海军军医大学学报  2023, Vol. 44 Issue (10): 1219-1227   PDF    
青春期社会隔离致实验动物抑郁行为的脑机制研究进展
齐天1, 胡婷2, 王伟2     
1. 海军军医大学(第二军医大学)基础医学院, 上海 200433;
2. 海军军医大学(第二军医大学)心理系军事应激心理学教研室, 上海 200433
摘要: 青春期社会隔离作为一种应激源会导致动物和人类的社会行为以及神经内分泌系统网络功能改变。大量研究发现暴露于社会隔离压力会诱发大脑不同区域功能发生特异性改变,以及下丘脑-垂体-肾上腺轴的激活,多巴胺、5-羟色胺、γ-氨基丁酸、谷氨酸等神经递质的合成释放及其受体的敏感度改变,这些改变会诱发动物及人类出现不同程度的抑郁样行为,与抑郁症的发生密切相关。青春期是大脑神经网络、功能和化学重组的关键时期,相较于成年期社会隔离,青春期社会隔离会产生持续、难以逆转的消极影响,大大增加个体发生精神疾病的风险。本文就青春期社会隔离致抑郁的相关脑机制进行综述,探讨青春期社会隔离对大脑发育、内分泌、神经递质以及胶质细胞的特异影响,讨论其与抑郁发生的相关性。
关键词: 青春期    社会隔离    抑郁    脑机制    
Brain mechanism of depressive behavior induced by social isolation in experimental animals during adolescence: research progress
QI Tian1, HU Ting2, WANG Wei2     
1. College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai 200433, China;
2. Department of Military Stress Psychology, Faculty of Psychology, Naval Medical University (Second Military Medical University), Shanghai 200433, China
Abstract: As a stressor, social isolation in adolescence can lead to changes in social behavior and neuroendocrine system network function of animals and humans. A large number of studies have found that exposure to social isolation stress can induce specific changes in the function of different areas of the brain, active the hypothalamic-pituitary-adrenal axis, synthesize and release neurotransmitters such as dopamine, serotonin, γ-aminobutyric acid, and glutamate, and change the sensitivity of their receptors. These changes can induce different degrees of depressive-like behavior in animals and humans, which is closely related to the occurrence of depression. Adolescence is a critical period for neural networks, function and chemical reorganization of the brain, and compared with social isolation in adulthood, adolescent social isolation has a sustained and irreversible negative impact, greatly increasing the risk of mental illness in individuals. This article reviews the brain mechanisms associated with depression caused by social isolation in adolescence, discusses the specific effects of adolescent social isolation on brain development, endocrine, neurotransmitters, and glial cells, and discusses its association with depression.
Key words: adolescence    social isolation    depression    brain mechanism    

正常的社会关系对生物个体有着重要意义,其一旦遭到破坏将对机体带来消极影响。研究表明社会隔离会导致疲劳、行为改变、物质滥用以及各种精神疾病[1]。而青春期正经历大脑神经网络、功能和化学重组,在这个神经和行为显著改变的特殊时期[2],社会隔离将会对人和动物产生持续的、难以逆转的消极影响,增加个体发生精神疾病的风险[3]

实验动物的青春期普遍定义为从出生后第21天到第59天,其中出生后第21~34天、第35~45天、第46~59天分别是青春期早期、中期、晚期。这些阶段可能对应于人类青少年生活的早期(10~13岁)、中期(14~16岁)和晚期(17~21岁)阶段[4]。目前,生命早期不良应激致抑郁脑机制研究常采用社会隔离方式干预,实验动物一般采用大鼠、小鼠等啮齿动物,因它们具有行为情绪的变化特征,行为表现多样,情绪敏感且繁殖力和生命力强,而且社会隔离使其产生的负面情感变化和神经生理效应与人类极其相似[5]。研究发现,由社会隔离压力引起的主要长期症状(如焦虑、抑郁等)会出现在许多行为障碍中[6]。青春期社会隔离也能够诱导出更强的攻击性[7-8],同时会显著影响细胞增殖和神经发生[9-10]。多巴胺、5-羟色胺和谷氨酸等神经递质的释放也因受到社会隔离压力的影响而产生变化[11]。本文综述青春期社会隔离对大脑发育、内分泌功能、神经递质以及胶质细胞的特异影响,并讨论其与抑郁发生的潜在相关性。

1 青春期社会隔离对动物抑郁样行为的影响

青春期社会隔离实验通常是把实验组动物从断奶当天(出生后第21天)开始进行单独饲养,也可以从青春期中晚期开始进行单独饲养,对照组通常是将2~4只动物饲养在一起,其他实验条件两组相同。研究发现,动物在青春期进行社会隔离会展示出比成年期隔离更高水平的抑郁行为,在青春期的不同阶段进行隔离对动物抑郁样行为也有着不同的影响,在青春期中期、晚期隔离产生的抑郁样行为活动影响少于青春期早期隔离[12]。但也有研究表明在青春期中期进行隔离的实验动物,其抑郁状态特征会比青春期早期进行隔离的动物表现得更加明显[13]

对(啮齿)动物抑郁相关行为的研究通常采用强迫游泳实验与蔗糖偏好实验。Jahng等[14]通过强迫游泳实验发现,从出生后第21天到第53天的社会隔离增加了雌性小鼠的抑郁行为。相比之下,雄性小鼠在经历从出生后第21天到第67天的社会隔离后才出现了抑郁行为的增加[15]。在另一项研究中,雄性大鼠从出生后第36天开始隔离2~3周后并未出现抑郁样行为,而雌性大鼠表现出挣扎时间的减少和出现抑郁样行为[16]。通过上述研究可以发现,青春期社会隔离对于动物抑郁样行为的影响存在性别差异,且对雌性动物的影响更为显著。雌性大鼠在社会隔离后表现出的抑郁行为更为明显,可能是因为雌性大鼠受到发情周期的影响,从而导致雌、雄大鼠社会隔离后的抑郁行为表现出较大的差异性。研究发现隔离日龄也是一个重要的影响因素,从出生后第21天开始隔离3周即可诱导出小鼠的抑郁行为[17],而从出生后第42天开始隔离5周后才会出现明显的抑郁样行为[18]

