TAYEBJEE M H, et al. A novel approach to mapping the atrial ganglionated plexus network by generating a distribution probability atlas[J]. J Cardiovasc Electrophysiol, 2018, 29: 1624-1634. DOI:10.1111/jce.13723 |
[12] |
OBA K, MAEDA M, MAIMAITUXUN G, YAMAGUCHI S, ARASAKI O, FUKUDA D, et al. Effect of the epicardial adipose tissue volume on the prevalence of paroxysmal and persistent atrial fibrillation[J]. Circ J, 2018, 82: 1778-1787. DOI:10.1253/circj.CJ-18-0021 |
[13] |
EL MAHDIUI M, SIMON J, SMIT J M, KUNEMAN J H, VAN ROSENDAEL A R, STEYERBERG E W, et al. Posterior left atrial adipose tissue attenuation assessed by computed tomography and recurrence of atrial fibrillation after catheter ablation[J/OL]. Circ Arrhythm Electrophysiol, 2021, 14: e009135. DOI: 10.1161/CIRCEP.120.009135
|
[14] |
HENNINGSSON M, BRUNDIN M, SCHEFFEL T, EDIN C, VIOLA F, CARLHÄLL C J. Quantification of epicardial fat using 3D cine Dixon MRI[J/OL]. BMC Med Imaging, 2020, 20: 80. DOI: 10.1186/s12880-020-00478-z.
|
[15] |
GUZEL F B, ALTUNOREN O, GUNES H, SEYITHANOGLU M, KERKUTLUOGLU M, SEZAL D T, et al. The relation between epicardial fat tissue thickness and atrial fibrillation ın hemodialysis patients[J]. Semin Dial, 2020, 33: 428-434. DOI:10.1111/sdi.12901 |
[16] |
CHU C Y, LEE W H, HSU P C, LEE M K, LEE H H, CHIU C A, et al. Association of increased epicardial adipose tissue thickness with adverse cardiovascular outcomes in patients with atrial fibrillation[J/OL]. Medicine (Baltimore), 2016, 95: e2874. DOI: 10.1097/MD.0000000000002874.
|
[17] |
YAMAGUCHI S, OTAKI Y, TAMARAPPOO B, YOSHIDA J, IKENAGA H, FRIEDMAN J, et al. The association between epicardial adipose tissue thickness around the right ventricular free wall evaluated by transthoracic echocardiography and left atrial appendage function[J]. Int J Cardiovasc Imaging, 2020, 36: 585-593. DOI:10.1007/s10554-019-01748-w |
[18] |
DURSUN I, SAHIN S, BAYRAKTAR A, CIRAKOGLU O F, KUL S, KORKMAZ L. Predictors of time to conversion of new-onset atrial fibrillation to sinus rhythm with amiodarone therapy[J]. J Arrhythm, 2020, 36: 705-711. DOI:10.1002/joa3.12372 |
[19] |
MAHAJAN R, LAU D H, BROOKS A G, SHIPP N J, MANAVIS J, WOOD J P, et al. Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity[J]. J Am Coll Cardiol, 2015, 66: 1-11. DOI:10.1016/j.jacc.2015.04.058 |
[20] |
MAHAJAN R, NELSON A, PATHAK R K, MIDDELDORP M E, WONG C X, TWOMEY D J, et al. Electroanatomical remodeling of the atria in obesity: impact of adjacent epicardial fat[J]. JACC Clin Electrophysiol, 2018, 4: 1529-1540. DOI:10.1016/j.jacep.2018.08.014 |
[21] |
SHAIHOV-TEPER O, RAM E, BALLAN N, BRZEZINSKI R Y, NAFTALI-SHANI N, MASOUD R, et al. Extracellular vesicles from epicardial fat facilitate atrial fibrillation[J]. Circulation, 2021, 143: 2475-2493. DOI:10.1161/CIRCULATIONAHA.120.052009 |
[22] |
VENTECLEF N, GUGLIELMI V, BALSE E, GABORIT B, COTILLARD A, ATASSI F, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines[J/OL]. Eur Heart J, 2015, 36: 795-805a. DOI: 10.1093/eurheartj/eht099.
