青少年特发性脊柱侧凸(adolescent idiopathic scoliosis,AIS)是一种脊柱的三维畸形[1-2],对于严重脊柱侧凸患者可行手术治疗,以矫正脊柱侧凸的同时重建脊柱冠状面和矢状面平衡,其中矢状面平衡的恢复对于改善患者生活质量尤为重要[3-4]。脊柱骨盆矢状面参数包括胸椎后凸角(thoracic kyphosis,TK)、腰椎前凸角(lumbar lordosis,LL)、矢状面轴向偏距(sagittal vertical axis,SVA)、骨盆入射角(pelvic incidence,PI)、骨盆倾斜角(pelvic tilt,PT)、骶骨倾斜角(sacral slope,SS)[5]。PI是反映骨盆解剖位置的形态学参数,不随脊柱和骨盆的方向而变化[6]。在儿童和青少年时期PI逐渐增加,成年后趋于固定。青少年PI为49.1°±11.0°,成人PI为51.8°±5.3°[7]。临床上常使用PI-LL评估脊柱骨盆矢状面是否平衡[8]。健康成人LL=PI±9°[9],而青少年的脊柱骨盆矢状面参数之间的关系与成人相似[10]。
目前,国内外学者十分关注脊柱骨盆矢状面参数与AIS患者预后的关系。Rubery等[11]对接受后路矫形手术治疗的AIS患者进行了长期随访,认为|PI-LL|>9°与较差的生活质量评分相关。Makino等[12]认为较大的LL是未行手术治疗的AIS患者静息痛的危险因素。Lafage等[13]通过随访脊柱畸形术后患者发现,LL明显丢失的患者手术效果较差;Schwab等[14]认为保持LL=PI±9°平衡与临床治疗效果密切相关,当这一关系不平衡时,患者脊柱早期退变、疼痛和残疾的发生率将会增加。为了维持脊柱骨盆平衡,Tanguay等[15]建议在后路融合术中保留充足的LL,尤其是下固定椎接近脊柱远端时。在术前制订手术方案时,医师需要对术后脊柱骨盆的矢状面参数变化有充分的认识。大量文献研究了AIS患者的脊柱骨盆矢状面参数,但不同下固定椎脊柱骨盆矢状面参数的差异仍未达成共识。本研究旨在分析AIS患者脊柱后路截骨矫形植骨融合内固定术后不同下固定椎脊柱骨盆矢状面参数的差异,以期为制订手术方案和预防术后并发症提供参考。
1 资料和方法 1.1 病例资料回顾性选择2010年1月至2019年11月于我院脊柱外科接受脊柱截骨矫形植骨融合内固定术治疗的脊柱侧凸患者283例。纳入标准:(1)影像学资料完整,包括术前全脊柱正侧位、侧屈位X线片及最近1次随访时的全脊柱正侧位X线片;(2)术后至少随访24个月;(3)诊断为AIS;(4)手术方式为脊柱后路截骨矫形植骨融合内固定术;(5)内固定材料为椎弓根螺钉。排除标准:(1)前路手术或前后路联合手术;(2)既往有脊柱手术史;(3)有髋、骨盆和/或双下肢功能障碍;(4)腰椎滑脱或腰椎峡部裂;(5)其他类型脊柱侧凸,如先天性脊柱侧凸、神经肌肉型脊柱侧凸、神经纤维瘤病型脊柱侧凸等。
1.2 手术方式所有入组患者均行脊柱后路截骨矫形植骨融合内固定术,手术过程如下:在结构弯上下端椎及之间的椎体两侧椎弓根置入椎弓根螺钉;松解棘突及后方韧带结构,注意保留交界处韧带和骨性结构以降低交界性后凸的发生率;行Ponte截骨术,并通过悬臂梁或转棒等技术矫正侧凸,使用钴铬钼合金棒固定螺钉;对固定节段椎体椎板进行去皮质处理,然后将自体骨及同种异体骨均匀铺于椎板上行植骨融合。
1.3 测量参数(1)记录患者的年龄、性别、Risser征、随访时间、下固定椎、融合椎体数等一般参数。(2)在术前和最近1次随访时测量以下影像学参数(图 1):①PI:S1上终板中垂线与双侧股骨头中点连线中点和S1上终板中点连线的夹角;②LL:L1上终板平行线与S1上终板平行线的夹角;③PI-LL:PI减去LL的差值;④SVA:过S1上终板后上角的铅垂线与C7椎体中点铅垂线的水平距离;⑤Cobb角:上端椎上终板平行线与下端椎下终板平行线的夹角;⑥PT:双侧股骨头中点连线的中点和S1上终板中点的连线与铅垂线的夹角;⑦TK:T5上终板平行线和T12下终板平行线的夹角;⑧SS:S1上终板平行线与水平线的夹角。
