[1] |
GUPTA S, HAUSER B M, ZAKI M M, XU E, COTE D J, LU Y, et al. Morbidity after traumatic spinal injury in pediatric and adolescent sports-related trauma[J/OL]. J Neurosurg Spine, 2019: 1-7. DOI: 10.3171/2019.10.Spine19712.
|
[2] |
AHUJA C S, NORI S, TETREAULT L, WILSON J, KWON B, HARROP J, et al. Traumatic spinal cord injury-repair and regeneration[J]. Neurosurgery, 2017, 80(3S): S9-S22. DOI:10.1093/neuros/nyw080 |
[3] | |
[4] |
LANZA M, CAMPOLO M, CASILI G, FILIPPONE A, PATERNITI I, CUZZOCREA S, et al. Sodium butyrate exerts neuroprotective effects in spinal cord injury[J]. Mol Neurobiol, 2019, 56: 3937-3947. DOI:10.1007/s12035-018-1347-7 |
[5] |
GAO J, SUN Z, XIAO Z, DU Q, NIU X, WANG G, et al. Dexmedetomidine modulates neuroinflammation and improves outcome via alpha2-adrenergic receptor signaling after rat spinal cord injury[J]. Br J Anaesth, 2019, 123: 827-838. DOI:10.1016/j.bja.2019.08.026 |
[6] |
KANAZAWA A, YOSHIKAWA K, KOSEKI K, TAKEUCHI R, MUTSUZAKI H. A consecutive 25-week program of gait training, using the alternating Hybrid Assistive Limb (HAL ®) robot and conventional training, and its effects on the walking ability of a patient with chronic thoracic spinal cord injury: a single case reversal design[J/OL]. Medicina (Kaunas), 2019, 55: 746. DOI: 10.3390/medicina55110746.
|
[7] | |
[8] |
MENZ M D, YE P, FIROUZI K, NIKOOZADEH A, PAULY K B, KHURI-YAKUB P, et al. Radiation force as a physical mechanism for ultrasonic neurostimulation of the ex vivo retina[J]. J Neurosci, 2019, 39: 6251-6264. DOI:10.1523/JNEUROSCI.2394-18.2019 |
[9] | |
[10] |
KATIYAR A, OSBORN J, DASBANERJEE M, ZHANG L G, SARKAR K, SARKER K P. Inhibition of human breast cancer cell proliferation by low-intensity ultrasound stimulation[J]. J Ultrasound Med, 2020, 39: 2043-2052. DOI:10.1002/jum.15312 |
[11] |
LEIGHTON R, WATSON J T, GIANNOUDIS P, PAPAKOSTIDIS C, HARRISON A, STEEN R G. Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): a systematic review and meta-analysis[J]. Injury, 2017, 48: 1339-1347. DOI:10.1016/j.injury.2017.05.016 |
[12] |
DAESCHLER S C, HARHAUS L, SCHOENLE P, BOECKER A, KNESER U, BERGMEISTER K D. Ultrasound and shock-wave stimulation to promote axonal regeneration following nerve surgery: a systematic review and meta-analysis of preclinical studies[J/OL]. Sci Rep, 2018, 8: 3168. DOI: 10.1038/s41598-018-21540-5.
|
[13] |
HAFFEY P R, BANSAL N, KAYE E, OTTESTAD E, AIYER R, NOORI S, et al. The regenerative potential of therapeutic ultrasound on neural tissue: a pragmatic review[J]. Pain Med, 2020, 21: 1494-1506. DOI:10.1093/pm/pnaa090 |
[14] | |
[15] |
CHEN J, JIANG J, WANG W, QIN J, CHEN J, CHEN W, et al. Low intensity pulsed ultrasound promotes the migration of bone marrow-derived mesenchymal stem cells via activating FAK-ERK1/2 signalling pathway[J]. Artif Cells Nanomed Biotechnol, 2019, 47: 3603-3613. DOI:10.1080/21691401.2019.1657878 |
[16] |
XIE S, JIANG X, WANG R, XIE S, HUA Y, ZHOU S, et al. Low-intensity pulsed ultrasound promotes the proliferation of human bone mesenchymal stem cells by activating PI3K/AKt signaling pathways[J]. J Cell Biochem, 2019, 120: 15823-15833. DOI:10.1002/jcb.28853 |
[17] | |
[18] |
HUANG D, GAO Y, WANG S, ZHANG W, CAO H, ZHENG L, et al. Impact of low-intensity pulsed ultrasound on transcription and metabolite compositions in proliferation and functionalization of human adipose-derived mesenchymal stromal cells[J/OL]. Sci Rep, 2020, 10: 13690. DOI: 10.1038/s41598-020-69430-z.
