近年来,我国心血管疾病的发病率仍呈逐年上升趋势[1]。尽管在预防和治疗上取得了重大进展,心血管疾病仍是全球主要的死亡原因之一,其中约半数患者死于冠心病或心力衰竭[2]。越来越多的证据表明心脏康复有助于促进患者心血管健康和心血管事件后心脏功能的改善[3]。心脏康复是一种涉及多学科的心脏病管理方案,包括有监督的主动运动、患者咨询与教育、营养指导等,能够有效控制和减少冠心病患者的危险因素,显著提高患者的运动能力和生活质量[4]。其中以主动运动为手段的心脏康复越来越受到关注。《“健康中国2030 ”规划纲要》动员全民通过主动运动的健康生活方式减少疾病的发生,实现全民健康。WHO和我国权威机构发布的健康生活方式运动建议均推荐健康成年人每周进行至少150 min中等强度的运动或75 min中高强度的运动[2, 5]。2020年,欧洲预防心脏病学协会在《欧洲预防心脏病学杂志》上发表的文章明确提出了以运动康复为主的心脏康复在心血管疾病和代谢疾病管理中的重要作用,并呼吁大家行动起来[6]。2021年,国际上一项大型队列研究通过分析14万余名成年人的健康数据也证实,心血管疾病患者运动越多,健康获益越大[7]。
在冠心病主动运动康复研究与应用的道路上,目前研究已经取得了一些进展,也遇到了很多挑战。随着大量调控运动治疗效果的分子靶点的发现,免疫-代谢-炎症机制和整合运动调控理念被提出,但经动物研究证明有效和安全的治疗方法中有80%在人体研究中以失败告终[8]。理解主动心脏康复的基础研究进展、促进基础研究成果向临床转化是当前工作的重点。运动反应存在个体化差异,针对慢性心血管疾病患者的运动康复不应千篇一律,个体化的运动处方将使其获益更多[6]。寻找运动反应个体化差异的原因、为患者提供个体化运动处方是当前不懈努力的方向。目前,不同国家和地区开展主动心脏康复的水平参差不齐,推荐的运动方式和强度也存在差异。新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)疫情时期主动心脏康复工作将如何开展,是临床工作中的另一个挑战。
本文从冠心病运动康复基础和临床研究进展、运动康复减少冠心病并发症、各国运动康复指南和COVID-19疫情下运动康复的实施4个维度探讨冠心病个体化主动运动康复的现状和将来,以期为基础研究和临床工作的开展提供参考。
1 最大摄氧量(maximal oxygen uptake,VO2 max)多态性及运动反应个体化差异中的表观遗传机制运动康复后VO2 max的提高与心血管疾病的生存率有关,但VO2 max存在个体差异,超过33%的患者运动康复后VO2 max的提高未达临床获益水平,即“不应答”[9-11]。临床研究发现给予“不应答”的健康人群更大运动强度干预后可以提高VO2 max水平[12]。基础研究发现遗传学可以解释50%的VO2 max个体差异[13-14],运动诱导的血流动力学反应与遗传性的骨骼肌特征密切相关[15-16]。更为重要的是,VO2 max的多态性变化不依赖于基础VO2 max,提示即使血液氧含量低的个体依然能在运动康复中获益,这一特点也被用于解释女性在运动康复后临床获益更多的事实[17-18]。Bouchard等[19]通过全基因组关联研究发现了39个单核苷酸多态性(single nucleotide polymorphism,SNP)位点与VO2 max相关,对39个SNP位点进行逐步多元回归分析,确定了一组21个SNP位点用于预测VO2 max,占VO2 max可训练性方差的49%。这些VO2 max对定期运动反应的基因组预测因子为研究健身生物学及其对定期运动的适应提供了新的靶点。
关于表观遗传学的研究有助于解释运动康复时的个体反应差异。研究发现剧烈运动和重复训练能够剂量依赖性地降低DNA甲基化水平,诱导过氧化物酶体增殖物激活受体δ、丙酮酸脱氢酶激酶同工酶4、过氧化物酶体增殖物激活受体γ共激活因子1α等能量代谢相关基因的表达[20-22]。组蛋白去乙酰化在运动反应性方面起着重要作用。沉默信息调节因子1(silence information regulator 1,SIRT1)是一种二氢尿嘧啶脱氢酶依赖的去乙酰化酶,研究发现运动训练可增强老龄大鼠SIRT1活性,抵消与年龄相关的系统性损伤[23]。组蛋白去乙酰酶4通过开放代谢途径保护压力负荷下的心脏避免心力衰竭[24],而组蛋白去乙酰酶3通过调控代谢在骨骼肌中起主要作用[25]。运动还可影响miRNA的表达。运动训练通过调节心脏miRNA的表达对下游基因的表达产生多重影响,在心脏保护中发挥潜在作用[26-30]。尽管在动物实验和人体研究中均观察到运动可影响miRNA的表达谱,但是未发现其与VO2 max有关。