1.4 统计学处理
应用SPSS 25.0软件进行统计学分析。呈正态分布且方差齐的计量资料以x±s表示,两组间比较采用独立样本t检验,术前、术后比较采用配对t检验;不符合正态分布或方差不齐的计量资料以中位数(下四分位数,上四分位数)表示,两组间比较采用Wilcoxon秩和检验,术前、术后比较采用Wilcoxon符号秩检验;计数资料以例数和百分数表示,两组间比较采用χ2检验。检验水准(α)为0.05。
2 结果 2.1 一般资料根据纳入和排除标准,共49例接受脊柱后路截骨矫形植骨融合内固定术治疗的AIS患者入组,其中女35例(71.4%)、男14例(28.6%),年龄为12~17岁,平均年龄为(13.76±1.55)岁。49例AIS患者根据下固定椎分为两组,T12~L2组31例,男7例(22.6%)、女24例(77.4%),年龄为12~17岁,平均年龄为(13.55±1.59)岁;L3~L5组18例,男7例(38.9%)、女11例(61.1%),年龄为12~17岁,平均年龄为(14.11±1.45)岁。两组患者的年龄、性别、随访时间、Risser征、融合椎体数差异均无统计学意义(P均>0.05,表 1)。两组患者Lenke分型的分布差异有统计学意义(P<0.001),其中T12~L2组仅有Lenke 1~2型患者,而L3~L5组包括Lenke 1~6型的患者(表 1)。T12~L2组5例患者下固定椎位于T12,13例位于L1,13例位于L2;L3~L5组8例患者位于L3,9例位于L4,1例位于L5。
2.2 影像学参数分析 2.2.1 Cobb角
在术前,T12~L2组的近胸弯和主胸弯Cobb角均大于L3~L5组(Z=-2.966、-2.230,P=0.003、0.026),T12~L2组胸腰弯/腰弯Cobb角小于L3~L5组(Z=-5.237,P<0.001);最近1次随访时,T12~L2组近胸弯Cobb角大于L3~L5组(Z=-2.396,P=0.017),但两组之间主胸弯和胸腰弯/腰弯Cobb角差异均无统计学意义(P均>0.05)。最近1次随访时,T12~L2组的近胸弯、主胸弯和胸腰弯/腰弯Cobb角与术前相比均减小(Z=-4.860、-4.860、-4.782,P均<0.01),L3~L5组主胸弯和胸腰弯/腰弯Cobb角与术前相比也均减小(Z=-3.724、-3.724,P均<0.01)。见表 2。
2.2.2 TK
在术前,两组之间TK差异无统计学意义(P=0.340);而最近1次随访时,T12~L2组TK小于L3~L5组(t=-3.587,P=0.001)。最近1次随访时,两组的TK与术前相比差异均无统计学意义(P均>0.05)。见表 2。
2.2.3 脊柱骨盆矢状面参数在术前,两组之间PI和LL差异均无统计学意义(P均>0.05)。最近1次随访时,两组PI与术前相比均无明显变化(P均>0.05),T12~L2组LL较术前减小(Z=-2.205,P=0.027),L3~L5组LL较术前增大(Z=-3.201,P=0.001)且大于T12~L2组最近1次随访时的LL(Z=-3.598,P<0.001)。L3~L5组的LL变化值大于T12~L2组(Z=-4.937,P<0.001)。见表 2。
最近1次随访时,T12~L2组的PI-LL从术前0.3°(-4.7°,5.7°)增大至1.8°(-4.0°,8.7°),L3~L5组PI-LL从术前的1.7°(-7.3°,5.6°)增大至-10.1°(-14.4°,-8.8°),差异均有统计学意义(Z=-2.410、-3.114,P=0.016、0.002)。术前两组之间PI-LL差异无统计学意义(P=0.983),最近1次随访时L3~L5组的PI-LL和PI-LL变化值均大于T12~L2组(Z=-5.237、-4.957,P均<0.001)。见表 2。