|
[23] |
KIRA S, ABE I, ISHII Y, MIYOSHI M, ONIKI T, ARAKANE M, et al. Role of angiopoietin-like protein 2 in atrial fibrosis induced by human epicardial adipose tissue: analysis using an organo-culture system[J]. Heart Rhythm, 2020, 17: 1591-1601. DOI:10.1016/j.hrthm.2020.04.027 |
[24] |
WANG Q, SHEN H, MIN J, GAO Y, LIU K, XI W, et al. YKL-40 is highly expressed in the epicardial adipose tissue of patients with atrial fibrillation and associated with atrial fibrosis[J/OL]. J Transl Med, 2018, 16: 229. DOI: 10.1186/s12967-018-1598-0.
|
[25] |
AGHAJANIAN H, KIMURA T, RURIK J G, HANCOCK A S, LEIBOWITZ M S, LI L, et al. Targeting cardiac fibrosis with engineered T cells[J]. Nature, 2019, 573: 430-433. DOI:10.1038/s41586-019-1546-z |
[26] |
TSAI M J, HSU Y L, KUO P L. Circulating extracellular vesicles in human disease[J]. N Engl J Med, 2018, 379: 2179-2180. DOI:10.1056/NEJMc1813170 |
[27] |
WANG J, WANG Y, HAN J, LI Y, XIE C, XIE L, et al. Integrated analysis of microRNA and mRNA expression profiles in the left atrium of patients with nonvalvular paroxysmal atrial fibrillation: Role of miR-146b-5p in atrial fibrosis[J]. Heart Rhythm, 2015, 12: 1018-1026. DOI:10.1016/j.hrthm.2015.01.026 |
[28] |
RANJAN P, KUMARI R, VERMA S K. Cardiac fibroblasts and cardiac fibrosis: precise role of exosomes[J/OL]. Front Cell Dev Biol, 2019, 7: 318. DOI: 10.3389/fcell.2019.00318.
|
[29] |
HAEMERS P, HAMDI H, GUEDJ K, SUFFEE N, FARAHMAND P, POPOVIC N, et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria[J]. Eur Heart J, 2017, 38: 53-61. DOI:10.1093/eurheartj/ehv625 |
[30] |
NALLIAH C J, BELL J R, RAAIJMAKERS A J A, WADDELL H M, WELLS S P, BERNASOCHI G B, et al. Epicardial adipose tissue accumulation confers atrial conduction abnormality[J]. J Am Coll Cardiol, 2020, 76: 1197-1211. DOI:10.1016/j.jacc.2020.07.017 |
[31] |
TERESHCHENKO L G, RIZZI P, MEWTON N, VOLPE G J, MURTHY S, STRAUSS D G, et al. Infiltrated atrial fat characterizes underlying atrial fibrillation substrate in patients at risk as defined by the ARIC atrial fibrillation risk score[J]. Int J Cardiol, 2014, 172: 196-201. DOI:10.1016/j.ijcard.2014.01.012 |
[32] |
OTSUKA N, OKUMURA Y, ARAI M, KUROKAWA S, NAGASHIMA K, WATANABE R, et al. Effect of obesity and epicardial fat/fatty infiltration on electrical and structural remodeling associated with atrial fibrillation in a novel canine model of obesity and atrial fibrillation: a comparative study[J]. J Cardiovasc Electrophysiol, 2021, 32: 889-899. DOI:10.1111/jce.14955 |
[33] |
ANUMONWO J M B, HERRON T. Fatty infiltration of the myocardium and arrhythmogenesis: potential cellular and molecular mechanisms[J/OL]. Front Physiol, 2018, 9: 2. DOI: 10.3389/fphys.2018.00002.