蔗糖偏好实验反映动物对奖赏的反应程度,对奖励刺激缺乏反应是一种情感障碍(包括抑郁症)的表现形式[19]。目前大部分的研究都证实了社会隔离会降低动物对蔗糖的偏爱程度,呈现不同程度的抑郁样行为。一项研究发现,隔离动物对蔗糖偏爱程度的降低会受到蔗糖摄入时长的影响,雌、雄大鼠在摄入糖水24 h后并未表现出明显的偏爱程度降低,而在摄入糖水6 h和12 h时却可观察到明显的蔗糖摄入降低[20]。尽管文献结果不尽相同,但啮齿动物青春期社会隔离模型已经为人类青少年期不良经历的研究提供了许多可靠支持,可进一步转换为临床研究。

2 社会隔离致抑郁的机制

大量研究表明,青春期社会隔离作为一种心理社会应激源和有效的慢性应激动物模型,可诱导出隔离动物持久的神经内分泌、神经递质以及胶质细胞的改变。

2.1 大脑不同区域功能改变 2.1.1 内侧前额叶皮质(medial prefrontal cortex,mPFC)

青春期社会隔离会影响mPFC的功能变化以及控制冲动的能力。研究表明,青春期群体饲养小鼠会表现出mPFC神经元树突棘修剪和突触密度的增加[21],这可能与群体饲养小鼠和同伴间的社交互动而诱导的mPFC功能变化有关[22];而这些变化在成年小鼠中并不明显,活泼的同伴以及同伴数量增加可以保持复杂的树突棘和高密度突触,改变眶额叶皮质的功能活动,提高对同伴的识别能力[23]。青春期小鼠相较于成年小鼠有着更加旺盛的社交需求[24],因此青少年时期与同伴之间的游戏玩耍对于mPFC的神经回路发育至关重要,极大影响小鼠青春期以及成年后应对各种社会环境的能力,有效降低抑郁症的发病风险[25]

尽管各项研究中使用青春期隔离的小鼠日龄以及隔离时长不同,但是前额叶皮质中5-羟色胺能活性标志物都发生了改变。研究表明,社会隔离可以加快5-羟色胺的运输以及增加其浓度[16, 26]。mPFC中5-羟色胺释放增加可能会减少大鼠成年期僵直行为[27],同时5-羟色胺的消耗会增加抑郁样行为[28]。mPFC中的5-羟色胺活性可能是隔离动物应激反应的重要组成部分[29],因此5-羟色胺活性的上调可能反映了青春期社会隔离后mPFC的适应性变化。

2.1.2 脑干中缝背核

中缝背核会介导应激反应的部分不良调节,从而对抑郁行为发挥作用[30]。中缝背核是一个5-羟色胺能细胞体区域以及5-羟色胺能神经元亚群,可以对特异性应激刺激做出区域反应。具体来说,5-羟色胺能神经元集中在背侧中缝背核的投射结构中,可以被各种抑郁与焦虑相关的刺激(例如青春期社会隔离等)选择性激活[31-32],从而调节抑郁状态的相关神经回路。背侧中缝背核将神经系统的不同区域投射到伏隔核、杏仁核基底外侧核和mPFC[33],并接收来自终纹床核的信号输入,对调节与抑郁、焦虑相关行为起重要作用[34-35]。这些不同的投射表明背侧中缝背核可能与抑郁相关行为反应的调节以及情感障碍高度相关。

2.2 下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal,HPA)轴改变

大量研究表明,神经-免疫-内分泌系统功能失调是导致神经元疾病的基本机制之一[36]。长期暴露于社会隔离的压力会诱发各种内分泌功能的变化,包括HPA轴的激活、儿茶酚胺的大量释放,最终导致糖皮质激素的大量释放和交感-肾上腺髓质系统的激活。由于糖皮质激素影响中枢神经系统的学习和记忆系统,因此HPA轴对应激源的反应塑造了动物成年以后的行为。虽然HPA轴对应激源的反应是适应性的,但糖皮质激素的过度和慢性升高可能会产生适应不良的后果[37]。青春期是大脑神经网络、功能和化学重组的关键时期,因此青春期的中枢神经系统可能更容易受到慢性应激源和高浓度糖皮质激素的影响,从而导致持续异常的大脑发育轨迹[38]

青春期慢性社会隔离的应激压力引起的抑郁样行为会破坏HPA轴的正常功能,而雌激素可以改善由隔离引起的抑郁样行为。有研究发现,卵巢激素可与社会隔离的应激压力相互作用从而改善抑郁样行为,该研究结果显示社会隔离发情期雌性小鼠抑郁行为减少,其海马齿状回和CA3区糖皮质激素受体基因表达减少[39]。一项研究通过反复对隔离小鼠注射外源性皮质酮来检验社会隔离是否会导致进一步的抑郁或焦虑样行为障碍,以及抑制神经发生,结果表明社会隔离对行为和神经系统的影响主要取决于高皮质酮血症的情况;此外,社会隔离可能会加重抑郁症患者的症状,并改变神经发生;不同日龄社会隔离大鼠的皮质酮水平并无明显差异[40]