VO2 max多态性可能与SNP、表观遗传机制有关,若能采用分子生物手段识别出VO2 max的多态性将有助于个体化运动处方的制定。未来的研究将进一步依托大数据和机器识别等方法,在整合人体运动参数、影像学和心脏康复表型基础研究的模型中实践医学研究成果的转化。
2 运动康复在冠心病并发症中的作用 2.1 心力衰竭运动康复已被权威指南推荐为心力衰竭管理的重要手段,有氧运动和有氧与抗阻运动相结合的运动方式是提高心力衰竭患者VO2 max的有效方法[31-32]。由于心力衰竭常发生于老年和女性群体,而这些人群可能合并少肌症和骨骼肌变化[33-34],因此抗阻运动不但能够改善心脏功能,更能有效提高肌肉和骨的质量。此外,有氧运动联合呼吸肌训练可以改善稳定型心力衰竭和呼吸肌虚弱患者的呼吸肌力量和呼吸困难[35],且对射血分数减低的心力衰竭(heart failure with reduced ejection fraction,HFrEF)和射血分数保留的心力衰竭(heart failure with preserved ejection fraction,HFpEF)患者都有效[36-38]。
对于心力衰竭患者采用中等强度持续运动(moderate-intensity continuous training,MCT)还是高强度间歇运动(high-intensity interval training,HIT)尚未有定论。研究发现MCT比HIT更安全[39-40],但还需要开展更多的研究来比较两者在心力衰竭干预中的特征性指标差异,以更好地指导临床应用[41]。动物研究发现,运动可以通过经典药物靶点或改善炎症反应、骨骼肌病、迷走神经输出等下调心力衰竭相关功能不全[42]。有研究发现代谢重构有助于运动诱导的心脏保护作用,中等强度运动后通过上调线粒体呼吸和糖酵解途径保护心肌梗死诱导心力衰竭模型的心脏功能[43]。我们通过对规律有氧运动后心肌梗死诱导心力衰竭动物模型的心肌组织进行蛋白质组学分析,证明代谢重构是运动治疗心力衰竭的重要信号机制[44]。运动康复干预心力衰竭的多靶点分子机制的阐明将带动心力衰竭治疗新策略的制定和新药物的开发。
2.2 自主神经病变已知肾上腺素神经活性增高对心血管有害[45],自主神经的正常调控在运动康复降低冠心病发病和死亡中起重要作用。研究发现冠心病和静息肌肉交感神经活性(muscle sympathetic nerve activity,MSNA)提高有关,6个月的有氧和抗阻运动可降低MSNA,提示运动康复作为非药物管理冠心病的方法是可行、有效的[46]。
2.3 糖尿病合并糖尿病的冠心病患者存在自主神经紊乱,心肺运动试验(cardiopulmonary exercise test,CPET)表现为心率变化幅度降低,与患者运动耐受力差、主要不良心血管事件发生和心律失常死亡风险提高有关[47]。糖尿病患者心肺功能降低与亚临床左心室功能不全、胰岛素抵抗和血糖控制不佳有关[47]。运动训练能够改善合并糖尿病的冠心病患者的胰岛素敏感性、血管反应性和心肺适应能力,抗阻运动联合有氧运动有助于进一步控制血糖水平[48-49]。
2.4 精神疾病冠心病患者特别是冠状动脉旁路移植术后患者常合并认知障碍[50],心力衰竭患者中有40%存在认知障碍,可能机制包括大脑灌注低下和系统性炎症反应[51-52]。有趣的是,接受心脏康复干预后的冠心病患者鲜有抑郁[53]。抗阻运动联合有氧运动较单一有氧运动对提高患者认知更有效[54]。
上述研究结果说明有氧运动联合抗阻运动是冠心病患者重要的运动干预方式,特别是合并心力衰竭、糖尿病和抑郁症的患者。今后还需要开展更加广泛和深入的研究,明确运动康复对改善冠心病不同合并症的作用和机制。
3 各国指南对心脏运动康复的推荐心脏运动康复对于稳定型心绞痛[55-56]、心肌梗死后[55-57]和心脏再血管化患者[55-56]都是强推荐,也推荐应用于心脏移植术后患者[58],包括心力衰竭患者[59]。据报道,全球运动心脏康复比率小于40%,高收入国家约68%,低收入国家约22%[60],还有一些开展心脏康复的国家没有制定相应指南。我国幅员辽阔、人口众多,不同地区经济与文化差异显著,正视并满足心脏康复的公平性发展需求有利于推动我国运动康复的有效实施。