|
[34] |
AKSU T, GUPTA D, PAUZA D H. Anatomy and physiology of intrinsic cardiac autonomic nervous system: da Vinci anatomy card #2[J]. JACC Case Rep, 2021, 3: 625-629. DOI:10.1016/j.jaccas.2021.02.018 |
[35] |
LINZ D, ELLIOTT A D, HOHL M, MALIK V, SCHOTTEN U, DOBREV D, et al. Role of autonomic nervous system in atrial fibrillation[J]. Int J Cardiol, 2019, 287: 181-188. DOI:10.1016/j.ijcard.2018.11.091 |
[36] |
KAWASAKI M, YAMADA T, FURUKAWA Y, MORITA T, TAMAKI S, KIDA H, et al. Are cardiac sympathetic nerve activity and epicardial adipose tissue associated with atrial fibrillation recurrence after catheter ablation in patients without heart failure?[J]. Int J Cardiol, 2020, 303: 41-48. DOI:10.1016/j.ijcard.2019.11.092 |
[37] |
COUSELO-SEIJAS M, LÓPEZ-CANOA J N, AGRA-BERMEJO R M, DÍAZ-RODRIGUEZ E, FERNANDEZ A L, MARTINEZ-CEREIJO J M, et al. Cholinergic activity regulates the secretome of epicardial adipose tissue: association with atrial fibrillation[J]. J Cell Physiol, 2019, 234: 10512-10522. DOI:10.1002/jcp.27723 |
[38] |
COUSELO-SEIJAS M, LOPEZ-CANOA J N, FERNANDEZ Á L, GONZÁLEZ-MELCHOR L, SEOANE L M, DURAN-MUÑOZ D, et al. Inflammatory and lipid regulation by cholinergic activity in epicardial stromal cells from patients who underwent open-heart surgery[J]. J Cell Mol Med, 2020, 24: 10958-10969. DOI:10.1111/jcmm.15727 |
[39] |
ZHOU Z, LI S Y, SHENG X, LIU Z H, LAI Y Q, WANG M L, et al. Interactions between metabolism regulator adiponectin and intrinsic cardiac autonomic nervous system: a potential treatment target for atrial fibrillation[J]. Int J Cardiol, 2020, 302: 59-66. DOI:10.1016/j.ijcard.2019.12.031 |
[40] |
VIVIANO A, YIN X K, ZAMPETAKI A, FAVA M, GALLAGHER M, MAYR M, et al. Proteomics of the epicardial fat secretome and its role in post-operative atrial fibrillation[J]. Europace, 2018, 20: 1201-1208. DOI:10.1093/europace/eux113 |
[41] |
SHI X, SHAO X L, LIU B, LV M W, PANDEY P, GUO C F, et al. Genome-wide screening of functional long noncoding RNAs in the epicardial adipose tissues of atrial fibrillation[J/OL]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866: 165757. DOI: 10.1016/j.bbadis.2020.165757.
|
[42] |
GOUDIS C A, VASILEIADIS I E, LIU T. Epicardial adipose tissue and atrial fibrillation: pathophysiological mechanisms, clinical implications, and potential therapies[J]. Curr Med Res Opin, 2018, 34: 1933-1943. DOI:10.1080/03007995.2018.1462786 |
[43] |
MAZUREK T, KILISZEK M, KOBYLECKA M, SKUBISZ-GŁUCHOWSKA J, KOCHMAN J, FILIPIAK K, et al. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation[J]. Am J Cardiol, 2014, 113: 1505-1508. DOI:10.1016/j.amjcard.2014.02.005 |
[44] |
XIE B Q, CHEN B X, WU J Y, LIU X P, YANG M F. Factors relevant to atrial 18F-fluorodeoxyglucose uptake in atrial fibrillation[J]. J Nucl Cardiol, 2020, 27: 1501-1512. DOI:10.1007/s12350-018-1387-4 |
[45] |
CANPOLAT U, AYTEMIR K, ÖZER N, OTO A. Relationship between the epicardial fat thickness and total atrial conduction time in patients with lone paroxysmal atrial fibrillation[J]. Int J Cardiol, 2015, 185: 106-108. DOI:10.1016/j.ijcard.2015.03.091 |
[46] |
LIU Q, ZHANG F, YANG M, ZHONG J Q. Increasing level of interleukin-1β in epicardial adipose tissue is associated with persistent atrial fibrillation[J]. J Interf Cytokine Res, 2020, 40: 64-69. DOI:10.1089/jir.2019.0098 |
[47] |
AGRA-BERMEJO R M, CACHO-ANTONIO C, ROZADOS-LUIS A, COUSELO-SEIJAS M, FERNANDEZ A L, MARTINEZ-CEREIJO J M, et al. CD5L, macrophage apoptosis inhibitor, was identified in epicardial fat-secretome and regulated by isoproterenol from patients with heart failure[J/OL]. Front Physiol, 2020, 11: 620. DOI: 10.3389/fphys.2020.00620.