在术前,两组之间PT和SS差异均无统计学意义(P均>0.05)。最近1次随访时,T12~L2组的PT较术前增大(t=-2.611,P=0.014),L3~L5组的PT与术前相比差异无统计学意义(P=0.284);T12~L2组的SS较术前减小(t=2.451,P=0.020),L3~L5组的SS与术前相比差异无统计学意义(P=0.336)。T12~L2组PT变化值和SS变化值均大于L3~L5组(t=2.457、-2.255,P=0.018、0.029)。见表 2。
T12~L2和L3~L5组的术前SVA与最近1次随访时比较差异均无统计学意义(P=0.969、0.913)。两组之间术前SVA、最近1次随访时的SVA及SVA变化值差异均无统计学意义(P=0.481、0.295、0.803)。见表 2。
3 讨论AIS手术治疗的目的之一是恢复脊柱的矢状面平衡,然而不同下固定椎术后脊柱骨盆矢状面参数的变化仍有争议[16-20]。本研究纳入了49例行脊柱后路手术的AIS患者,根据下固定椎分为T12~L2组和L3~L5组,比较两组患者术后的脊柱骨盆参数变化。结果显示L3~L5组术后最近1次随访时LL、LL变化值、PI-LL和PI-LL变化值均大于T12~L2组(P均<0.001),提示与固定至T12~L2相比,远端固定至L3~L5可能会导致LL过度增大,引起PI和LL不匹配,从而影响脊柱骨盆矢状面平衡,并可能增加术后近端交界性后凸(proximal junction kyphosis,PJK)的风险。因此,对于AIS患者,医师在术前制订手术计划时需要根据固定的PI预测合理的LL范围,从而避免术后脊柱骨盆矢状面失平衡。
本研究结果显示,术前两组TK、PT、PI、SS比较差异均无统计学意义(P均>0.05),与既往研究结果[5, 21]一致。下固定椎为T12~L2的AIS患者术后脊柱骨盆矢状面参数的变化一直存在争议。Abelin-Genevois等[22]分析了45例AIS患者的术前及术后2年的脊柱骨盆参数,结果显示L1~L2组术后LL较术前减小3.8°;Ries等[23]通过对50例Lenke 1型和2型AIS患者进行为期2年的随访发现TK较术前减小约15.1°;Clément等[18]分析了111例融合至L1及以上椎体后路手术的Lenke 1型和2型患者资料,经过术后2年的随访发现TK较术前增大19°。本研究结果显示,T12~L2组术后LL与术前相比减小(P=0.027),与既往研究结果[22]一致,而术后TK与术前比较差异无统计学意义(P>0.05),这可能与置钉密度不同及钴铬钼合金棒的选择有关。
远端固定至L2以下时术后脊柱骨盆参数也一直存在争议,Burton等[24]回顾性分析了84例AIS患者的资料,结果显示L3~L4组术后PI、PT、SVA、TK与术前相比均无明显变化,而LL和SS与术前相比均增大;Ozkunt等[19]分析了42例Lenke 5型AIS患者资料,与术前相比,术后2年PI无明显变化,PT、TK和LL均减小,SS增大。然而,Yang等[20]通过回顾性分析48例接受后路矫形内固定术的Lenke 5型AIS患者资料发现,与术前相比,术后1.8年LL无明显改变,而PT和TK均增大,SS减小。本研究结果显示,当远端固定至L3~L5时,与术前相比,AIS患者术后PI、PT、SS、SVA、TK均无明显变化(P均>0.05),而LL增大(P<0.01)。上述结果的差异可能与TK和LL的定义、随访时间及外科医师操作习惯等的不同有关。术后LL增大可能与PJK的发生有关,Zhong等[25]对7项研究进行meta分析,认为AIS患者术后过大的LL是PJK的危险因素。Wang等[26]研究发现LL变化值与PJK有较强的相关性。