|
[19] |
NING G Z, SONG W Y, XU H, ZHU R S, WU Q L, WU Y, et al. Bone marrow mesenchymal stem cells stimulated with low-intensity pulsed ultrasound: better choice of transplantation treatment for spinal cord injury: treatment for SCI by LIPUS-BMSCs transplantation[J]. CNS Neurosci Ther, 2019, 25: 496-508. DOI:10.1111/cns.13071 |
[20] | |
[21] | |
[22] |
LEE I C, LO T L, YOUNG T H, LI Y C, CHEN N G, CHEN C H, et al. Differentiation of neural stem/progenitor cells using low-intensity ultrasound[J]. Ultrasound Med Biol, 2014, 40: 2195-2206. DOI:10.1016/j.ultrasmedbio.2014.05.001 |
[23] |
WU Y, GAO Q, ZHU S, WU Q, ZHU R, ZHONG H, et al. Low-intensity pulsed ultrasound regulates proliferation and differentiation of neural stem cells through Notch signaling pathway[J]. Biochem Biophys Res Commun, 2020, 526: 793-798. DOI:10.1016/j.bbrc.2020.03.142 |
[24] |
LEE I C, WU H J, LIU H L. Dual-frequency ultrasound induces neural stem/progenitor cell differentiation and growth factor utilization by enhancing stable cavitation[J]. ACS Chem Neurosci, 2019, 10: 1452-1461. DOI:10.1021/acschemneuro.8b00483 |
[25] | |
[26] |
BOBOLA M S, EZEOKEKE C K, KUZNETSLOVA K, LAHTI A C, LOESER J D, OLMSTEAD T A, et al. A pre-clinical study of the response threshold of intact and transected nerves to stimulation by transcutaneous intense focused ultrasound[J]. Ultrasound Med Biol, 2019, 45: 2094-2103. DOI:10.1016/j.ultrasmedbio.2019.04.014 |
[27] |
LIU C, XU Y, YANG H, ZHANG J. Establishment of axon regeneration regulatory network and the role of low intensity pulsed ultrasound in the network[J]. Saudi J Biol Sci, 2019, 26: 1922-1926. DOI:10.1016/j.sjbs.2019.07.007 |
[28] |
CHEN S F, SU W S, WU C H, LAN T H, YANG F Y. Transcranial ultrasound stimulation improves long-term functional outcomes and protects against brain damage in traumatic brain injury[J]. Mol Neurobiol, 2018, 55: 7079-7089. DOI:10.1007/s12035-018-0897-z |
[29] |
VENTRE D, PUZAN M, ASHBOLT E, KOPPES A. Enhanced total neurite outgrowth and secondary branching in dorsal root ganglion neurons elicited by low intensity pulsed ultrasound[J/OL]. J Neural Eng, 2018, 15: 046013. DOI: 10.1088/1741-2552/aabeba.
|
[30] |
COHEN S, SAZAN H, KENIGSBERG A, SCHORI H, PIPERNO S, SHPAISMAN H, et al. Large-scale acoustic-driven neuronal patterning and directed outgrowth[J/OL]. Sci Rep, 2020, 10: 4932. DOI: 10.1038/s41598-020-60748-2.