澳大利亚和英国均推荐低-中-高强度有氧运动,还推荐亚极量试验评价心脏功能是运动康复前的必要步骤[61-64],这也是多国的运动指南标准。尽管心脏康复指南还没有将抗阻运动纳为常规推荐[65],且有些心血管疾病禁忌抗阻运动[66],但是美国心脏协会发表科学声明称对于机体代谢水平≥4代谢当量(metabolic equivalent,MET)的患者可以从低强度开始抗阻运动[66]。该声明与很多国家指南均推荐在抗阻运动前先进行监测下的有氧运动可以确保患者的安全性[67-69]。抗阻运动有望成为心脏运动康复的核心组成[65],但是抗阻运动的形式、上肢或下肢抗阻运动、器械辅助或依靠自身重力的抗阻运动的选择不能一概而论,应成为个体化运动处方的组成部分。
对于合并其他临床诊断的冠心病患者的运动康复,各国指南也有推荐,例如,冠状动脉旁路移植术后患者应避免上肢运动,除非伤口处于稳定状态[67, 70];植入型心脏转复除颤器(implantable cardioverter defibrilator,ICD)植入患者运动强度不能根据目标心率计算[67],应按照低于机器设定阈值10~20 min-1设定心率[64];合并外周血管病的患者推荐间歇性步行,强度取决于其跛行症状[64, 68, 70];合并心力衰竭的患者,指南强调了间歇有氧运动方式[64, 68]。
总之,冠心病患者个体化运动强度、运动频率的制定都需遵循标准。尽管中国有冠心病心脏康复基层指南(2020年)[71],但仍需立足于国情,对我国不同地区冠心病患者的经济社会状况进行深入的分析,并研发适用于不同群体的心脏运动康复方案。
4 COVID-19疫情下居家主动心脏康复的可行性2019年的《美国家庭心脏康复科学声明》、2021年的《医院主导的家庭心脏康复中国专家共识》和2022年的《中国心血管疾病患者居家康复专家共识》均提倡居家心脏康复(home-based cardiac rehabilitation,HBCR)是稳定的低危-中危心血管疾病患者在缺乏心脏康复中心(center-based cardiac rehabilitation,CBCR)时的一种选择[72-74]。尽管《美国家庭心脏康复科学声明》的回顾性研究发现在运动功能方面(如VO2 max、MET等),HBCR组和CBCR组患者的提高程度相似[72],且前者具有更有利于患者坚持、服务更具灵活性和便利性等优点,但是就我国来说,缺乏医保或其他保险的支持是限制其完善结构、细化流程、制定质量评价标准的重要因素。此外,HBCR的安全性数据仍需完善,尤其是对于高危患者。
提供家用运动设备及监测设备是HBCR可以形成体系的重要组成部分,租赁制更有利于第三方投入,促进患者和心脏康复团队的联系。在HBCR模式内,除定期的专家门诊、病房内医疗信息的收集和教授完整的运动康复程序外,心脏康复医师、心脏康复护士、运动物理治疗师和患者间通过新的方式建立的医疗联系有助于克服缺乏面对面交流的不足,如护士采用电话方式随访,物理治疗师通过线上分组管理、建群随访患者日常运动打卡事宜,医师开展视频讲座、线上和/或线下教育课程等。运动物理治疗师在CBCR指导的居家运动康复中具有重要作用和价值,包括编制运动相关问卷及调研、开展促进身体机能提高的运动方式的制定及评估效果等。事实上,以HBCR为核心的心脏康复体系建设有助于冠心病患者主动实现慢性疾病的终身管理模式,更符合主动康复的理念。COVID-19疫情时期,应加快推动主动心脏康复医保政策的建立健全,并进一步开发适合患者居家康复的运动方案。
5 结语冠心病严重威胁着国人健康,大力开展主动运动康复刻不容缓。主动运动康复的科学性、安全性和有效性有待进一步开展基础和临床研究深入论证。个体化运动处方的制定与执行需要心血管专业医师、心脏康复护士、心脏物理治疗专家及其他多学科的同仁一起努力,并结合“大数据”更好地应用于临床实践。同时,呼吁健康领域的专家与政府管理部门更加紧密地协作,不断促进冠心病患者主动康复工作的开展和心脏康复的公平性发展,从而推动“健康中国2030”战略的实施。
[1] |
国家卫生和计划生育委员会疾病预防控制局. 中国居民营养与慢性病状况报告(2015)[M]. 北京: 人民卫生出版社, 2015.
