第二军医大学学报  2021, Vol. 42 Issue (9): 1032-1036   PDF    
基质交感分子1在消化系统疾病中的研究进展
唐健1, 李兆申1, 刘枫2     
1. 海军军医大学(第二军医大学)长海医院消化内科, 上海 200433;
2. 同济大学医学院上海第十人民医院消化内镜中心, 上海 200072
摘要: 基质交感分子1是新近发现的位于内质网膜上的Ca2+感受器,是一种与细胞Ca2+内流有关的跨膜蛋白。它作为钙库操纵性Ca2+内流过程中的重要调控蛋白,在非兴奋细胞Ca2+稳态平衡中起关键作用。目前已有国内外研究证实基质交感分子1在肿瘤、炎症、免疫等疾病的发生、发展中具有重要作用。本文就基质交感分子1在消化系统疾病中的最新进展进行总结,简述其潜在的基础研究与临床价值。
关键词: 基质交感分子1    钙库操纵性钙内流    消化系统疾病    肿瘤    炎症    
Stromal interaction molecule 1 in digestive diseases: research progress
TANG Jian1, LI Zhao-shen1, LIU Feng2     
1. Department of Gastroenterology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China;
2. Digestive Endoscopy Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
Abstract: Stromal interaction molecule 1 (STIM1) is a recently discovered Ca2+ receptor located on the membrane of endoplasmic reticulum, and it is a transmembrane protein related to cellular Ca2+ influx. As an important regulatory protein in the process of store-operated Ca2+ entry, STIM1 plays an essential role in Ca2+ homeostasis of non-excited cell. To date, domestic and foreign studies have confirmed that STIM1 plays an important role in the development and progression of various diseases such as tumor, inflammation and immunity. This article summarizes the latest research progress of STIM1 in digestive diseases, and briefly describes its potential basic research and clinical value.
Key words: stromal interaction molecule 1    store-operated calcium entry    digestive system disease    neoplasms    inflammation    

Ca2+作为重要的第二信使参与了人体各种细胞的增殖、凋亡、迁移和基因表达等过程。当细胞内质网内的钙库向外释放Ca2+时,位于细胞膜上的钙释放激活钙(calcium release-activated calcium,CRAC)通道就会开放,引起细胞外Ca2+向细胞内补充,这一过程称为钙库操纵性钙内流(store-operated calcium entry,SOCE)[1]。在非兴奋性细胞中,SOCE是维持Ca2+稳态平衡最重要的途径[2];基质交感分子1(stromal interaction molecule 1,STIM1)作为内质网膜上的Ca2+感受器,是SOCE过程中最重要结构分子和调控分子[3-4]。目前国内外已有多项研究证明STIM1在肿瘤、炎症、免疫、内分泌等方面的疾病中起到靶向调控作用[5]。根据近些年国内外最新研究结果,本文就STIM1在消化系统疾病中的研究进展进行总结,简述其潜在的基础研究与临床价值。

1 STIM1的分子结构及功能

STIM1是由685个氨基酸组成的Ⅰ型跨膜蛋白,主要分布在内质网膜上,基因定位于人染色体11p15.5[3]。作为调控SOCE的核心蛋白,STIM1的主要功能是介导细胞外Ca2+内流[4]。STIM1包含内质网区域、跨膜区域和细胞质区域。其中,Ca2+感受器位于内质网区域,由典型必要功能(essential and functional,EF)手结构、非典型EF手结构和不育α基序(sterile α motif,SAM)结构构成[6]。目前研究表明典型EF手结构可以结合Ca2+;而非典型EF手结构主要起稳定作用,未发现有结合Ca2+的能力[7]。当内质网内的Ca2+耗尽时,与典型EF手结构结合的Ca2+就会发生解离,从而导致STIM1的内质网区域和跨膜区域发生低聚化作用[8-10]。STIM1的细胞质区域主要由3个卷曲螺旋结构[卷曲螺旋(coiled-coil,CC)1、CC2、CC3]、富含丝氨酸和脯氨酸的S/P结构、富含带负电荷氨基酸的ID区及富含赖氨酸的K区构成[11],主要功能在于促使STIM1已发生低聚化的内质网区域和跨膜区域向内质网与细胞膜的连接处移位,并与钙释放激活钙通道蛋白(calcium release-activated calcium channel protein,Orai)1分子产生耦合效应打开CRAC通道,从而促使细胞外Ca2+内流即SOCE过程[12-13]。当内质网内Ca2+补充完全后,Ca2+再次结合Ca2+感受器上的典型EF手结构使STIM1分子失活、CRAC通道关闭和SOCE过程终止[9]