2.3 神经递质

研究表明,青春期社会隔离相较于成年期社会隔离会显著改变中枢神经系统不同区域神经递质的水平和受体的敏感性[41-42]。神经递质传递系统的中断或损伤在社会隔离啮齿动物的抑郁行为中发挥着重要作用[43]

2.3.1 多巴胺

多巴胺系统病变与抑郁症的发生有着非常重要的联系,其主要通过2个方面进行调节。其一是多巴胺的含量变化或者功能失调,其二是多巴胺转运或者与受体结合的某一环节发生障碍。研究证明,隔离饲养的青春期雄性小鼠前额叶中的多巴胺释放会增加[44]。隔离动物可能通过多巴胺阶段性的爆发释放来应对外界刺激[45]。研究显示,社会隔离会造成胞外多巴胺释放的增加,并且会改变多巴胺的功能[46]

隔离饲养会引起杏仁核内多巴胺基础代谢的增加,mPFC和中脑皮质的多巴胺基础代谢减少[47]。氯氮平和奥氮平等非典型抗精神病药物会增加隔离动物前额叶皮质中多巴胺的释放。但也有研究发现mPFC的多巴胺释放并不会增加[48]。通过向隔离动物注射可卡因和安非他明,研究人员发现隔离动物伏隔核内的多巴胺会显著上升[49]。研究表明,由于伏隔核的谷氨酸能神经支配缺失,导致了伏隔核突触前多巴胺释放增强[50]。对隔离大鼠使用精神兴奋剂会增加伏隔核内多巴胺的摄取,而强烈抑制背内侧纹状体多巴胺的摄取[51]。因此社会隔离导致脑内多巴胺含量变化与抑郁样行为发生的关系仍待进一步研究。

研究发现,大鼠经过30 d隔离后,腹背侧纹状体多巴胺的D1和D2受体数量、密度以及亲和力均未发生改变。D1类受体和D2类受体大多数位于突触前膜。多巴胺与D1受体结合后可促进环磷酸腺苷(cyclic adenosine monophosphate,cAMP)的生成,从而继续传递信息;D2类受体抑制cAMP的生成,使多巴胺的释放减少从而抑制信息的传递[52]。隔离饲养增加了中央杏仁核和伏隔核多巴胺D2受体密度,同时多巴胺D2受体的亲和力增强,而D1受体数量与密度均无明显变化[53],这可能会抑制多巴胺的信息传递,诱发抑郁行为。隔离饲养诱导的突触前多巴胺功能的变化同时伴随着突触后的变化,具体来说,从分离物提取的腹侧纹状体切片中,D2受体对刺激D1受体的cAMP产生的抑制作用减弱,这表明D2受体功能性下调[54]

2.3.2 5-羟色胺

早期社会隔离会影响调节情绪、行为的5-羟色胺能系统的发育,在大脑不同区域都会显现5-羟色胺系统的异常,包括边缘系统[55]。一项研究通过对隔离大鼠和群体饲养大鼠施加不同应激刺激发现,群体饲养组的海马5-羟色胺释放增加,而隔离组并未增加,这提示社会隔离可能损伤了大鼠的海马功能,包括5-羟色胺能系统,从而导致其他脑区神经递质系统也发生变化,并且改变了神经元对不同应激源的反应性[56]。群体饲养的大鼠注射安非他明后5-羟色胺水平明显升高,而社会隔离大鼠的5-羟色胺水平却保持正常[57]。社会隔离诱导出的抑郁行为也与5-羟色胺系统功能低下相关,这提示5-羟色胺是诱导抑郁发作的重要中枢神经调节剂[58]

在隔离饲养的大鼠中,抑郁行为增加可能与大脑5-羟色胺受体活性降低有关。研究表明,隔离饲养会改变海马突触前5-羟色胺(1B)受体活性,但不改变突触后5-羟色胺(1A)的受体活性[59]。大鼠的隔离饲养会导致海马功能障碍,包括一些神经元的5-羟色胺能活性降低和毒蕈碱活性增强[60]。啮齿动物的行为测试证实了提高5-羟色胺3受体活性后抗抑郁的作用,这表明5-羟色胺3受体在诱导情绪变化方面发挥了显著作用,比如与抑郁情绪和攻击性相关的变化[61]

2.3.3 γ-氨基丁酸

研究发现,抑郁症患者的皮质γ-氨基丁酸水平降低[62],而苯二氮类药物能有效变构调节γ-氨基丁酸A型受体上的γ-氨基丁酸作用[63],这表明除了单胺类递质外,干扰γ-氨基丁酸能信号也可能与抑郁症的发病机制密切相关。研究发现,γ-氨基丁酸B型受体拮抗剂具有抗抑郁的功能,敲除γ-氨基丁酸B型受体会减轻小鼠的抑郁样行为[64-65]。社会隔离具有拮抗γ-氨基丁酸A型受体激动剂的作用,青春期社会隔离7周后,通过降低内源性别孕烷醇酮(allopregnanolone,是γ-氨基丁酸作用于γ-氨基丁酸A型受体的一种正向变构调节剂)会导致γ-氨基丁酸A型受体功能降低,增强小鼠的抑郁易感性[66]。研究发现,在慢性隔离期间,神经活性孕酮代谢物能够调节基因表达,从而调节γ-氨基丁酸A型受体的功能。以低水平的神经活性类固醇为特征的社会隔离状态与α4δ亚基的选择性过度表达相关,导致含有该亚基组合的γ-氨基丁酸A型受体亚型上调[67]。另一项研究表明,由于下丘脑区域的大多数5-羟色胺3受体在γ-氨基丁酸能神经元上表达,γ-氨基丁酸能神经元上5-羟色胺3受体的减少可能会减少γ-氨基丁酸的释放,导致神经元过度激活,从而提高慢性社会隔离小鼠的抑郁水平[17]