|
[2] |
World Health Organization. WHO guidelines on physical activity and sedentary behavior[R]. Geneva: World Health Organization, 2020.
|
[3] |
COWIE A, BUCKLEY J, DOHERTY P, FURZE G, HAYWARD J, HINTON S, et al. Standards and core components for cardiovascular disease prevention and rehabilitation[J]. Heart, 2019, 105: 510-515. DOI:10.1136/heartjnl-2018-314206 |
[4] |
中华医学会心血管病学分会, 中国康复医学会心血管病专业委员会, 中国老年学学会心脑血管病专业委员会. 冠心病康复与二级预防中国专家共识[J]. 中华心血管病杂志, 2013, 41: 267-275. DOI:10.3760/cma.j.issn.0253-3758.2013.04.003 |
[5] |
顾东风, 翁建平, 鲁向锋. 中国健康生活方式预防心血管代谢疾病指南[J]. 中国循环杂志, 2020, 35: 209-230. DOI:10.3969/j.issn.1000-3614.2020.03.001 |
[6] |
GEVAERT A B, ADAMS V, BAHLS M, BOWEN T S, CORNELISSEN V, DÖRR M, et al. Towards a personalised approach in exercise-based cardiovascular rehabilitation: how can translational research help? A 'call to action' from the Section on Secondary Prevention and Cardiac Rehabilitation of the European Association of Preventive Cardiology[J]. Eur J Prev Cardiol, 2020, 27: 1369-1385. DOI:10.1177/2047487319877716 |
[7] |
BAKKER E A, LEE D C, HOPMAN M T E, OYMANS E J, WATSON P M, THOMPSON P D, et al. Dose-response association between moderate to vigorous physical activity and incident morbidity and mortality for individuals with a different cardiovascular health status: a cohort study among 142, 493 adults from the Netherlands[J/OL]. PLoS Med, 2021, 18: e1003845. DOI: 10.1371/journal.pmed.1003845.
|
[8] |
PERRIN S. Preclinical research: make mouse studies work[J]. Nature, 2014, 507: 423-425. DOI:10.1038/507423a |
[9] |
COECKELBERGHS E, BUYS R, GOETSCHALCKX K, CORNELISSEN V A, VANHEES L. Prognostic value of the oxygen uptake efficiency slope and other exercise variables in patients with coronary artery disease[J]. Eur J Prev Cardiol, 2016, 23: 237-244. DOI:10.1177/2047487315569410 |
[10] |
TABET J Y, MEURIN P, BEAUVAIS F, WEBER H, RENAUD N, THABUT G, et al. Absence of exercise capacity improvement after exercise training program: a strong prognostic factor in patients with chronic heart failure[J]. Circ Heart Fail, 2008, 1: 220-226. DOI:10.1161/CIRCHEARTFAILURE.108.775460 |
[11] |
DE SCHUTTER A, KACHUR S, LAVIE C J, MENEZES A, SHUM K K, BANGALORE S, et al. Cardiac rehabilitation fitness changes and subsequent survival[J]. Eur Heart J Qual Care Clin Outcomes, 2018, 4: 173-179. |
[12] |
MONTERO D, LUNDBY C. Refuting the myth of non-response to exercise training: 'non-responders' do respond to higher dose of training[J]. J Physiol, 2017, 595: 3377-3387. DOI:10.1113/JP273480 |
[13] |
SCHUTTE N M, NEDEREND I, HUDZIAK J J, BARTELS M, DE GEUS E J. Twin-sibling study and meta-analysis on the heritability of maximal oxygen consumption[J]. Physiol Genomics, 2016, 48: 210-219. DOI:10.1152/physiolgenomics.00117.2015 |
[14] |
BOUCHARD C, DAW E W, RICE T, PÉRUSSE L, GAGNON J, PROVINCE M A, et al. Familial resemblance for VO2 max in the sedentary state: the HERITAGE family study[J]. Med Sci Sports Exerc, 1998, 30: 252-258. |
[15] |
BOUCHARD C, RANKINEN T, TIMMONS J A. Genomics and genetics in the biology of adaptation to exercise[J]. Compr Physiol, 2011, 1: 1603-1648. |
[16] |
AN P, RICE T, GAGNON J, LEON A S, SKINNER J S, BOUCHARD C, et al. Familial aggregation of stroke volume and cardiac output during submaximal exercise: the HERITAGE family study[J]. Int J Sports Med, 2000, 21: 566-572. DOI:10.1055/s-2000-12983 |