2 STIM1与肝脏疾病 2.1 肝脏缺血再灌注损伤

在肝脏创伤、部分切除手术、肝脏移植和机体发生休克时,肝脏缺血/再灌注损伤是一个重要的危及生命的并发症[14]。而近年研究发现STIM1基因敲除小鼠发生肝脏缺血/再灌注损伤后其损伤程度明显较未敲除小鼠轻,同时肝脏细胞凋亡受到明显抑制,血清丙氨酸转氨酶、天冬氨酸转氨酶、TNF-α、IL-6及IL-1β的水平下降,氧化应激相关指标也明显降低[15]。提示STIM1有望成为肝脏缺血/再灌注损伤的一个潜在治疗靶点。

2.2 酒精性肝病

酒精性肝病的病理变化包括肝脏脂肪变性、脂肪性肝炎、肝脏纤维化、肝硬化等。在这一病理演变过程中,乙醇对肝脏的毒性作用至关重要[16]。长期的乙醇刺激会通过上调肝脏细胞STIM1水平引起细胞外Ca2+内流,引起肝脏细胞的钙超载损伤[17]。Cui等[18]发现抑制STIM1表达后细胞内Ca2+浓度下降、细胞活性氧减少、脂质过氧化反应减轻、NF-κB的磷酸化水平下降及TNF-α减少,从而明显改善乙醇对小鼠肝脏的毒性损害。这一结果表明STIM1可能在乙醇引起的肝脏损伤中具有一定作用,但抑制STIM1表达是否可以阻断或逆转酒精性肝病的发生、发展需要更深入的研究。

2.3 肝癌

STIM1在肝癌的发生、发展中起着明显的促癌作用。沉默肝癌细胞的STIM1基因可以减弱细胞Ca2+内流,并使癌细胞停在G0/G1期,可有效遏制癌细胞的增殖、浸润[19]。同时肝癌细胞中STIM1和缺氧诱导因子1(hypoxia-inducible factor 1,HIF-1)具有协同促癌作用,HIF-1通过与STIM1基因的启动子结合促进STIM1的转录表达,从而促进SOCE过程进而导致肝癌细胞中HIF-1累积,形成了促癌的正反馈[20]。梁永红等[21]发现热休克蛋白90α可通过诱导STIM1高表达、增强SOCE过程促进肝癌转移。在HBV慢性感染过程中,致癌乙型肝炎病毒表面大蛋白(hepatitis B virus large surface protein,LHBS)PreS2区域的免疫逃逸突变体通过刺激内质网内Ca2+的不断释放启动SOCE过程,持续的SOCE过程引起肝细胞的肿瘤性转化,而沉默STIM1则可减少这种转化[22];而致癌乙型肝炎病毒X蛋白(hepatitis B virus X protein,HBx)可以直接结合STIM1-Orai1复合物并激活SOCE的通道,导致肝细胞癌变[23]。以上研究结果表明STIM1与HBV的2个重要的致癌蛋白HBx和LHBS均有关联,提示STIM1可能是介导病毒致癌的关键分子之一。