|
[48] |
LI B, PO S S, ZHANG B J, BAI F, LI J Y, QIN F, et al. Metformin regulates adiponectin signalling in epicardial adipose tissue and reduces atrial fibrillation vulnerability[J]. J Cell Mol Med, 2020, 24: 7751-7766. DOI:10.1111/jcmm.15407 |
[49] |
SATO T, AIZAWA Y, YUASA S, FUJITA S, IKEDA Y, OKABE M. The effect of dapagliflozin treatment on epicardial adipose tissue volume and P-wave indices: an ad-hoc analysis of the previous randomized clinical trial[J]. J Atheroscler Thromb, 2020, 27: 1348-1358. DOI:10.5551/jat.48009 |
[50] |
IACOBELLIS G, MOHSENI M, BIANCO S D, BANGA P K. Liraglutide causes large and rapid epicardial fat reduction[J]. Obesity (Silver Spring), 2017, 25: 311-316. DOI:10.1002/oby.21718 |
[51] |
SOUCEK F, COVASSIN N, SINGH P, RUZEK L, KARA T, SULEIMAN M, et al. Effects of atorvastatin (80 mg) therapy on quantity of epicardial adipose tissue in patients undergoing pulmonary vein isolation for atrial fibrillation[J]. Am J Cardiol, 2015, 116: 1443-1446. DOI:10.1016/j.amjcard.2015.07.067 |
[52] |
ROMANOV A, POKUSHALOV E, PONOMAREV D, BAYRAMOVA S, SHABANOV V, LOSIK D, et al. Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: three-year follow-up of a randomized study[J]. Heart Rhythm, 2019, 16: 172-177. DOI:10.1016/j.hrthm.2018.08.019 |
[53] |
MAHAJAN R, LAU D H, BROOKS A G, SHIPP N J, WOOD J P M, MANAVIS J, et al. Atrial fibrillation and obesity: reverse remodeling of atrial substrate with weight reduction[J]. JACC Clin Electrophysiol, 2021, 7: 630-641. DOI:10.1016/j.jacep.2020.11.015 |
[54] |
ALTIN C, EROL V, AYDIN E, YILMAZ M, TEKINDAL M A, SADE L E, et al. Impact of weight loss on epicardial fat and carotid intima media thickness after laparoscopic sleeve gastrectomy: a prospective study[J]. Nutr Metab Cardiovasc Dis, 2018, 28: 501-509. DOI:10.1016/j.numecd.2018.02.001 |
[55] |
JAVED S, GUPTA D, LIP G Y H. Obesity and atrial fibrillation: making inroads through fat[J]. Eur Heart J Cardiovasc Pharmacother, 2021, 7: 59-67. DOI:10.1093/ehjcvp/pvaa013 |
[56] |
ALDISS P, DAVIES G, WOODS R, BUDGE H, SACKS H S, SYMONDS M E. 'Browning' the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk[J]. Int J Cardiol, 2017, 228: 265-274. DOI:10.1016/j.ijcard.2016.11.074 |