海军军医大学学报  2022, Vol. 43 Issue (10): 1211-1216   PDF    
单次高强度间歇运动对抑郁群体大学生情绪及额叶α频段偏侧化的影响
裘莎丽1, 刘伟志2, 周晓静3, 王相1, 臧育恒1, 王兴1     
1. 上海体育学院体育教育训练学院, 上海 200438;
2. 海军军医大学(第二军医大学)心理系基础心理学教研室, 上海 200433;
3. 上海立信会计金融学院体育与健康学院, 上海 201620
摘要: 目的 通过分析正负性情绪量表(PANAS)得分和脑电额叶α频段的变化,探讨单次高强度间歇运动对抑郁群体大学生正负性情绪和额叶α频段偏侧化的影响。方法 采用抑郁自评量表(SDS)筛选处于轻度和中度抑郁情绪状态的在校大学生38名,采用掷硬币的方法随机分为高强度间歇运动组(19人)和对照组(19人)。高强度间歇运动组进行20 min的单次高强度间歇运动,对照组静坐20 min。于干预后间隔1周,再次采用SDS测试被试的抑郁评分。在干预前和干预后即刻,采用PANAS测试两组被试的情绪状态,采用脑电地形图仪采集被试静息状态下额叶α频段功率值。比较干预前后两组被试PANAS得分、SDS得分和额叶α频段总功率及偏侧化的变化。结果 与干预前相比,高强度间歇运动组被试干预后SDS得分下降,正性情绪得分增高,负性情绪得分降低(P均<0.05);对照组干预前后上述指标差异均无统计学意义(P均>0.05)。与干预前相比,高强度间歇运动组被试干预后右额叶α频段总功率值增高(P<0.05),额叶α频段偏侧化均得到改善(P均<0.05);与干预前相比,对照组干预后左、右额叶α频段总功率值均增高(P均<0.05),但额叶α频段偏侧化差异无统计学意义(P>0.05)。结论 单次高强度间歇运动能有效改善大学生的情绪及额叶α频段偏侧化。
关键词: 单次高强度间歇运动    抑郁    脑电图    α频段    偏侧化    
Effects of single high-intensity interval exercise on emotion and lateralization of frontal lobe α frequency band in depressed college students
QIU Sha-li1, LIU Wei-zhi2, ZHOU Xiao-jing3, WANG Xiang1, ZANG Yu-heng1, WANG Xing1     
1. School of Physical Education and Training, Shanghai University of Sport, Shanghai 200438, China;
2. Department of Basic Psychology, Faculty of Psychology, Naval Medical University (Second Military Medical University), Shanghai 200433, China;
3. School of Sports and Health, Shanghai Lixin University of Accounting and Finance, Shanghai 201620, China
Abstract: Objective To investigate the effects of single high-intensity interval exercise on positive and negative emotions and lateralization of frontal lobe α frequency band in depressed college students by analyzing the changes of the scores of positive and negative affect schedule (PANAS) and electroencephalography (EGG) α frequency band at the frontal lobe. Methods A total of 38 college students in mild and moderate depressed mood were screened by self-rating depression scale (SDS). They were randomly divided into high-intensity interval exercise group (n=19) and control group (n=19) by coin toss. The high-intensity interval exercise group performed single high-intensity interval exercise for 20 min, while the control group sat still for 20 min. After the intervention, SDS was used again to test the depression scores of the subjects 1 week later. Before and immediately after the intervention, PANAS was used to test the emotional state of the subjects, and the power values of frontal lobe α frequency band of the subjects at rest were collected by EGG topographic map. The PANAS scores, SDS scores and the changes of total power of the frontal lobe α frequency band and lateralization of the 2 groups were compared before and after the intervention. Results The SDS scores of the subjects were decreased, the positive emotion scores were increased, and the negative emotion scores were decreased in the single high-intensity interval exercise group after intervention (all P < 0.05). There were no significant differences in the above indexes in the control group before or after intervention (all P > 0.05). The total power values of the right frontal lobe α frequency band of the subjects were increased in the high-intensity interval exercise group after intervention (P < 0.05), and the lateralization of the frontal lobe α frequency band was improved (both P < 0.05); the total power values of the left and right frontal lobe α frequency band were increased in the control group after intervention (both P < 0.05), but there was no significant difference in the lateralization of the frontal lobe α frequency band (P > 0.05). Conclusion Single high-intensity interval exercise can effectively improve college students' mood and lateralization of frontal lobe α frequency band.
Key words: single high-intensity interval exercise    depression    electroencephalography    α frequency band    lateralization    