Schwab等[27]认为矢状面平衡的前提是PI与LL匹配,即LL在PI±9°范围之内。PI与LL匹配对维持正常的脊柱生物力学稳定性十分重要。脊柱骨盆各序列相互影响,使人体能在最小耗能的情况下保持稳定,且减轻外界作用力对脊柱和脊髓的冲击震荡。合适的PI-LL还可降低术后PJK的发生风险。Wang等[28]通过对52例Lenke 5型AIS患者资料进行回顾性分析,认为术后重建理想的PI-LL可降低PJK的发生率。因此,本研究纳入PI-LL作为衡量术后脊柱骨盆矢状面平衡的一个重要参数,分析结果显示T12~L2组的PI-LL从术前0.3°(-4.7°,5.7°)增大至最近1次随访时的1.8°(-4.0°,8.7°)(P=0.016),但仍在合理范围内;而L3~L5组PI-LL从术前1.7°(-7.3°,5.6°)增加至最近1次随访时的-10.1°(-14.4°,-8.8°)(P=0.002),术后出现了PI与LL的不匹配。此外,术后L3~L5组的PI-LL变化值大于T12~L2组(P<0.001)。L3~L5组术后PI与LL的不匹配可能与术后LL增大有关,其原因可能是外科医师在置棒矫形过程中给予了较大的LL。
如何将LL控制在合理范围内值得思考。Schlösser等[29]认为儿童生长高峰期之后(Risser征≥2)PI略大于生长高峰期,高峰期之后PI将固定不变。本研究中T12~L2组和L3~L5组患者术前的Risser征分别为3.01±1.75和4.00±1.61,均在高峰期之后,两组的PI将不会因手术或随时间推移而发生明显变化:术前分别为54.9°(44.6°,58.1°)和50.6°(42.7°,57.3°),术后分别为53.8°(44.4°,57.6°)和50.3°(43.0°,56.2°),术前与术后差异均无统计学意义(P均>0.05)。医师在术前制订AIS患者手术方案时可根据相对固定的PI预测LL的理想范围,并在术中弯棒矫形时根据术前预测的LL进行弯棒,避免出现过大的LL。当患者Risser征≤1时,术后PI可能会随着时间的推移逐渐增大,故术中应适当调整LL的大小。
本研究有以下不足:(1)样本量较小;(2)未纳入视觉模拟量表评分、Oswestry功能障碍指数等功能学指标,无法将患者的影像学参数与功能性指标联系起来,在以后的研究中应进一步完善;(3)为单中心回顾性研究,临床证据等级较低。
综上所述,本研究分析了不同下固定椎AIS患者脊柱后路手术后的脊柱骨盆矢状面参数,当远端固定至L3~L5时,患者术后LL会增加,导致PI和LL不匹配,影响脊柱骨盆矢状面平衡,可能会增加PJK的发生风险。因此,在制订AIS患者手术方案时,为避免术后出现PI和LL不匹配,医师需要根据术前测量的PI预测合适的术后LL范围,在手术过程中也应适度弯棒以避免LL过大。
[1] |
PASHA S, HO-FUNG V, EKER M, NOSSOV S, FRANCAVILLA M. Three-dimensional classification of the Lenke 1 adolescent idiopathic scoliosis using coronal and lateral spinal radiographs[J/OL]. BMC Musculoskelet Disord, 2020, 21: 824. DOI: 10.1186/s12891-020-03798-x.
|
[2] |
ZHANG Y Y, LIANG J Y, XU N F, ZENG L, DU C J, DU Y X, et al. 3D-printed brace in the treatment of adolescent idiopathic scoliosis: a study protocol of a prospective randomised controlled trial[J/OL]. BMJ Open, 2020, 10: e038373. DOI: 10.1136/bmjopen-2020-038373.