3 STIM1与胰腺疾病 3.1 急性胰腺炎

急性胰腺炎的发病与Ca2+超载密切相关[24]。在小鼠急性胰腺炎模型中发现雨蛙素可促进STIM1与Orai1结合并激活SOCE过程,导致腺泡细胞Ca2+内流超载,进而依次激活钙调磷酸酶、转录因子EB、自噬相关基因的转录表达引起自噬与空泡化现象,表明急性胰腺炎中自噬和空泡化现象也与STIM1密切相关[25]。STIM1同时参与重症急性胰腺炎致命并发症急性肺损伤的形成,Wang等[26]在胆胰管逆行注射去氧胆酸钠制备的SD大鼠急性胰腺炎肺损伤模型中发现,大鼠肺组织中STIM1Orai1的转录表达水平上调,并引起肺微血管内皮细胞的凋亡;同时,他们提出通过干扰STIM1的表达可以减轻急性肺损伤。可见,STIM1在胰腺自身炎性改变及肺部并发症中均有重要作用。

3.2 胰腺癌

胰腺癌由于缺乏早期诊断手段、远处转移发展迅速并对传统放化疗治疗敏感性低,其5年生存率仅为6%,且1年死亡率极高[27-28]。在对胰腺导管腺癌细胞表型转化的研究中发现,STIM1和三磷酸肌醇受体(inositol trisphosphate receptor,IP3R)在迁移的癌细胞内常常重新分布,这种重新分布提示癌细胞异常结构和功能极性发生改变;而当选择性抑制STIM1-Orai通道或IP3R时,胰腺癌细胞的迁移能力会被显著抑制[29]。提示STIM1作为内质网和细胞膜之间的连接分子,在胰腺癌细胞的迁移中起促进作用。在治疗方面,研究发现STIM1可以降低化疗药物的抑癌效果。Kondratska等[28]在胰腺癌细胞中发现STIM1有促进癌细胞存活的作用,通过siRNA干扰STIM1可以提高5-氟尿嘧啶和吉西他滨的抗癌效果。上述研究结果表明STIM1在胰腺癌的发病机制和治疗方面均有重要意义。

3.3 胰岛素分泌

胰腺β细胞是可兴奋细胞,胰岛素分泌主要依赖细胞膜电压依赖性Ca2+通道的开放,但目前研究证实STIM1介导的Ca2+内流在胰岛素分泌中同样起着关键作用[30-31]。在氟西汀诱导糖尿病的研究中发现氟西汀可以阻断STIM1向β细胞膜的移位并减弱Ca2+内流,导致细胞内Ca2+稳态失衡,从而减少胰岛素分泌[30]。Kono等[31]在2型糖尿病患者胰岛组织中发现STIM1的mRNA和蛋白表达水平均明显低于正常人;β细胞的STIM1基因表达缺失会降低内质网内的Ca2+负荷、增加内质网内压力、产生异常的Ca2+震荡模式并且减少葡萄糖刺激胰岛素的分泌,而STIM1基因过表达则会促进β细胞分泌胰岛素。以上研究结果提示STIM1作为促进胰岛素分泌的一个分子靶点可能具有重要的临床意义。

4 STIM1与其他消化系统肿瘤 4.1 胃癌

STIM1在人胃癌组织中的表达明显高于癌旁组织,且其表达水平与肿瘤恶性程度呈正相关[32]。STIM1促进胃癌细胞增殖、代谢、迁移和侵袭的能力与结肠癌转移相关基因1的表达上调关系密切[33];同时,STIM1也可以促进上皮间质转化,进而增强胃癌细胞的远处转移和浸润能力[34]。可见,STIM1在胃癌的发生、发展中具有重要作用。