抑郁症是一种常见的慢性精神障碍,是全世界共同关心的公共卫生问题[1]。同时,抑郁也是大学生群体最常见的心理卫生问题,研究显示,我国大学生的抑郁症状检出率高达24.71%[2]。长期处于抑郁情绪状态会导致人的情感低落、注意力不集中、学习工作能力下降等,严重者甚至伴有消极自杀观念或行为[3]。抑郁的主要临床特征是情感功能障碍和认知障碍,两者均与不同脑区功能障碍有关。脑电图作为一种非侵入式大脑皮质神经电活动变化的研究手段,是获取抑郁症患者大脑病理变化、客观评定抑郁症状的有效方法。额叶脑电不对称性是衡量半球之间不协调的量化指标,已被很多研究作为反映人类情绪状态的关键指标[4-6]。大脑激活的不对称性与情绪密切相关,抑郁人群脑电信号异常发生在额叶α频段,左侧额叶活动与积极情绪状态有关,右侧额叶活动则与消极情绪状态有关[7-9]

近年来,运动疗法在抑郁症的治疗中备受关注。运动能够有效改善抑郁症状,并且具有依从性高、成本低、不良反应少、抗抑郁效果持续稳定等优点[10]。有证据表明高强度间歇运动对抑郁症状的改善效果优于中等强度运动[11],高强度运动会诱导运动后皮质醇立即增加,影响大脑振荡活动和脑电的α不对称,且静息状态的额叶α不对称可以预测运动后的情感反应[12-15]。本研究以中、轻度抑郁大学生为研究对象,探讨单次高强度间歇运动、额叶α频段偏侧化和情绪三者之间的关系。

1 对象和方法 1.1 实验对象及分组

根据自愿原则,向上海立信金融会计学院在校大学生发放抑郁自评量表(self-rating depression scale,SDS),测试其近1周以来的抑郁情绪。SDS由20个条目组成,总分为各单项分值相加乘以1.25所得分数的整数部分,<53分为正常,53~62分提示轻度抑郁,63~72分提示中度抑郁,≥73分提示重度抑郁[16]。筛选并招募轻度或中度抑郁(SDS得分为53~72分)在校大学生40名。被试均为右利手,身体健康;测试前1 d不参加剧烈运动,且禁止饮用含咖啡因或酒精的饮品。采用掷硬币的方法将被试随机分为高强度间歇运动组(20人)和对照组(20人),两组因无法完成既定运动强度和中途退出实验各流失被试1名,实验最终纳入样本38名。高强度间歇运动组男6名、女13名,年龄为(19.95±1.02)岁,BMI为(22.1±2.52)kg/m2,干预前SDS得分为(55.86±3.64)分;对照组男4名、女15名,年龄为(19.74±0.81)岁,BMI为(21.5±4.13)kg/m2,干预前SDS得分为(56.13±3.72)分。两组被试性别、年龄、BMI、干预前SDS得分差异均无统计学意义(P均>0.05)。本研究获得上海体育学院伦理委员会审批(102772021RT004),所有被试参与研究前均知晓本研究详细的测量流程及可能存在的风险并签署知情同意书。