|
[3] |
WIEDENHÖFER B, FÜRSTENBERG C H, SCHRÖDER K, AKBAR M. Multiplan correction of a 3D deformity. Options and relevance of optimizing the thoracic kyphosis in reconstructive scoliosis surgery[J]. Orthopade, 2011, 40: 672-681. DOI:10.1007/s00132-011-1795-5 |
[4] |
YOUN M S, SHIN J K, GOH T S, KANG S S, JEON W K, LEE J S. Relationship between cervical sagittal alignment and health-related quality of life in adolescent idiopathic scoliosis[J]. Eur Spine J, 2016, 25: 3114-3119. DOI:10.1007/s00586-016-4488-2 |
[5] |
MAC-THIONG J M, LABELLE H, CHARLEBOIS M, HUOT M P, DE GUISE J A. Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type[J]. Spine (Phila Pa 1976), 2003, 28: 1404-1409. |
[6] |
DUVAL-BEAUPÈRE G, SCHMIDT C, COSSON P. A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position[J]. Ann Biomed Eng, 1992, 20: 451-462. DOI:10.1007/BF02368136 |
[7] |
MAC-THIONG J M, BERTHONNAUD E, DIMAR J R 2nd, BETZ R R, LABELLE H. Sagittal alignment of the spine and pelvis during growth[J]. Spine (Phila Pa 1976), 2004, 29: 1642-1647. DOI:10.1097/01.BRS.0000132312.78469.7B |
[8] |
ROUSSOULY P, GOLLOGLY S, BERTHONNAUD E, DIMNET J. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position[J]. Spine (Phila Pa 1976), 2005, 30: 346-353. DOI:10.1097/01.brs.0000152379.54463.65 |
[9] |
LEGAYE J, DUVAL-BEAUPÈRE G, HECQUET J, MARTY C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves[J]. Eur Spine J, 1998, 7: 99-103. DOI:10.1007/s005860050038 |
[10] |
JEAN-MARC M T, HUBERT L, ERIC B, BETZ R R, PIERRE R. Sagittal spinopelvic balance in normal children and adolescents[J]. Eur Spine J, 2007, 16: 227-234. DOI:10.1007/s00586-005-0013-8 |
[11] |
RUBERY P T, LANDER S T, MESFIN A, SANDERS J O, THIRUKUMARAN C P. Mismatch between pelvic incidence and lumbar lordosis is the key sagittal plane determinant of patient outcome at minimum 40 years after instrumented fusion for adolescent idiopathic scoliosis[J/OL]. Spine (Phila Pa 1976), 2022, 47: E169-E176. DOI: 10.1097/brs.0000000000004277.
|
[12] |
MAKINO T, KAITO T, SAKAI Y, TAKENAKA S, YOSHIKAWA H. Health-related quality of life and postural changes of spinal alignment in female adolescents associated with back pain in adolescent idiopathic scoliosis: a prospective cross-sectional study[J/OL]. Spine (Phila Pa 1976), 2019, 44: E833-E840. DOI: 10.1097/brs.0000000000002996.
|
[13] |
LAFAGE V, SCHWAB F, PATEL A, HAWKINSON N, FARCY J P. Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity[J/OL]. Spine (Phila Pa 1976), 2009, 34: E599-E606. DOI: 10.1097/BRS.0b013e3181aad219.
|
[14] |
SCHWAB F, LAFAGE V, PATEL A, FARCY J P. Sagittal plane considerations and the pelvis in the adult patient[J]. Spine (Phila Pa 1976), 2009, 34: 1828-1833. DOI:10.1097/BRS.0b013e3181a13c08 |
[15] |
TANGUAY F, MAC-THIONG J M, DE GUISE J A, LABELLE H. Relation between the sagittal pelvic and lumbar spine geometries following surgical correction of adolescent idiopathic scoliosis[J]. Eur Spine J, 2007, 16: 531-536. DOI:10.1007/s00586-006-0238-1 |
[16] |
PASHA, BALDWIN K. Preoperative sagittal spinal profile of adolescent idiopathic scoliosis Lenke types and non-scoliotic adolescents: a systematic review and meta-analysis[J]. Spine (Phila Pa 1976), 2019, 44: 134-142. DOI:10.1097/BRS.0000000000002748 |
[17] |