2.3.4 谷氨酸

大量研究表明,青春期社会隔离会增加谷氨酸等兴奋性神经递质的突触传递,并干扰中枢神经系统中受体的表达和功能[68]。应激诱导的谷氨酸突触传递增加会导致兴奋性毒性,并通过激活N-甲基-D-天冬氨酸受体导致脑损伤[69]。隔离饲养会导致海马体和皮质长期的组织及功能变化,导致谷氨酸功能的降低,增加抑郁的发病风险[70]

社会隔离动物的代谢性谷氨酸受体会发生功能变化。社会隔离饲养会增加小鼠前额叶皮质、大脑皮质Ⅰ~Ⅲ层和海马中代谢性谷氨酸受体2/3的结合活性,而代谢性谷氨酸受体2/3拮抗剂MGS0039会减少隔离饲养小鼠不动时间,提示代谢性谷氨酸受体2/3活性的增加与社会隔离饲养小鼠的抑郁样行为有关[71]

研究发现,慢性社会隔离压力下皮质和海马的谷氨酸受体水平降低[72-73]。研究人员发现,谷氨酸和谷氨酰胺水平的降低表明神经元-胶质完整性破坏会导致隔离动物的抑郁行为,慢性社会隔离显著降低了海马背侧谷氨酸和谷氨酰胺的浓度,但它们在大脑皮质浓度未见明显变化,而海马的氧化应激比皮质更严重[74]

2.4 神经胶质细胞

青春期社会隔离导致神经胶质细胞发育和功能的改变在抑郁的发生、发展中发挥重要作用。研究发现,青春期社会隔离会导致小鼠少突胶质前体细胞数量减少,同时促进少突胶质前体细胞向少突胶质细胞过早分化[75]。此外,青春期社会隔离会诱导雌性小鼠蓝斑中星形胶质细胞的激活,从而介导部分情绪功能障碍的发生[76]。社会隔离也会导致小胶质细胞的减少与激活,引起抑郁行为,同时可通过促进海马中的小胶质细胞的增殖来逆转抑郁行为的发生[77]

Makinodan等[78]研究结果显示,小鼠出生后第21天至第35天是少突胶质细胞成熟和髓鞘形成的关键时期,在此段时间的青春期社会隔离会导致少突胶质细胞ErbB3受体的缺失,以及相应神经调节蛋白的表达减少,进而影响小鼠前额叶皮质的髓鞘化形成,引发抑郁、焦虑等行为异常;而在出生第35天之后的社会隔离引起的少突胶质细胞改变显著低于出生后第21天至第35天的社会隔离,即使将这些隔离的小鼠重新引入正常的社交环境中,社会隔离引起的脑功能改变以及行为也难以逆转。这可能是青春期社会隔离引起的影响显著高于成年后社会隔离的原因之一。

小胶质细胞已被证明是大脑发育和衰老过程中突触修剪的重要参与者[79],其副产物C1q(小胶质细胞衍生的补体级联蛋白)会诱导神经元细胞死亡。抑郁行为小鼠中高血清C1q水平与抑郁严重程度呈正相关[80],青春期社会隔离相较于成年期社会隔离会导致更大的突触损失,C1q水平明显增高。研究发现[81],青春期社会隔离促进了雌性小鼠杏仁核中IL-1β和小胶质细胞的激活,这一大脑区域可能在促进小鼠抑郁行为中发挥潜在作用;而雄性小鼠的神经炎症并没有增加,mPFC中的IL-6水平甚至降低,与雄性小鼠的正常行为表型一致。这可能是社会隔离性别差异的机制之一。

3 总结与展望

青春期社会隔离会造成动物的行为及应激相关的神经回路产生长期持久的改变。当社交活动的正常发展轨迹发生改变时,焦虑、抑郁等情绪就会增加,这种对青春期社会隔离应激的高敏感度可能反映了青春期大脑发育的重要性。青春期丰富的社交活动会保持复杂的树突棘和高密度突触,对于前额叶皮质神经回路的发育至关重要,能有效降低成年期抑郁的发生风险。此外,青春期长期暴露于社会隔离应激下,HPA轴过度激活导致的高糖皮质激素水平对于持续发育的大脑会产生严重不良的影响。同时,各种脑神经递质和胶质细胞因隔离产生的改变,都是导致抑郁发生的重要因素。社会隔离时日龄、隔离的时长及性别因素等也与抑郁样行为的发生有着密切联系。

青春期作为人类和动物大脑发育、行为发生极为关键的时期,社会隔离将对其产生持续、难以逆转的改变。许多涉及人类和啮齿动物的研究已经说明了青春期有限或异常社交活动的负面后果。研究人员未来应着眼于开发更贴近人类标准的青春期动物隔离模型,通过操纵社会隔离的应激源(如隔离时日龄、隔离时长、动物性别等)在实验条件下识别青春期社会隔离导致抑郁的可能神经机制。将尖端的神经科学技术应用到这些模型中,以确定精确的、可能有利于改善人类心理健康的神经机制和干预措施。在青春期隔离致抑郁的基础上加入其他抗抑郁的实验条件,如在结束隔离之后再进行群体饲养、使用现有的作用于各类神经递质的抗抑郁药物等,观察隔离动物的抑郁样行为能否得到改善以及相应神经递质、激素和神经胶质细胞的改变情况。另外,除了研究已发现的各种行为、脑机制变化,研究者们还应极力探究其他潜在的脑机制变化,这些研究不仅为有关青春期社会隔离致抑郁症的潜在分子机制提供新的思路,同时也为许多抑郁症靶点药物实验提供了平台。