1.2 干预方法

高强度间歇运动采用室内跑步机(Runner 690,上海优菲健身用品有限公司)进行运动。正式运动全程20 min,由运动心率为90%最大心率(maximal heart rate,HRmax)的高强度跑台2 min和运动心率低于70% HRmax的跑台慢跑或快走3 min交替进行。HRmax采用Gellish等[17]的公式进行计算:HRmax=207-0.7×年龄。运动全程佩戴心率带(Polar H10,芬兰博能电子有限公司)监测实时心率,每2 min主试会询问被试的主观运动强度感受,辅助填写自觉疲劳程度(rating of perceived exertion,RPE)量表[18-19]。为确保运动的安全性,在运动前和运动后分别设置了5 min的热身活动和放松活动。对照组被试到实验室后,仅熟悉环境并静坐休息20 min,不进行任何运动。

1.3 脑电测定及数据处理

于干预前和干预后即刻,采用脑电地形图仪(NCERP-190012,上海诺诚电气有限公司)进行脑电测定。使用16单极导联记录脑电信号的多项指标,配有前置放大器,采样频率为500 Hz,高通滤波器为0.3 Hz,低通滤波器为30 Hz,其中α波频率为8~13 Hz。实验室测试环境为隔音、通风的暗室,测试前告知被试此次实验需采集干预前和干预后2次10 min静息脑电图,被试到实验室后,先熟悉环境并休息20 min。连接脑电地形图仪,安装好支架电极,并将阻抗调至低于5 kΩ。电极安装采用国际脑电图学会规定的10/20系统电极放置法,导联电极放置在左前额区(Fp1)、右前额区(Fp2)、左后额区(F3)、右后额区(F4)、左中央区(C3)、右中央区(C4)、左顶区(P3)、右顶区(P4)、左前颞区(F7)、右前颞区(F8)、左枕区(O1)、右枕区(O2)、左中颞区(T3)、右中颞区(T4)、左后颞区(T5)、右后颞区(T6),接地电极放置在额正中,参考电极放置在双侧耳垂(A1和A2)[20]。记录被试静息状态下左额叶(Fp1、F3)和右额叶(Fp2、F4)脑电α频段功率值,剔除前2 min数据和明显伪迹,截取后8 min静息脑电数据,经傅里叶变换,并进行自然对数转化。左、右额叶α频段总功率值分别记为Fp1+F3、Fp2+F4,偏侧化指标记为Fp2-Fp1、F4-F3(计算公式为lnR-lnL,其中R为前额右侧通道的功率,L为前额左侧通道的功率[21])。

运动后待被试心率恢复至安静水平时进行静息脑电测试,以减少体温、心跳、血流量等因素对脑电图的影响。测试期间要求被试闭上双眼,两手自然放在身体两侧,尽量减少吞咽,全程可选择最舒适的坐姿,保持放松状态。

1.4 情绪和抑郁状态评估

于干预后间隔1周,再次采用SDS测试被试的抑郁状态。于干预前和干预后即刻,采用正负性情绪量表(positive and negative affect schedule,PANAS)评估被试情绪,通过限定指导语告知被试根据当下的情绪填写问卷。该量表由正性情绪和负性情绪2个维度组成,共20题,得分越高表明个体相应的情绪体验程度越高[22]。本研究正、负性情绪维度分量表的Cronbach’s α系数为分别为0.84、0.79。

1.5 统计学处理

采用SPSS 23.0软件进行统计学分析。所有计量资料均服从正态分布,采用x±s表示,组内干预前后的数据比较采用配对样本t检验,两组间数据的比较采用独立样本t检验。检验水准(α)为0.05。

2 结果 2.1 两组被试干预前后抑郁和情绪得分的比较

表 1可见,干预前两组被试之间SDS得分差异无统计学意义(P>0.05),两组基线水平一致;干预后间隔1周再次测试,高强度间歇运动组SDS得分与干预前相比降低(P<0.01),对照组SDS得分与干预前相比差异无统计学意义(P>0.05),并且干预后高强度间歇运动组SDS得分低于对照组(P<0.01)。由表 2可见,干预前两组被试之间正、负性情绪得分差异均无统计学意义(P均>0.05),两组基线水平一致;干预后即刻,高强度间歇运动组PANAS正性情绪得分较干预前增高、负性情绪得分较干预前降低(P均<0.05),对照组干预前后正、负性情绪得分差异均无统计学意义(P均>0.05),并且干预后高强度间歇运动组正性情绪得分高于对照组、负性情绪得分低于对照组(P均<0.05)。