KARGIN D, TURK O I, ALBAYRAK A, BAYHAN I A, KAYGUSUZ M A. Change of sagittal spinopelvic parameters after selective and non-selective fusion in Lenke type 1 adolescent idiopathic scoliosis patients[J]. Turk Neurosurg, 2019, 29: 77-82. |
[18] |
CLÉMENT J L, PELLETIER Y, SOLLA F, RAMPAL V. Surgical increase in thoracic kyphosis increases unfused lumbar lordosis in selective fusion for thoracic adolescent idiopathic scoliosis[J]. Eur Spine J, 2019, 28: 581-589. DOI:10.1007/s00586-018-5740-8 |
[19] |
OZKUNT O, KARADEMIR G, SARIYILMAZ K, GEMALMAZ H C, DIKICI F, DOMANIC U. Analysing the change of sagittal balance in patients with Lenke 5 idiopathic scoliosis[J]. Acta Orthop Traumatol Turc, 2017, 51: 377-380. DOI:10.1016/j.aott.2017.08.002 |
[20] |
YANG X, LIU L M, SONG Y M, ZHOU C G, ZHOU Z J, WANG L, et al. Pre- and postoperative spinopelvic sagittal balance in adolescent patients with Lenke type 5 idiopathic scoliosis[J]. Spine (Phila Pa 1976), 2015, 40: 102-108. DOI:10.1097/BRS.0000000000000685 |
[21] |
UPASANI V V, TIS J, BASTROM T, PAWELEK J, MARKS M, LONNER B, et al. Analysis of sagittal alignment in thoracic and thoracolumbar curves in adolescent idiopathic scoliosis: how do these two curve types differ?[J]. Spine (Phila Pa 1976), 2007, 32: 1355-1359. DOI:10.1097/BRS.0b013e318059321d |
[22] |
ABELIN-GENEVOIS K, ESTIVALEZES E, BRIOT J, SÉVELY A, SALES DE GAUZY J, SWIDER P. Spino-pelvic alignment influences disc hydration properties after AIS surgery: a prospective MRI-based study[J]. Eur Spine J, 2015, 24: 1183-1190. DOI:10.1007/s00586-015-3875-4 |
[23] |
RIES Z, HARPOLE B, GRAVES C, GNANAPRAGASAM G, LARSON N, WEINTSTEIN S, et al. Selective thoracic fusion of Lenke Ⅰ and Ⅱ curves affects sagittal profiles but not sagittal or spinopelvic alignment: a case-control study[J]. Spine (Phila Pa 1976), 2015, 40: 926-934. DOI:10.1097/BRS.0000000000000861 |
[24] |
BURTON D A, KARKENNY A J, SCHULZ J F, HANSTEIN R, GOMEZ J A. Sagittal spinopelvic changes after posterior spinal fusion in adolescent idiopathic scoliosis[J]. J Child Orthop, 2020, 14: 544-553. DOI:10.1302/1863-2548.14.200155 |
[25] |
ZHONG J L, CAO K, WANG B, LI H Z, ZHOU X M, XU X H, et al. Incidence and risk factors for proximal junctional kyphosis in adolescent idiopathic scoliosis after correction surgery: a meta-analysis[J/OL]. World Neurosurg, 2019, 125: e326-e335. DOI: 10.1016/j.wneu.2019.01.072.
|
[26] |
WANG F, XU X M, WEI X Z, ZHU X D, LI M. Spontaneous thoracic curve correction after selective posterior fusion of thoracolumbar/lumbar curves in Lenke 5C adolescent idiopathic scoliosis[J/OL]. Medicine, 2015, 94: e1155. DOI: 10.1097/md.0000000000001155.
|
[27] |
SCHWAB F, UNGAR B, BLONDEL B, BUCHOWSKI J, COE J, DEINLEIN D, et al. Scoliosis Research Society-Schwab adult spinal deformity classification: a validation study[J]. Spine (Phila Pa 1976), 2012, 37: 1077-1082. DOI:10.1097/BRS.0b013e31823e15e2 |
[28] |
WANG G D, LI Y, LIU P, SUN J M. Pelvic incidence correlates to sagittal spinal morphology in Lenke 5 adolescent idiopathic scoliosis and influences the proximal junctional kyphosis rate after correction surgery[J]. Eur Spine J, 2021, 30: 2457-2466. DOI:10.1007/s00586-021-06749-9 |
[29] |
SCHLÖSSER T P C, VINCKEN K L, ROGERS K, CASTELEIN R M, SHAH S A. Natural sagittal spino-pelvic alignment in boys and girls before, at and after the adolescent growth spurt[J]. Eur Spine J, 2015, 24: 1158-1167. DOI:10.1007/s00586-014-3536-z |