参考文献
[1]
JAREMKA L M, ANDRIDGE R R, FAGUNDES C P, et al. Pain, depression, and fatigue: loneliness as a longitudinal risk factor[J]. Health Psychol, 2014, 33(9): 948-957. DOI:10.1037/a0034012
[2]
WALKER D M, BELL M R, FLORES C, et al. Adolescence and reward: making sense of neural and behavioral changes amid the chaos[J]. J Neurosci, 2017, 37(45): 10855-10866. DOI:10.1523/jneurosci.1834-17.2017
[3]
HUESTON C M, CRYAN J F, NOLAN Y M. Adolescent social isolation stress unmasks the combined effects of adolescent exercise and adult inflammation on hippocampal neurogenesis and behavior[J]. Neuroscience, 2017, 365: 226-236. DOI:10.1016/j.neuroscience.2017.09.020
[4]
BURKE A R, MICZEK K A. Stress in adolescence and drugs of abuse in rodent models: role of dopamine, CRF, and HPA axis[J]. Psychopharmacology (Berl), 2014, 231(8): 1557-1580. DOI:10.1007/s00213-013-3369-1
[5]
LI X, XU F, XIE L, et al. Depression-like behavioral phenotypes by social and social plus visual isolation in the adult female Macaca fascicularis[J]. PLoS One, 2013, 8(9): e73293. DOI:10.1371/journal.pone.0073293
[6]
GRIGORYAN G A, PAVLOVA I V, ZAICHENKO M I. Effects of social isolation on the development of anxiety and depression-like behavior in model experiments in animals[J]. Neurosci Behav Physiol, 2022, 52(5): 722-738. DOI:10.1007/s11055-022-01297-1
[7]
MATRISCIANO F, PINNA G. PPAR-α hypermethylation in the hippocampus of mice exposed to social isolation stress is associated with enhanced neuroinflammation and aggressive behavior[J]. Int J Mol Sci, 2021, 22(19): 10678. DOI:10.3390/ijms221910678
[8]
BLECHER A S, BENNETT N C, MEDGER K, et al. Effect of colony disruption and social isolation on naked mole-rat endocrine correlates[J]. Gen Comp Endocrinol, 2020, 295: 113520. DOI:10.1016/j.ygcen.2020.113520
[9]
HOLMES A, XU Y, LEE J, et al. Post-stroke social isolation reduces cell proliferation in the dentate gyrus and alters miRNA Profiles in the aged female mice brain[J]. Int J Mol Sci, 2020, 22(1): 99. DOI:10.3390/ijms22010099
[10]
GRESITA A, MIHAI R, HERMANN D M, et al. Effect of environmental enrichment and isolation on behavioral and histological indices following focal ischemia in old rats[J]. GeroScience, 2022, 44(1): 211-228. DOI:10.1007/s11357-021-00432-z
[11]
MUMTAZ F, KHAN M I, ZUBAIR M, et al. Neurobiology and consequences of social isolation stress in animal model—a comprehensive review[J]. Biomed Pharmacother, 2018, 105: 1205-1222. DOI:10.1016/j.biopha.2018.05.086
[12]
VARLINSKAYA E I, SPEAR L P. Social interactions in adolescent and adult Sprague-Dawley rats: impact of social deprivation and test context familiarity[J]. Behav Brain Res, 2008, 188(2): 398-405. DOI:10.1016/j.bbr.2007.11.024
[13]
SHETTY R A, SADANANDA M. Immediate and delayed anxiety- and depression-like profiles in the adolescent Wistar-Kyoto rat model of endogenous depression following postweaning social isolation[J]. Behav Brain Res, 2017, 320: 323-332. DOI:10.1016/j.bbr.2016.12.030
[14]
JAHNG J W, YOO S B, RYU V, et al. Hyperphagia and depression-like behavior by adolescence social isolation in female rats[J]. Int J Dev Neurosci, 2012, 30(1): 47-53. DOI:10.1016/j.ijdevneu.2011.10.001
[15]
AMIRI S, HAJ-MIRZAIAN A, RAHIMI-BALAEI M, et al. Co-occurrence of anxiety and depressive-like behaviors following adolescent social isolation in male mice; possible role of nitrergic system[J]. Physiol Behav, 2015, 145: 38-44. DOI:10.1016/j.physbeh.2015.03.032
[16]
BRENES J C, FORNAGUERA J. The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in hippocampus and ventral striatum[J]. Behav Brain Res, 2009, 198(1): 199-205. DOI:10.1016/j.bbr.2008.10.036
[17]
BOURKE C H, NEIGH G N. Behavioral effects of chronic adolescent stress are sustained and sexually dimorphic[J]. Horm Behav, 2011, 60(1): 112-120. DOI:10.1016/j.yhbeh.2011.03.011
[18]
SHETTY R A, SADANANDA M. Brief social isolation in the adolescent wistar-kyoto rat model of endogenous depression alters corticosterone and regional monoamine concentrations[J]. Neurochem Res, 2017, 42(5): 1470-1477. DOI:10.1007/s11064-017-2203-2
[19]
GUARNIERI L O, PEREIRA-CAIXETA A R, MEDEIROS D C, et al. Pro-neurogenic effect of fluoxetine in the olfactory bulb is concomitant to improvements in social memory and depressive-like behavior of socially isolated mice[J]. Transl Psychiatry, 2020, 10: 33. DOI:10.1038/s41398-020-0701-5
[20]
宗剑. 罗格列酮对神经病理性疼痛大鼠抗抑郁作用研究[D]. 南京: 南京医科大学, 2018.
[21]
PARK G, RYU C, KIM S, et al. Social isolation impairs the prefrontal-nucleus accumbens circuit subserving social recognition in mice[J]. Cell Rep, 2021, 35(6): 109104. DOI:10.1016/j.celrep.2021.109104