4.2 结直肠癌

有研究发现STIM1基因过表达不仅可以提示结直肠癌患者发生远处转移,并且与不良预后密切相关[35];但又有研究通过亚组分析发现STIM1对结肠癌的促癌作用较为突出,而对直肠癌并不具有重要意义[36]。在机制方面,部分文献报道STIM1可以促进结直肠癌细胞增殖、浸润和迁移,这种促进作用与其促进结直肠癌细胞间质转化[35]和抑制线粒体相关的细胞凋亡[37]等有关。但在其他报道中,通过敲除结直肠癌细胞中STIM1基因[38]或转染STIM1-shRNA慢病毒[39]降低STIM1表达后,肿瘤细胞的增殖和迁移并未受影响;甚至有研究发现Kirsten大鼠肉瘤病毒癌基因同源物(Kirsten rat sarcoma viral oncogene homolog,KRAS)可以通过ERK通路降低STIM1在结直肠癌细胞中的表达水平[40]。总之,目前对于STIM1在结直肠癌肿瘤细胞增殖和转移中的作用尚存在争议,需要进一步研究。

4.3 胃肠道间质瘤(gastrointestinal stromal tumor,GIST)

伊马替尼作为GIST的一线用药,其耐药现象越来越明显。Yang等[41]对临床用药数据分析和标本检测发现STIM1在GIST中高表达,且与伊马替尼的耐药性相关,进一步实验证实干扰STIM1表达可以减弱耐药肿瘤细胞的增殖,该结果提示STIM1可能是提高耐药患者治疗效果的潜在靶点。

4.4 食管癌

有研究认为STIM1在食管癌的发生、发展中不具有重要作用[42]。该研究发现STIM1的表达水平在人食管鳞状细胞癌组织与正常组织中的差异无统计学意义;细胞实验也证实正常食管上皮细胞中STIM1的表达与食管癌细胞间的差异无统计学意义。该研究结果与STIM1在其他消化系统肿瘤中的报道差异较大,尚需进一步证实。

5 STIM1与胃肠运动

胃肠运动包括紧张性收缩、蠕动、分节运动等形式,这些运动的产生均与慢波电位有关,慢波电位由胃肠道Cajal细胞的自发性电活动诱导产生[43]。目前已有研究证实STIM1可以促进胃肠道Cajal细胞引起的胃肠道基础电活动[44-45]。在小鼠肠道Cajal细胞中诱导STIM1基因过表达可以增加自发性起搏电位频率[45];将STIM1的抑制剂作用于Cajal细胞不仅能够阻断Cajal细胞的SOCE过程,还降低了Cajal细胞的自发性瞬时内向电流及慢波电位[44]。可见,STIM1作为一个新的靶点在胃肠运动功能方面具有重要意义。

综上所述,STIM1不仅在肝癌、胰腺癌、胃癌、结直肠癌等肿瘤性疾病中具有促进癌细胞增殖、迁移、侵袭的作用,同时在肝脏缺血/再灌注损伤、酒精性肝病、胰腺炎、胰岛素分泌、胃肠运动和GIST伊马替尼耐药方面也发挥重要作用。可见STIM1在众多消化系统疾病的发生、发展中具有重要的生理、病理意义和临床应用前景,同时STIM1在不同疾病及疾病的不同阶段所起的作用不完全一致,需要更多的研究进一步夯实STIM1的应用基础,为预防和治疗消化系统疾病提供新思路。