[17] |
SKINNER J S, JASKÓLSKI A, JASKÓLSKA A, KRASNOFF J, GAGNON J, LEON A S, et al. Age, sex, race, initial fitness, and response to training: the HERITAGE family study[J]. J Appl Physiol (1985), 2001, 90: 1770-1776. DOI:10.1152/jappl.2001.90.5.1770 |
[18] |
PIÑA I L, BITTNER V, CLARE R M, SWANK A, KAO A, SAFFORD R, et al. Effects of exercise training on outcomes in women with heart failure: analysis of HF-ACTION (Heart Failure-A Controlled Trial Investigating Outcomes of Exercise TraiNing) by sex[J]. JACC Heart Fail, 2014, 2: 180-186. DOI:10.1016/j.jchf.2013.10.007 |
[19] |
BOUCHARD C, SARZYNSKI M A, RICE T K, KRAUS W E, CHURCH T S, SUNG Y J, et al. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs[J]. J Appl Physiol, 2011, 110: 1160-1170. DOI:10.1152/japplphysiol.00973.2010 |
[20] |
RÖNN T, VOLKOV P, DAVEGÅRDH C, DAYEH T, HALL E, OLSSON A H, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue[J/OL]. PLoS Genet, 2013, 9: e1003572. DOI: 10.1371/journal.pgen.1003572.
|
[21] |
BARRÈS R, YAN J, EGAN B, TREEBAK J T, RASMUSSEN M, FRITZ T, et al. Acute exercise remodels promoter methylation in human skeletal muscle[J]. Cell Metab, 2012, 15: 405-411. DOI:10.1016/j.cmet.2012.01.001 |
[22] |
VOISIN S, EYNON N, YAN X, BISHOP D J. Exercise training and DNA methylation in humans[J]. Acta Physiol (Oxf), 2015, 213: 39-59. DOI:10.1111/apha.12414 |
[23] |
FERRARA N, RINALDI B, CORBI G, CONTI V, STIUSO P, BOCCUTI S, et al. Exercise training promotes SIRT1 activity in aged rats[J]. Rejuvenation Res, 2008, 11: 139-150. DOI:10.1089/rej.2007.0576 |
[24] |
LEHMANN L H, JEBESSA Z H, KREUSSER M M, HORSCH A, HE T, KRONLAGE M, et al. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway[J]. Nat Med, 2018, 24: 62-72. DOI:10.1038/nm.4452 |
[25] |
SONG S Y, WEN Y F, TONG H, LORO E, GONG Y Y, LIU J D, et al. The HDAC3 enzymatic activity regulates skeletal muscle fuel metabolism[J]. J Mol Cell Biol, 2019, 11: 133-143. DOI:10.1093/jmcb/mjy066 |
[26] |
SAPP R M, SHILL D D, ROTH S M, HAGBERG J M. Circulating microRNAs in acute and chronic exercise: more than mere biomarkers[J]. J Appl Physiol (1985), 2017, 122: 702-717. DOI:10.1152/japplphysiol.00982.2016 |
[27] |
SILVA G J J, BYE A, EL AZZOUZI H, WISLØFF U. MicroRNAs as important regulators of exercise adaptation[J]. Prog Cardiovasc Dis, 2017, 60: 130-151. DOI:10.1016/j.pcad.2017.06.003 |
[28] |
SOUZA R W, FERNANDEZ G J, CUNHA J P, PIEDADE W P, SOARES L C, SOUZA P A, et al. Regulation of cardiac microRNAs induced by aerobic exercise training during heart failure[J]. Am J Physiol Heart Circ Physiol, 2015, 309: H1629-H1641. DOI:10.1152/ajpheart.00941.2014 |
[29] |
TAURINO C, MILLER W H, MCBRIDE M W, MCCLURE J D, KHANIN R, MORENO M U, et al. Gene expression profiling in whole blood of patients with coronary artery disease[J]. Clin Sci (Lond), 2010, 119: 335-343. DOI:10.1042/CS20100043 |
[30] |
XU T Z, ZHOU Q L, CHE L, DAS S, WANG L M, JIANG J F, et al. Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients[J]. Oncotarget, 2016, 7: 12414-12425. DOI:10.18632/oncotarget.6966 |
[31] |
O'CONNOR C M, WHELLAN D J, WOJDYLA D, LEIFER E, CLARE R M, ELLIS S J, et al. Factors related to morbidity and mortality in patients with chronic heart failure with systolic dysfunction: the HF-ACTION predictive risk score model[J]. Circ Heart Fail, 2012, 5: 63-71. DOI:10.1161/CIRCHEARTFAILURE.111.963462 |