[22]
SOLIÉ C, CONTESTABILE A, ESPINOSA P, et al. Superior colliculus to VTA pathway controls orienting response and influences social interaction in mice[J]. Nat Commun, 2022, 13: 817. DOI:10.1038/s41467-022-28512-4
[23]
PELLIS S M, HASTINGS E, SHIMIZU T, et al. The effects of orbital frontal cortex damage on the modulation of defensive responses by rats in playful and nonplayful social contexts[J]. Behav Neurosci, 2006, 120(1): 72-84. DOI:10.1037/0735-7044.120.1.72
[24]
ZHANG S, JIAO Z, ZHAO X, et al. Environmental exposure to 17β-trenbolone during adolescence inhibits social interaction in male mice[J]. Environ Pollut, 2021, 289: 117710. DOI:10.1016/j.envpol.2021.117710
[25]
VANDERSCHUREN L J M J, MARIJKE ACHTERBERG E J, TREZZA V. The neurobiology of social play and its rewarding value in rats[J]. Neurosci Biobehav Rev, 2016, 70: 86-105. DOI:10.1016/j.neubiorev.2016.07.025
[26]
GÜNTHER L, LIEBSCHER S, JÄHKEL M, et al. Effects of chronic citalopram treatment on 5-HT1A and 5-HT2A receptors in group- and isolation-housed mice[J]. Eur J Pharmacol, 2008, 593(1/2/3): 49-61. DOI:10.1016/j.ejphar.2008.07.011
[27]
HESSEL M, PAPE H C, SEIDENBECHER T. Stimulation of 5-HT receptors in anterodorsal BNST guides fear to predictable and unpredictable threat[J]. Eur Neuropsychopharmacol, 2020, 39: 56-69. DOI:10.1016/j.euroneuro.2020.08.006
[28]
OLIVER D K, INTSON K, SARGIN D, et al. Chronic social isolation exerts opposing sex-specific consequences on serotonin neuronal excitability and behaviour[J]. Neuropharmacology, 2020, 168: 108015. DOI:10.1016/j.neuropharm.2020.108015
[29]
LI C, MENG F, GARZA J C, et al. Modulation of depression-related behaviors by adiponectin AdipoR1 receptors in 5-HT neurons[J]. Mol Psychiatry, 2021, 26(8): 4205-4220. DOI:10.1038/s41380-020-0649-0
[30]
STEINBUSCH H, DOLATKHAH M A, HOPKINS D A. Anatomical and neurochemical organization of the serotonergic system in the mammalian brain and in particular the involvement of the dorsal raphe nucleus in relation to neurological diseases[J]. Prog Brain Res, 2021, 261: 41-81. DOI:10.1016/bs.pbr.2021.02.003
[31]
MUZERELLE A, SCOTTO-LOMASSESE S, BERNARD J F, et al. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem[J]. Brain Struct Funct, 2016, 221(1): 535-561. DOI:10.1007/s00429-014-0924-4
[32]
REN J, FRIEDMANN D, XIONG J, et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems[J]. Cell, 2018, 175(2): 472-487.e20. DOI:10.1016/j.cell.2018.07.043
[33]
NATARAJAN R, FORRESTER L, CHIAIA N L, et al. Chronic-stress-induced behavioral changes associated with subregion-selective serotonin cell death in the dorsal raphe[J]. J Neurosci, 2017, 37(26): 6214-6223. DOI:10.1523/jneurosci.3781-16.2017
[34]
DAVIS M. Are different parts of the extended amygdala involved in fear versus anxiety?[J]. Biol Psychiatry, 1998, 44(12): 1239-1247. DOI:10.1016/S0006-3223(98)00288-1
[35]
GEWIRTZ J C, MCNISH K A, DAVIS M. Lesions of the bed nucleus of the stria terminalis block sensitization of the acoustic startle reflex produced by repeated stress, but not fear-potentiated startle[J]. Prog Neuro Psychopharmacol Biol Psychiatry, 1998, 22(4): 625-648. DOI:10.1016/S0278-5846(98)00028-1
[36]
TROUBAT R, BARONE P, LEMAN S, et al. Neuroinflammation and depression: a review[J]. Eur J Neurosci, 2021, 53(1): 151-171. DOI:10.1111/ejn.14720
[37]
JURUENA M F, EROR F, CLEARE A J, et al. The role of early life stress in HPA axis and anxiety[J]. Adv Exp Med Biol, 2020, 1191: 141-153. DOI:10.1007/978-981-32-9705-0_9
[38]
ARAKI R, HIRAKI Y, NISHIDA S, et al. Epigenetic regulation of dorsal raphe GABAB1a associated with isolation-induced abnormal responses to social stimulation in mice[J]. Neuropharmacology, 2016, 101: 1-12. DOI:10.1016/j.neuropharm.2015.09.013
[39]
RAMOS-ORTOLAZA D L, DORESTE-MENDEZ R J, ALVARADO-TORRES J K, et al. Ovarian hormones modify anxiety behavior and glucocorticoid receptors after chronic social isolation stress[J]. Behav Brain Res, 2017, 328: 115-122. DOI:10.1016/j.bbr.2017.04.016
[40]
CHAN J N M, LEE J C D, LEE S S P, et al. Interaction effect of social isolation and high dose corticosteroid on neurogenesis and emotional behavior[J]. Front Behav Neurosci, 2017, 11: 18. DOI:10.3389/fnbeh.2017.00018
[41]
NOVOA J, RIVERO C J, PÉREZ-CARDONA E U, et al. Social isolation of adolescent male rats increases anxiety and K+-induced dopamine release in the nucleus accumbens: role of CRF-R1[J]. Eur J Neurosci, 2021, 54(3): 4888-4905. DOI:10.1111/ejn.15345
[42]