参考文献
[1]
SALIDO G M, SAGE S O, ROSADO J A. Biochemical and functional properties of the store-operated Ca2+ channels[J]. Cell Signal, 2009, 21: 457-461. DOI:10.1016/j.cellsig.2008.11.005
[2]
CHEN Y F, CHEN L H, SHEN M R. The distinct role of STIM1 and STIM2 in the regulation of store-operated Ca2+ entry and cellular function[J]. J Cell Physiol, 2019, 234: 8727-8739. DOI:10.1002/jcp.27532
[3]
NOVELLO M J, ZHU J, FENG Q, IKURA M, STATHOPULOS P B. Structural elements of stromal interaction molecule function[J]. Cell Calcium, 2018, 73: 88-94. DOI:10.1016/j.ceca.2018.04.006
[4]
ROOS J, DIGREGORIO P J, YEROMIN A V, OHLSEN K, LIOUDYNO M, ZHANG S Y, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function[J]. J Cell Biol, 2005, 169: 435-445. DOI:10.1083/jcb.200502019
[5]
LACRUZ R S, FESKE S. Diseases caused by mutations in ORAI1 and STIM1[J]. Ann N Y Acad Sci, 2015, 1356: 45-79. DOI:10.1111/nyas.12938
[6]
STATHOPULOS P B, ZHENG L, LI G Y, PLEVIN M J, IKURA M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry[J]. Cell, 2008, 135: 110-122. DOI:10.1016/j.cell.2008.08.006
[7]
ZHENG L, STATHOPULOS P B, SCHINDL R, LI G Y, ROMANIN C, IKURA M. Auto-inhibitory role of the EF-SAM domain of STIM proteins in store-operated calcium entry[J]. Proc Natl Acad Sci USA, 2011, 108: 1337-1342. DOI:10.1073/pnas.1015125108
[8]
STATHOPULOS P B, ZHENG L, IKURA M. Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics[J]. J Biol Chem, 2009, 284: 728-732. DOI:10.1074/jbc.C800178200
[9]
LUIK R M, WANG B, PRAKRIYA M, WU M M, LEWIS R S. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation[J]. Nature, 2008, 454: 538-542. DOI:10.1038/nature07065
[10]
FAHRNER M, MUIK M, SCHINDL R, BUTORAC C, STATHOPULOS P, ZHENG L, et al. A coiled-coil clamp controls both conformation and clustering of stromal interaction molecule 1(STIM1)[J]. J Biol Chem, 2014, 289: 33231-33244. DOI:10.1074/jbc.M114.610022
[11]
HIRVE N, RAJANIKANTH V, HOGAN P G, GUDLUR A. Coiled-coil formation conveys a STIM1 signal from ER lumen to cytoplasm[J]. Cell Rep, 2018, 22: 72-83. DOI:10.1016/j.celrep.2017.12.030
[12]
YUAN J P, ZENG W Z, DORWART M R, CHOI Y J, WORLEY P F, MUALLEM S. SOAR and the polybasic STIM1 domains gate and regulate Orai channels[J]. Nat Cell Biol, 2009, 11: 337-343. DOI:10.1038/ncb1842
[13]
PARK C Y, HOOVER P J, MULLINS F M, BACHHAWAT P, COVINGTON E D, RAUNSER S, et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1[J]. Cell, 2009, 136: 876-890. DOI:10.1016/j.cell.2009.02.014
[14]
LI C X, NG K T, SHAO Y, LIU X B, LING C C, MA Y Y, et al. The inhibition of aldose reductase attenuates hepatic ischemia-reperfusion injury through reducing inflammatory response[J]. Ann Surg, 2014, 260: 317-328. DOI:10.1097/SLA.0000000000000429
[15]
LI Y Y, LOU C Y, WANG W Y. STIM1 deficiency protects the liver from ischemia/reperfusion injury in mice[J]. Biochem Biophys Res Commun, 2018, 496: 422-428. DOI:10.1016/j.bbrc.2018.01.006
[16]
RONG S, ZHAO Y, BAO W, XIAO X, WANG D, NUSSLER A K, et al. Curcumin prevents chronic alcohol-induced liver disease involving decreasing ROS generation and enhancing antioxidative capacity[J]. Phytomedicine, 2012, 19: 545-550. DOI:10.1016/j.phymed.2011.12.006
[17]
CUI R, YAN L, LUO Z, GUO X, YAN M. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis[J]. Toxicol Appl Pharmacol, 2015, 287: 52-66. DOI:10.1016/j.taap.2015.05.014