[32] |
MENTZ R J, BITTNER V, SCHULTE P J, FLEG J L, PIÑA I L, KETEYIAN S J, et al. Race, exercise training, and outcomes in chronic heart failure: findings from Heart Failure-a Controlled Trial Investigating Outcomes in Exercise TraiNing (HF-ACTION)[J]. Am Heart J, 2013, 166: 488-495. DOI:10.1016/j.ahj.2013.06.002 |
[33] |
BJARNASON-WEHRENS B, MAYER-BERGER W, MEISTER E R, BAUM K, HAMBRECHT R, GIELEN S, et al. Recommendations for resistance exercise in cardiac rehabilitation. Recommendations of the German Federation for Cardiovascular Prevention and Rehabilitation[J]. Eur J Cardiovasc Prev Rehabil, 2004, 11: 252-361. |
[34] |
CONRAADS V M, BECKERS P, BOSMANS J, DE CLERCK L S, STEVENS W J, VRINTS C J, et al. Combined endurance/resistance training reduces plasma TNF-α receptor levels in patients with chronic heart failure and coronary artery disease[J]. Eur Heart J, 2002, 23: 1854-1860. DOI:10.1053/euhj.2002.3239 |
[35] |
LIN S J, MCELFRESH J, HALL B, BLOOM R, FARRELL K. Inspiratory muscle training in patients with heart failure: a systematic review[J]. Cardiopulm Phys Ther J, 2012, 23: 29-36. |
[36] |
DALL'AGO P, CHIAPPA G R, GUTHS H, STEIN R, RIBEIRO J P. Inspiratory muscle training in patients with heart failure and inspiratory muscle weakness: a randomized trial[J]. J Am Coll Cardiol, 2006, 47: 757-763. DOI:10.1016/j.jacc.2005.09.052 |
[37] |
STEIN R, CHIAPPA G R, GÜTHS H, DALL'AGO P, RIBEIRO J P. Inspiratory muscle training improves oxygen uptake efficiency slope in patients with chronic heart failure[J]. J Cardiopulm Rehabil Prev, 2009, 29: 392-395. DOI:10.1097/HCR.0b013e3181b4cc41 |
[38] |
SMART N A, GIALLAURIA F, DIEBERG G. Efficacy of inspiratory muscle training in chronic heart failure patients: a systematic review and meta-analysis[J]. Int J Cardiol, 2013, 167: 1502-1507. DOI:10.1016/j.ijcard.2012.04.029 |
[39] |
O'CONNOR C M, WHELLAN D J, LEE K L, KETEYIAN S J, COOPER L S, ELLIS S J, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial[J]. JAMA, 2009, 301: 1439-1450. DOI:10.1001/jama.2009.454 |
[40] |
BALADY G J, WILLIAMS M A, ADES P A, BITTNER V, COMOSS P, FOODY J A M, et al. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation[J]. J Cardiopulm Rehabil Prev, 2007, 27: 121-129. DOI:10.1097/01.HCR.0000270696.01635.aa |
[41] |
BOZKURT B, FONAROW G C, GOLDBERG L R, GUGLIN M, JOSEPHSON R A, FORMAN D E, et al. Cardiac rehabilitation for patients with heart failure: JACC expert panel[J]. J Am Coll Cardiol, 2021, 77: 1454-1469. |
[42] |
ICHIGE M H A, PEREIRA M G, BRUM P C, MICHELINI L C. Experimental evidences supporting the benefits of exercise training in heart failure[J]. Adv Exp Med Biol, 2017, 999: 181-206. |
[43] |
PATEL H C, KAYE D M. Exercise training in heart failure: a long way to go yet[J]. Eur J Heart Fail, 2018, 20: 1744-1745. DOI:10.1002/ejhf.1332 |
[44] |
MI S L, JIANG H, ZHANG L, XIE Z L, ZHOU J M, SUN A J, et al. Regulation of cardiac-specific proteins expression by moderate-intensity aerobic exercise training in mice with myocardial infarction induced heart failure using MS-based proteomics[J/OL]. Front Cardiovasc Med, 2021, 8: 732076. DOI: 10.3389/fcvm.2021.732076.