VRANKOVA S, GALANDAKOVA Z, BENKO J, et al. Duration of social isolation affects production of nitric oxide in the rat brain[J]. Int J Mol Sci, 2021, 22(19): 10340. DOI:10.3390/ijms221910340
[43]
MATSUMOTO K, FUJIWARA H, ARAKI R, et al. Post-weaning social isolation of mice: a putative animal model of developmental disorders[J]. J Pharmacol Sci, 2019, 141(3): 111-118. DOI:10.1016/j.jphs.2019.10.002
[44]
AGO Y, ARAKI R, TANAKA T, et al. Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice[J]. Neuropsychopharmacology, 2013, 38(8): 1535-1547. DOI:10.1038/npp.2013.52
[45]
YAZDANFAR N, ALI MARD S, MAHMOUDI J, et al. Maternal morphine exposure and post-weaning social isolation impair memory and ventral Striatum dopamine system in male offspring: is an enriched environment beneficial?[J]. Neuroscience, 2021, 461: 80-90. DOI:10.1016/j.neuroscience.2021.02.024
[46]
KARKHANIS A N, LEACH A C, YORGASON J T, et al. Chronic social isolation stress during periadolescence alters presynaptic dopamine terminal dynamics via augmentation in accumbal dopamine availability[J]. ACS Chem Neurosci, 2019, 10(4): 2033-2044. DOI:10.1021/acschemneuro.8b00360
[47]
HEIDBREDER C A, WEISS I C, DOMENEY A M, et al. Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome[J]. Neuroscience, 2000, 100(4): 749-768. DOI:10.1016/S0306-4522(00)00336-5
[48]
DALLEY J W, FRYER T D, BRICHARD L, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement[J]. Science, 2007, 315(5816): 1267-1270. DOI:10.1126/science.1137073
[49]
JONES G H, HERNANDEZ T D, KENDALL D A, et al. Dopaminergic and serotonergic function following isolation rearing in rats: study of behavioural responses and postmortem and in vivo neurochemistry[J]. Pharmacol Biochem Behav, 1992, 43(1): 17-35. DOI:10.1016/0091-3057(92)90635-S
[50]
LAPIZ M D, FULFORD A, MUCHIMAPURA S, et al. Influence of postweaning social isolation in the rat on brain development, conditioned behaviour and neurotransmission[J]. Ross Fiziol Zh Im I M Sechenova, 2001, 87(6): 730-751.
[51]
BOZARTH M A, MURRAY A, WISE R A. Influence of housing conditions on the acquisition of intravenous heroin and cocaine self-administration in rats[J]. Pharmacol Biochem Behav, 1989, 33(4): 903-907. DOI:10.1016/0091-3057(89)90490-5
[52]
MISSALE C, NASH S R, ROBINSON S W, et al. Dopamine receptors: from structure to function[J]. Physiol Rev, 1998, 78(1): 189-225. DOI:10.1152/physrev.1998.78.1.189
[53]
WISŁOWSKA-STANEK A, LEHNER M, TOMCZUK F, et al. The effects of the recurrent social isolation stress on fear extinction and dopamine D2 receptors in the amygdala and the hippocampus[J]. Pharmacol Rep, 2023, 75(1): 119-127. DOI:10.1007/s43440-022-00430-8
[54]
HALL F S, WILKINSON L S, HUMBY T, et al. Isolation rearing in rats: pre- and postsynaptic changes in striatal dopaminergic systems[J]. Pharmacol Biochem Behav, 1998, 59(4): 859-872. DOI:10.1016/S0091-3057(97)00510-8
[55]
ARAKI R, YASUBUCHI A, IKEGAYA M, et al. Ferulic acid alleviates abnormal behaviors in isolation-reared mice via 5-HT1A receptor partial agonist activity[J]. Psychopharmacology (Berl), 2021, 238(8): 2147-2154. DOI:10.1007/s00213-021-05839-2
[56]
PREEZ A D, ONORATO D, EIBEN I, et al. Chronic stress followed by social isolation promotes depressivelike behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice[J]. Brain Behav Immun, 2021, 91: 24-47. DOI:10.1016/j.bbi.2020.07.015
[57]
DALLEY J, THEOBALD D, PEREIRA E, et al. Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity[J]. Psychopharmacology (Berl), 2002, 164(3): 329-340. DOI:10.1007/s00213-002-1215-y
[58]
VEENEMA A H. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models?[J]. Front Neuroendocrinol, 2009, 30(4): 497-518. DOI:10.1016/j.yfrne.2009.03.003
[59]
WANG H, XU X, XU X, et al. Enriched environment and social isolation affect cognition ability via altering excitatory and inhibitory synaptic density in mice hippocampus[J]. Neurochem Res, 2020, 45(10): 2417-2432. DOI:10.1007/s11064-020-03102-2
[60]
LI M, WANG W, SUN L, et al. Chronic clozapine treatment improves the alterations of prepulse inhibition and BDNF mRNA expression in the medial prefrontal cortex that are induced by adolescent social isolation[J]. Behav Pharmacol, 2019, 30(4): 311-319. DOI:10.1097/FBP.0000000000000419
[61]
CHANG K J, CHEN Y J, CHUNG J Y, et al. Effects of 5HT1A activation on depression profile following 5-HT depletion in rats lacking social attachment since weanling[J]. Psychiatry Investig, 2018, 15(10): 1000-1006. DOI:10.30773/pi.2018.08.21.2
[62]