表 1 两组被试干预前后SDS得分对比 

表 2 两组被试干预前后PANAS得分对比 

2.2 两组被试干预前后额叶α频段偏侧化的比较

表 3可见,干预前两组被试之间左、右额叶α频段总功率值(Fp1+F3、Fp2+F4)和额叶α频段偏侧化(Fp2-Fp1、F4-F3)差异均无统计学意义(P均>0.05),两组基线水平一致。干预后即刻,高强度间歇运动组被试右额叶α频段总功率值(Fp2+F4)比干预前增高(P<0.05),左额叶α频段总功率值(Fp1+F3)与干预前相比差异无统计学意义(P>0.05),额叶α频段偏侧化(Fp2-Fp1、F4-F3)与干预前相比均改善(P均<0.05);干预后即刻,对照组左、右额叶α频段总功率值(Fp1+F3、Fp2+F4)均增高(P均<0.05),但额叶α频段偏侧化(Fp2-Fp1、F4-F3)与干预前相比差异均无统计学意义(P>0.05);干预后即刻,两组左、右额叶α频段总功率值差异无统计学意义(P均>0.05),高强度间歇运动组被试额叶α频段偏侧化(Fp2-Fp1、F4-F3)均轻于对照组(P均<0.05)。

表 3 两组被试干预前后左、右额叶α频段总功率值和额叶α频段偏侧化对比 

3 讨论

本研究探讨了单次高强度间歇运动对抑郁群体大学生正负性情绪的影响,以及单次高强度间歇运动前后抑郁大学生脑电额叶α频段偏侧化的变化。研究结果显示,单次高强度间歇运动后抑郁大学生正性情绪得分增高、负性情绪得分降低。运动对改善抑郁症状有重要作用,且与运动形式、强度、频率、时间密切相关[23],其中运动强度是影响运动情绪的关键因素之一。高强度间歇运动采取多次高、低强度运动重复交替的模式,能最大化地诱发机体产生应激反应,更强地刺激中枢神经系统,避免持续运动的疲劳机制,从而促使皮质醇更快恢复至正常水平;同时,运动通过刺激杏仁核、海马体、下丘脑等多个脑结构组织,影响5-羟色胺、多巴胺等与抑郁密切相关的神经递质的合成与释放[24],从而诱发更低的负性情绪[25-26]。为观察抑郁群体大学生单次高强度间歇运动后抑郁评分的改善情况,本研究在单次运动后间隔1周再次进行SDS评分,结果显示高强度间歇运动组SDS得分与运动前相比降低,而对照组SDS得分与运动前相比无明显变化,表明单次高强度间歇运动能改善抑郁群体大学生的抑郁症状、减少抑郁情绪的产生,且运动的效益时长达到了1周。

额叶脑电图不对称是预测抑郁风险的神经生物学标志,是衡量左、右额叶区域脑电图α波功率差异的主要方法,具有较高的内部信度和重测信度[27-28]。α频段是大脑生理状态的标志性节律,额叶α波活动既是神经中介又是情感体验的调节器[4]。研究发现,静息脑电额叶不对称能预测大学生抑郁[29],而通过改变额叶不对称可以治疗抑郁[30]。单次运动会影响脑电额叶α波不对称,静息脑电额叶α波不对称可以预测运动后的情感反应,并与运动强度相关[12-15]。Blanchard和Rodgers[31]研究发现,中等持续时间(15~30 min)的锻炼会促使α波的活力和额叶脑电图不对称性显著升高,而运动30 min后会受到倒U型剂量反应关系的影响,呈现负效价情感状态[32]。因此,本研究选取20 min的高强度间歇运动对抑郁大学生进行运动干预,结果显示单次高强度间歇运动20 min后,额叶α频段偏侧化指标与运动前相比明显改善,F4-F3负数差值变大、Fp2-Fp1差值由负转正,这与前人的研究结果[33-34]一致,说明单次高强度间歇运动可作为介导大脑左右半球功率值差异的情绪诱发行为,促使抑郁群体大学生负性情绪向正性情绪转变。