|
[31] |
CHEN B, TJAHJA J, MALLA S, LIEBMAN C, CHO M. Astrocyte viability and functionality in spatially confined microcavitation zone[J]. ACS Appl Mater Interfaces, 2019, 11: 4889-4899. DOI:10.1021/acsami.8b21410 |
[32] | |
[33] |
YANG F Y, LU W W, LIN W T, CHANG C W, HUANG S L. Enhancement of neurotrophic factors in astrocyte for neuroprotective effects in brain disorders using low-intensity pulsed ultrasound stimulation[J]. Brain Stimul, 2015, 8: 465-473. DOI:10.1016/j.brs.2014.11.017 |
[34] |
LIU S H, LAI Y L, CHEN B L, YANG F Y. Ultrasound enhances the expression of brain-derived neurotrophic factor in astrocyte through activation of TrkB-Akt and calcium-CaMK signaling pathways[J]. Cereb Cortex, 2017, 27: 3152-3160. |
[35] | |
[36] |
ZHAO L, FENG Y, HU H, SHI A, ZHANG L, WAN M. Low-intensity pulsed ultrasound enhances nerve growth factor-induced neurite outgrowth through mechanotransduction-mediated ERK1/2-CREB-Trx-1 signaling[J]. Ultrasound Med Biol, 2016, 42: 2914-2925. DOI:10.1016/j.ultrasmedbio.2016.07.017 |
[37] |
SU W S, WU C H, CHEN S F, YANG F Y. Transcranial ultrasound stimulation promotes brain-derived neurotrophic factor and reduces apoptosis in a mouse model of traumatic brain injury[J]. Brain Stimul, 2017, 10: 1032-1041. DOI:10.1016/j.brs.2017.09.003 |
[38] |
SONG Z, YE Y, ZHANG Z, SHEN J, HU Z, WANG Z, et al. Noninvasive, targeted gene therapy for acute spinal cord injury using LIFU-mediated BDNF-loaded cationic nanobubble destruction[J]. Biochem Biophys Res Commun, 2018, 496: 911-920. DOI:10.1016/j.bbrc.2018.01.123 |
[39] |
SONG Z, WANG Z, SHEN J, XU S, HU Z. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats[J]. Int J Nanomedicine, 2017, 12: 1717-1729. DOI:10.2147/IJN.S128848 |
[40] | |
[41] |
CHEN T T, LAN T H, YANG F Y. Low-intensity pulsed ultrasound attenuates LPS-induced neuroinflammation and memory impairment by modulation of TLR4/NF-κB signaling and CREB/BDNF expression[J]. Cereb Cortex, 2019, 29: 1430-1438. DOI:10.1093/cercor/bhy039 |
[42] | |
[43] |
LV Y, ZHAO P C, CHEN G B, SHA Y Q, YANG L. Effects of low-intensity pulsed ultrasound on cell viability, proliferation and neural differentiation of induced pluripotent stem cells-derived neural crest stem cells[J]. Biotechnol Lett, 2013, 35: 2201-2212. DOI:10.1007/s10529-013-1313-4 |
[44] |
KANE N M, XIAO Q, BAKER A H, LUO Z, XU Q, EMANUELI C. Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation)[J]. Pharmacol Ther, 2011, 129: 29-49. DOI:10.1016/j.pharmthera.2010.10.004 |
[45] |
HANAWA K, ITO K, AIZAWA K, SHINDO T, NISHIMIYA K, HASEBE Y, et al. Low-intensity pulsed ultrasound induces angiogenesis and ameliorates left ventricular dysfunction in a porcine model of chronic myocardial ischemia[J/OL]. PLoS One, 2014, 9: e104863. DOI: 10.1371/journal.pone.0104863.
|
[46] |
ZIADLOO A, BURKS S R, GOLD E M, LEWIS B K, CHAUDHRY A, MERINO M J, et al. Enhanced homing permeability and retention of bone marrow stromal cells by noninvasive pulsed focused ultrasound[J]. Stem Cells, 2012, 30: 1216-1227. DOI:10.1002/stem.1099 |
[47] |
WU S, XU X, SUN J, ZHANG Y, SHI J, XU T. Low-intensity pulsed ultrasound accelerates traumatic vertebral fracture healing by coupling proliferation of type H microvessels[J]. J Ultrasound Med, 2018, 37: 1733-1742. DOI:10.1002/jum.14525 |
[48] |
HE R X, ZHOU W C, ZHANG Y, HU S, YU H S, LUO Y P, et al. Combination of low-intensity pulsed ultrasound and C3H10T1/2 cells promotes bone-defect healing[J]. Int Orthop, 2015, 39: 2181-2189. DOI:10.1007/s00264-015-2898-0 |
[49] | |
[50] |
FISHER D G, PRICE R J. Recent advances in the use of focused ultrasound for magnetic resonance image-guided therapeutic nanoparticle delivery to the central nervous system[J/OL]. Front Pharmacol, 2019, 10: 1348. DOI: 10.3389/fphar.2019.01348.
|
[51] |
KANG P L, HUANG H H, CHEN T, JU K C, KUO S M. Angiogenesis-promoting effect of LIPUS on hADSCs and HUVECs cultured on collagen/hyaluronan scaffolds[J]. Mater Sci Eng C Mater Biol Appl, 2019, 102: 22-33. DOI:10.1016/j.msec.2019.04.045 |
[52] |
UDDIN S M, QIN Y X. Enhancement of osteogenic differentiation and proliferation in human mesenchymal stem cells by a modified low intensity ultrasound stimulation under simulated microgravity[J/OL]. PLoS One, 2013, 8: e73914. DOI: 10.1371/journal.pone.0073914.
|