PERIĆ I, STANISAVLJEVIĆ A, GASS P, et al. Fluoxetine exerts subregion/layer specific effects on parvalbumin/GAD67 protein expression in the dorsal hippocampus of male rats showing social isolation-induced depressive-like behaviour[J]. Brain Res Bull, 2021, 173: 174-183. DOI:10.1016/j.brainresbull.2021.05.021
[63]
PREVOT T, LI G, VIDOJEVIC A, et al. Novel benzodiazepine-like ligands with various anxiolytic, antidepressant, or pro-cognitive profiles[J]. Complex Psychiatry, 2019, 5(2): 84-97. DOI:10.1159/000496086
[64]
FELICE D, CRYAN J F, O'LEARY O F. GABAB receptors: anxiety and mood disorders[J]. Curr Top Behav Neurosci, 2022, 52: 241-265. DOI:10.1007/7854_2020_171
[65]
GAWLIŃSKA K, JASTRZĘBSKA J, GAMBERINI S, et al. The impact of GABAB receptors and their pharmacological stimulation on cocaine reinforcement and drug-seeking behaviors in a rat model of depression[J]. Eur J Pharmacol, 2020, 883: 173324. DOI:10.1016/j.ejphar.2020.173324
[66]
MATSUMOTO K, NOMURA H, MURAKAMI Y, et al. Long-term social isolation enhances picrotoxin seizure susceptibility in mice: up-regulatory role of endogenous brain allopregnanolone in GABAergic systems[J]. Pharmacol Biochem Behav, 2003, 75(4): 831-835. DOI:10.1016/S0091-3057(03)00169-2
[67]
SERRA M, PISU M G, MOSTALLINO M C, et al. Changes in neuroactive steroid content during social isolation stress modulate GABAA receptor plasticity and function[J]. Brain Res Rev, 2008, 57(2): 520-530. DOI:10.1016/j.brainresrev.2007.06.029
[68]
DEUTSCHMANN A U, KIRKLAND J M, BRIAND L A. Adolescent social isolation induced alterations in nucleus accumbens glutamate signalling[J]. Addict Biol, 2022, 27(1): e13077. DOI:10.1111/adb.13077
[69]
GHASEMI M, PHILLIPS C, TRILLO L, et al. The role of NMDA receptors in the pathophysiology and treatment of mood disorders[J]. Neurosci Biobehav Rev, 2014, 47: 336-358. DOI:10.1016/j.neubiorev.2014.08.017
[70]
ATMORE K H, STEIN D J, HARVEY B H, et al. Differential effects of social isolation rearing on glutamate- and GABA-stimulated noradrenaline release in the rat prefrontal cortex and hippocampus[J]. Eur Neuropsychopharmacol, 2020, 36: 111-120. DOI:10.1016/j.euroneuro.2020.05.007
[71]
KAWASAKI T, AGO Y, YANO K, et al. Increased binding of cortical and hippocampal group Ⅱ metabotropic glutamate receptors in isolation-reared mice[J]. Neuropharmacology, 2011, 60(2/3): 397-404. DOI:10.1016/j.neuropharm.2010.10.009
[72]
HERMES G, LI N, DUMAN C, et al. Post-weaning chronic social isolation produces profound behavioral dysregulation with decreases in prefrontal cortex synaptic-associated protein expression in female rats[J]. Physiol Behav, 2011, 104(2): 354-359. DOI:10.1016/j.physbeh.2010.12.019
[73]
SESTITO R S, TRINDADE L B, DE SOUZA R G, et al. Effect of isolation rearing on the expression of AMPA glutamate receptors in the hippocampal formation[J]. J Psychopharmacol, 2011, 25(12): 1720-1729. DOI:10.1177/0269881110385595
[74]
SHAO Y, YAN G, XUAN Y, et al. Chronic social isolation decreases glutamate and glutamine levels and induces oxidative stress in the rat hippocampus[J]. Behav Brain Res, 2015, 282: 201-208. DOI:10.1016/j.bbr.2015.01.005
[75]
TEISSIER A, MAGUERESSE C L, OLUSAKIN J, et al. Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activitydependent mechanisms[J]. Mol Psychiatry, 2020, 25(6): 1159-1174. DOI:10.1038/s41380-019-0493-2
[76]
NAKAMOTO K, AIZAWA F, KINOSHITA M, et al. Astrocyte activation in locus coeruleus is involved in neuropathic pain exacerbation mediated by maternal separation and social isolation stress[J]. Front Pharmacol, 2017, 8: 401. DOI:10.3389/fphar.2017.00401
[77]
GONG Y, TONG L, YANG R, et al. Dynamic changes in hippocampal microglia contribute to depressivelike behavior induced by early social isolation[J]. Neuropharmacology, 2018, 135: 223-233. DOI:10.1016/j.neuropharm.2018.03.023
[78]
MAKINODAN M, ROSEN K M, ITO S, et al. A critical period for social experience-dependent oligodendrocyte maturation and myelination[J]. Science, 2012, 337(6100): 1357-1360. DOI:10.1126/science.1220845
[79]
HONG S, DISSING-OLESEN L, STEVENS B. New insights on the role of microglia in synaptic pruning in health and disease[J]. Curr Opin Neurobiol, 2016, 36: 128-134. DOI:10.1016/j.conb.2015.12.004
[80]
WUKITSCH T J, REINHARDT E K, KIEFER S W, et al. Voluntary ethanol consumption during early social isolation and responding for ethanol in adulthood[J]. Alcohol, 2019, 77: 1-10. DOI:10.1016/j.alcohol.2018.09.004
[81]
WU X, DING Z, FAN T, et al. Childhood social isolation causes anxiety-like behaviors via the damage of blood-brain barrier in amygdala in female mice[J]. Front Cell Dev Biol, 2022, 10: 943067. DOI:10.3389/fcell.2022.943067