大脑额叶是调节情绪的工具,与情绪活动密切相关,但目前对运动改善额叶大脑活动的原因尚不明确。Craig[35]提出运动会导致交感神经反馈到中枢神经系统的偏侧化,主要影响右前岛叶区域的兴奋性,而岛叶区域的兴奋可能会影响记录脑电图覆盖的背侧前额叶皮质,促进右额叶(F4)激活[36]。本研究结果显示,抑郁大学生单次高强度间歇运动后右额叶α频段总功率值(Fp2+F4)上升,负性情绪得分下降,这与Craig[35]的设想一致。说明单次高强度间歇运动能增加α频段功率值,更大程度地激活抑郁大学生右额叶活动,从而影响抑郁大学生个人情感反应,使其负性情绪得到改善。此外,抑郁人群脑电图额叶不对称可能与额叶边缘和皮质下脑区功能受损有关[37],而高强度间歇运动能增加丘脑-皮质反馈,促进5-羟色胺能和多巴胺能神经元的分化与生长[26],诱导丘脑-皮质或丘脑-网状-皮质回路增加额叶脑电活动[38],从而可能会影响运动后的情绪反应。

综上所述,本研究结果显示单次高强度间歇运动能有效缓解轻中度抑郁大学生负性情绪、改善其抑郁症状,其作用机制可反映为额叶α频段功率值上升,右侧额叶激活更明显,左、右脑区额叶α频段偏侧化程度降低。在未来研究中,应进一步增加被试样本量,并严格控制体育锻炼形式、时间、强度等调节变量,丰富单次体育锻炼对抑郁人群情绪改善的神经机制,以期为大学生抑郁缓解提供更为科学、精准的运动方案。