|
[45] |
MALPAS S C. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease[J]. Physiol Rev, 2010, 90: 513-557. DOI:10.1152/physrev.00007.2009 |
[46] |
BADROV M B, WOOD K N, LALANDE S, SAWICKI C P, BORRELL L J, BARRON C C, et al. Effects of 6 months of exercise-based cardiac rehabilitation on autonomic function and neuro-cardiovascular stress reactivity in coronary artery disease patients[J/OL]. J Am Heart Assoc, 2019, 8: e012257. DOI: 10.1161/JAHA.119.012257.
|
[47] |
FANG Z Y, SHARMAN J, PRINS J B, MARWICK T H. Determinants of exercise capacity in patients with type 2 diabetes[J]. Diabetes Care, 2005, 28: 1643-1648. DOI:10.2337/diacare.28.7.1643 |
[48] |
KEMPS H, KRÄNKEL N, DÖRR M, MOHOLDT T, WILHELM M, PANENI F, et al. Exercise training for patients with type 2 diabetes and cardiovascular disease: what to pursue and how to do it. A position paper of the European Association of Preventive Cardiology (EAPC)[J]. Eur J Prev Cardiol, 2019, 26: 709-727. DOI:10.1177/2047487318820420 |
[49] |
EGGER A, NIEDERSEER D, DIEM G, FINKENZELLER T, LEDL-KURKOWSKI E, FORSTNER R, et al. Different types of resistance training in type 2 diabetes mellitus: effects on glycaemic control, muscle mass and strength[J]. Eur J Prev Cardiol, 2013, 20: 1051-1060. DOI:10.1177/2047487312450132 |
[50] |
AHLGREN E, LUNDQVIST A, NORDLUND A, AREN C, RUTBERG H. Neurocognitive impairment and driving performance after coronary artery bypass surgery[J]. Eur J Cardiothorac Surg, 2003, 23: 334-340. DOI:10.1016/s1010-7940(02)00807-2 |
[51] |
WOO M A, PALOMARES J A, MACEY P M, FONAROW G C, HARPER R M, KUMAR R. Global and regional brain mean diffusivity changes in patients with heart failure[J]. J Neurosci Res, 2015, 93: 678-685. DOI:10.1002/jnr.23525 |
[52] |
CANNON J A, MOFFITT P, PEREZ-MORENO A C, WALTERS M R, BROOMFIELD N M, MCMURRAY J J V, et al. Cognitive impairment and heart failure: systematic review and meta-analysis[J]. J Card Fail, 2017, 23: 464-475. DOI:10.1016/j.cardfail.2017.04.007 |
[53] |
MILANI R V, LAVIE C J. Prevalence and effects of cardiac rehabilitation on depression in the elderly with coronary heart disease[J]. Am J Cardiol, 1998, 81: 1233-1236. DOI:10.1016/S0002-9149(98)00121-0 |
[54] |
SMITH P J, BLUMENTHAL J A, HOFFMAN B M, COOPER H, STRAUMAN T A, WELSH-BOHMER K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials[J]. Psychosom Med, 2010, 72: 239-252. DOI:10.1097/PSY.0b013e3181d14633 |
[55] |
OLDRIDGE N. Exercise-based cardiac rehabilitation in patients with coronary heart disease: meta-analysis outcomes revisited[J]. Future Cardiol, 2012, 8: 729-751. DOI:10.2217/fca.12.34 |
[56] |
ANDERSON L, OLDRIDGE N, THOMPSON D R, ZWISLER A D, REES K, MARTIN N, et al. Exercise-based cardiac rehabilitation for coronary heart disease: cochrane systematic review and meta-analysis[J]. J Am Coll Cardiol, 2016, 67: 1-12. |
[57] |
LAWLER P R, FILION K B, EISENBERG M J. Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials[J/OL]. Am Heart J, 2011, 162: 571-584. e2. DOI: 10.1016/j.ahj.2011.07.017.