参考文献
[1]
MENDENHALL E, KOHRT B A, NORRIS S A, NDETEI D, PRABHAKARAN D. Non-communicable disease syndemics: poverty, depression, and diabetes among low-income populations[J]. Lancet, 2017, 389: 951-963. DOI:10.1016/S0140-6736(17)30402-6
[2]
王蜜源, 韩芳芳, 刘佳, 黄凯琳, 彭红叶, 黄敏婷, 等. 大学生抑郁症状检出率及相关因素的meta分析[J]. 中国心理卫生杂志, 2020, 34: 1041-1047. DOI:10.3969/j.issn.1000-6729.2020.12.012
[3]
PAUNIO T, KORHONEN T, HUBLIN C, PARTINEN M, KOSKENVUO K, KOSKENVUO M, et al. Poor sleep predicts symptoms of depression and disability retirement due to depression[J]. J Affect Disord, 2015, 172: 381-389. DOI:10.1016/j.jad.2014.10.002
[4]
ALLEN J J B, COAN J A, NAZARIAN M. Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion[J]. Biol Psychol, 2004, 67(1/2): 183-218.
[5]
REZNIK S J, ALLEN J. Frontal asymmetry as a mediator and moderator of emotion: an updated review[J/OL]. Psychophysiology, 2018, 55: 12965. DOI: 10.1111/psyp.12965.
[6]
HALL E E, EKKEKAKIS P, VAN LANDUYT L M, PETRUZZELLO S J. Resting frontal asymmetry predicts self-selected walking speed but not affective responses to a short walk[J]. Res Q Exerc Sport, 2000, 71: 74-79.
[7]
HENRIQUES J B, DAVIDSON R J. Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects[J]. J Abnorm Psychol, 1990, 99: 22-31. DOI:10.1037/0021-843X.99.1.22
[8]
DIEGO M A, FIELD T, HERNANDEZ-REIF M. CES-D depression scores are correlated with frontal EEG α asymmetry[J]. Depress Anxiety, 2001, 13: 32-37. DOI:10.1002/1520-6394(2001)13:1<32::AID-DA5>3.0.CO;2-G
[9]
KEMP A H, GRIFFITHS K, FELMINGHAM K L, SHANKMAN S A, DRINKENBURG W, ARNS M, et al. Disorder specificity despite comorbidity: resting EEG α asymmetry in major depressive disorder and post-traumatic stress disorder[J]. Biol Psychol, 2010, 85: 350-354. DOI:10.1016/j.biopsycho.2010.08.001
[10]
HALLGREN M, STUBBS B, VANCAMPFORT D, LUNDIN A, JÄÄKALLIO P, FORSELL Y. Treatment guidelines for depression: greater emphasis on physical activity is needed[J]. Eur Psychiatry, 2017, 40: 1-3. DOI:10.1016/j.eurpsy.2016.08.011
[11]
KORMAN N, ARMOUR M, CHAPMAN J, ROSENBAUM S, KISELY S, SUETANI S, et al. High intensity interval training (HⅡT) for people with severe mental illness: a systematic review & meta-analysis of intervention studies—considering diverse approaches for mental and physical recovery[J/OL]. Psychiatry Res, 2020, 284: 112601. DOI: 10.1016/j.psychres.2019.112601.
[12]
HALL E E, EKKEKAKIS P, PETRUZZELLO S J. Regional brain activity and strenuous exercise: predicting affective responses using EEG asymmetry[J]. Biol Psychol, 2007, 75: 194-200. DOI:10.1016/j.biopsycho.2007.03.002
[13]
PETRUZZELLO S J, LANDERS D M. Varying the duration of acute exercise: implications for changes in affect[J]. Anxiety Stress Coping, 1994, 6: 301-310. DOI:10.1080/10615809408248804
[14]
PETRUZZELLO S J, TATE A K. Brain activation, affect, and aerobic exercise: an examination of both state-independent and state-dependent relationships[J]. Psychophysiology, 1997, 34: 527-533. DOI:10.1111/j.1469-8986.1997.tb01739.x
[15]
PETRUZZELLO S J, HALL E E, EKKEKAKIS P. Regional brain activation as a biological marker of affective responsivity to acute exercise: influence of fitness[J]. Psychophysiology, 2001, 38: 99-106. DOI:10.1111/1469-8986.3810099
[16]
王道阳, 戴丽华, 殷欣. 大学生的睡眠质量与抑郁、焦虑的关系[J]. 中国心理卫生杂志, 2016, 30: 226-230. DOI:10.3969/j.issn.1000-6729.2016.03.013
[17]
GELLISH R L, GOSLIN B R, OLSON R E, MCDONALD A, RUSSI G D, MOUDGIL V K. Longitudinal modeling of the relationship between age and maximal heart rate[J]. Med Sci Sports Exerc, 2007, 39: 822-829. DOI:10.1097/mss.0b013e31803349c6
[18]
MORGAN W P. Psychological components of effort sense[J]. Med Sci Sports Exerc, 1994, 26: 1071-1077.
[19]
张立. 一种简易监测运动强度和评定运动能力的方法——RPE等级值[J]. 武汉体育学院学报, 1995, 29: 41-45.
[20]
魏凯明. 瑜伽不同练习方法脑电特征的研究[D]. 长春: 吉林体育学院, 2013.
[21]
张晶, 周仁来. 额叶EEG偏侧化: 情绪调节能力的指标[J]. 心理科学进展, 2010, 18: 1679-1683.
[22]
WATSON D, CLARK L A, TELLEGEN A. Development and validation of brief measures of positive and negative affect: the PANAS scales[J]. J Pers Soc Psychol, 1988, 54: 1063-1070. DOI:10.1037/0022-3514.54.6.1063
[23]
LIGEZA T S, NOWAK I, MACIEJCZYK M, SZYGULA Z, WYCZESANY M. Acute aerobic exercise enhances cortical connectivity between structures involved in shaping mood and improves self-reported mood: an EEG effective-connectivity study in young male adults[J]. Int J Psychophysiol, 2021, 162: 22-33. DOI:10.1016/j.ijpsycho.2021.01.016
[24]
ARIDA R M, CAVALHEIRO E A, SCORZA F A. From depressive symptoms to depression in people with epilepsy: contribution of physical exercise to improve this picture[J]. Epilepsy Res, 2012, 99: 1-13. DOI:10.1016/j.eplepsyres.2011.10.012
[25]
WEGNER M, HELMICH I, MACHADO S, NARDI A E, ARIAS-CARRION O, BUDDE H. Effects of exercise on anxiety and depression disorders: review of meta- analyses and neurobiological mechanisms[J]. CNS Neurol Disord Drug Targets, 2014, 13: 1002-1014. DOI:10.2174/1871527313666140612102841
[26]
OHMATSU S, NAKANO H, TOMINAGA T, TERAKAWA Y, MURATA T, MORIOKA S. Activation of the serotonergic system by pedaling exercise changes anterior cingulate cortex activity and improves negative emotion[J]. Behav Brain Res, 2014, 270: 112-117. DOI:10.1016/j.bbr.2014.04.017
[27]
TOWERS D N, ALLEN J J B. A better estimate of the internal consistency reliability of frontal EEG asymmetry scores[J]. Psychophysiology, 2009, 46: 132-142. DOI:10.1111/j.1469-8986.2008.00759.x
[28]
SUTTON S K, DAVIDSON R J. Prefrontal brain asymmetry: a biological substrate of the behavioral approach and inhibition systems[J]. Psychol Sci, 1997, 8: 204-210. DOI:10.1111/j.1467-9280.1997.tb00413.x
[29]
NUSSLOCK R, SHACKMAN A J, HARMON-JONES E, ALLOY L B, COAN J A, ABRAMSON L Y. Cognitive vulnerability and frontal brain asymmetry: common predictors of first prospective depressive episode[J]. J Abnorm Psychol, 2011, 120: 497-503. DOI:10.1037/a0022940
[30]
ALLEN J J B, REZNIK S J. Frontal EEG asymmetry as a promising marker of depression vulnerability: summary and methodological considerations[J]. Curr Opin Psychol, 2015, 4: 93-97. DOI:10.1016/j.copsyc.2014.12.017
[31]
BLANCHARD C, RODGERS W. The effects of exercise duration on mood states in a naturalistic environment[J]. J Sport Exerc Psychol, 1998, 20: S15.
[32]
WOO M, KIM S, KIM J, PETRUZZELLO S J, HATFIELD B D. Examining the exercise-affect dose-response relationship: does duration influence frontal EEG asymmetry?[J]. Int J Psychophysiol, 2009, 72: 166-172. DOI:10.1016/j.ijpsycho.2008.12.003
[33]
SMIT D J A, POSTHUMA D, BOOMSMA D I, DE GEUS E J C. The relation between frontal EEG asymmetry and the risk for anxiety and depression[J]. Biol Psychol, 2007, 74: 26-33. DOI:10.1016/j.biopsycho.2006.06.002
[34]
WARDEN-SMITH J, PAUL L, OLUKOGBON K, BOINTON E S, COLE R H, JOHN S R, et al. Light and smell stimulus protocol reduced negative frontal EEG asymmetry and improved mood[J]. Open Life Sci, 2017, 12: 51-61. DOI:10.1515/biol-2017-0006
[35]
CRAIG A D. Forebrain emotional asymmetry: a neuroanatomical basis?[J]. Trends Cogn Sci, 2005, 9: 566-571. DOI:10.1016/j.tics.2005.10.005
[36]
SRIDHARAN D, LEVITIN D J, MENON V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks[J]. Proc Natl Acad Sci USA, 2008, 105: 12569-12574. DOI:10.1073/pnas.0800005105
[37]
WEI Y, RAMAUTAR J R, COLOMBO M A, TE LINDERT B H W, VAN SOMEREN E J W. EEG microstates indicate heightened somatic awareness in insomnia: toward objective assessment of subjective mental content[J/OL]. Front Psychiatry, 2018, 9: 395. DOI: 10.3389/fpsyt.2018.00395.
[38]
STERIADE M. Neuromodulatory systems of thalamus and neocortex[J]. Semin Neurosci, 1995, 7: 361-370. DOI:10.1006/smns.1995.0039