|
[58] |
ROSENBAUM A N, KREMERS W K, SCHIRGER J A, THOMAS R J, SQUIRES R W, ALLISON T G, et al. Association between early cardiac rehabilitation and long-term survival in cardiac transplant recipients[J]. Mayo Clin Proc, 2016, 91: 149-156. DOI:10.1016/j.mayocp.2015.12.002 |
[59] |
LEWINTER C, DOHERTY P, GALE C P, CROUCH S, STIRK L, LEWIN R J, et al. Exercise-based cardiac rehabilitation in patients with heart failure: a meta-analysis of randomised controlled trials between 1999 and 2013[J]. Eur J Prev Cardiol, 2015, 22: 1504-1512. DOI:10.1177/2047487314559853 |
[60] |
ANCHIQUE SANTOS C V, LOPEZ-JIMENEZ F, BENAIM B, BURDIAT G, FERNANDEZ CORONADO R, GONZALEZ G, et al. Cardiac rehabilitation in Latin America[J]. Prog Cardiovasc Dis, 2014, 57: 268-275. DOI:10.1016/j.pcad.2014.09.006 |
[61] |
National Heart Foundation of Australia and Australian Cardiac Rehabilitation Association. Recommended framework for cardiac rehabilitation. Australia: national heart foundation of Australia[EB/OL]. [2022-01-11]. http://www.heartfoundation.org.au/images/uploads/publications/Recommended-framework.pdf.
|
[62] |
Scottish Intercollegiate Guidelines Network (SIGN). Cardiac rehabilitation[M/OL]. Edinburgh: SIGN, 2016[2022-01-11]. https://www.sign.ac.uk/media/1047/sign150.pdf.
|
[63] |
Guidelines for cardiac rehabilitation in Northern Ireland[EB/OL]. Belfast: Clinical Resource Efficiency Support Team, 2006[2022-01-11]. http://www.gain-ni.org/index.php/guidelines-for-cardiac-rehabilitation-in-northern-ireland.
|
[64] |
PROBERT H, BARRITT H, BREEN S, BUCKLEY J, BURGESS L, GRAHAM K, et al. Standards for physical activity and exercise in the cardiovascular population[M/OL]. 3rd ed. Manchester: Association of Chartered Physiotherapists in Cardiac Rehabilitation, 2015[2022-01-11]. https://www.acpicr.com/data/Page_Downloads/ACPICRStandards.pdf.
|
[65] |
PRICE K J, GORDON B A, BIRD S R, BENSON A C. A review of guidelines for cardiac rehabilitation exercise programmes: is there an international consensus?[J]. Eur J Prev Cardiol, 2016, 23: 1715-1733. DOI:10.1177/2047487316657669 |
[66] |
WILLIAMS M A, HASKELL W L, ADES P A, AMSTERDAM E A, BITTNER V, FRANKLIN B A, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism[J]. Circulation, 2007, 116: 572-584. DOI:10.1161/CIRCULATIONAHA.107.185214 |
[67] |
American Association of Cardiovascular and Pulmonary Rehabilitation. Guidelines for cardiac rehabilitation and secondary prevention programs[M]. 5th ed. Champaign, IL: Human Kinetics, 2013.
|
[68] |
STONE J A, ARTHUR H M, SUSKIN N. Canadian guidelines for cardiac rehabilitation and cardiovascular disease prevention: translating knowledge into action[M]. 3rd ed. Winnipeg, Canada: Canadian Association of Cardiac Rehabilitation, 2009.
|
[69] |
BJARNASON-WEHRENS B, MAYER-BERGER W, MEISTER E R, BAUM K, HAMBRECHT R, GIELEN S, et al. Recommendations for resistance exercise in cardiac rehabilitation. Recommendations of the German Federation for Cardiovascular Prevention and Rehabilitation[J]. Eur J Cardiovasc Prev Rehabil, 2004, 11: 352-361. DOI:10.1097/01.hjr.0000137692.36013.27 |
[70] |
PIEPOLI M F, CORRÀ U, BENZER W, BJARNASON-WEHRENS B, DENDALE P, DAN G T, et al. Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation[J]. Eur J Cardiovasc Prev Rehabil, 20110, 17: 1-17. |
[71] |
中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 中华医学会心血管病学分会预防学组, 中华医学会心血管病学分会康复学组, 中华医学会《中华全科医师杂志》编辑委员会, 等. 冠心病心脏康复基层指南(2020年)[J]. 中华全科医师杂志, 2021, 20: 150-165. |
[72] |
THOMAS R J, BEATTY A L, BECKIE T M, BREWER L C, BROWN T M, FORMAN D E, et al. Home-based cardiac rehabilitation: a scientific statement from the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology[J/OL]. Circulation, 2019, 140: e69-e89. DOI: 10.1161/CIR.0000000000000663.
|
[73] |
中国康复医学会心血管病预防和康复委员会, 中国老年学与老年医学学会心血管病专业委员会. 医院主导的家庭心脏康复中国专家共识[J]. 中华内科杂志, 2021, 60: 207-215. |
[74] |
中国心血管疾病患者居家康复专家共识编写组. 中国心血管疾病患者居家康复专家共识[J]. 中国循环杂志, 2022, 37: 108-121. |