[18]
CUI R B, LI R, GUO X L, JIA X Q, YAN M. RNA interference against stromal interacting molecule-1(STIM1) ameliorates ethanol-induced hepatotoxicity[J]. Chem Biol Interact, 2018, 289: 47-56. DOI:10.1016/j.cbi.2018.04.025
[19]
WU Z, QING J, XIA Y, WANG K, ZHANG F. Suppression of stromal interaction molecule 1 inhibits SMMC7721 hepatocellular carcinoma cell proliferation by inducing cell cycle arrest[J]. Biotechnol Appl Biochem, 2015, 62: 107-111. DOI:10.1002/bab.1245
[20]
LI Y, GUO B, XIE Q, YE D, ZHANG D, ZHU Y, et al. STIM1 mediates hypoxia-driven hepatocarcinogenesis via interaction with HIF-1[J]. Cell Rep, 2015, 12: 388-395. DOI:10.1016/j.celrep.2015.06.033
[21]
梁永红, 冯超, 周忠信. 热休克蛋白90α通过增强钙库操作性钙离子内流活性促进肝癌细胞转移[J]. 实用医学杂志, 2018, 34: 3859-3864. DOI:10.3969/j.issn.1006-5725.2018.23.006
[22]
YEN T T, YANG A, CHIU W T, LI T N, WANG L H, WU Y H, et al. Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and promotes chromosome instability[J]. Oncotarget, 2016, 7: 23346-23360. DOI:10.18632/oncotarget.8109
[23]
YAO J H, LIU Z J, YI J H, WANG J, LIU Y N. Hepatitis B virus X protein upregulates intracellular calcium signaling by binding C-terminal of orail protein[J]. Curr Med Sci, 2018, 38: 26-34. DOI:10.1007/s11596-018-1843-z
[24]
HEGYI P, PANDOL S, VENGLOVECZ V, RAKONCZAY Z Jr. The acinar-ductal tango in the pathogenesis of acute pancreatitis[J]. Gut, 2011, 60: 544-552. DOI:10.1136/gut.2010.218461
[25]
ZHU Z D, YU T, LIU H J, JIN J, HE J. SOCE induced calcium overload regulates autophagy in acute pancreatitis via calcineurin activation[J/OL]. Cell Death Dis, 2018, 9: 50. DOI: 10.1038/s41419-017-0073-9.
[26]
WANG G Y, ZHANG J W, XU C M, HAN X, GAO Y Y, CHEN H L. Inhibition of SOCs attenuates acute lung injury induced by severe acute pancreatitis in rats and PMVECs injury induced by lipopolysaccharide[J]. Inflammation, 2016, 39: 1049-1058.
[27]
ERKAN M, REISER-ERKAN C, MICHALSKI C W, KONG B, ESPOSITO I, FRIESS H, et al. The impact of the activated stroma on pancreatic ductal adenocarcinoma biology and therapy resistance[J]. Curr Mol Med, 2012, 12: 288-303. DOI:10.2174/156652412799218921
[28]
KONDRATSKA K, KONDRATSKYI A, YASSINE M, LEMONNIER L, LEPAGE G, MORABITO A, et al. Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic adenocarcinoma[J]. Biochim Biophys Acta, 2014, 1843: 2263-2269. DOI:10.1016/j.bbamcr.2014.02.012
[29]
OKEKE E, PARKER T, DINGSDALE H, CONCANNON M, AWAIS M, VORONINA S, et al. Epithelial-mesenchymal transition, IP3 receptors and ER-PM junctions: translocation of Ca2+ signalling complexes and regulation of migration[J]. Biochem J, 2016, 473: 757-767. DOI:10.1042/BJ20150364
[30]
CHANG H Y, CHEN S L, SHEN M R, KUNG M L, CHUANG L M, CHEN Y W. Selective serotonin reuptake inhibitor, fluoxetine, impairs E-cadherin-mediated cell adhesion and alters calcium homeostasis in pancreatic beta cells[J/OL]. Sci Rep, 2017, 7: 3515. DOI: 10.1038/s41598-017-03747-0.
[31]
KONO T, TONG X, TALEB S, BONE R N, IIDA H, LEE C C, et al. Impaired store-operated calcium entry and STIM1 loss lead to reduced insulin secretion and increased endoplasmic reticulum stress in the diabetic β-cell[J]. Diabetes, 2018, 67: 2293-2304. DOI:10.2337/db17-1351
[32]
XU J M, ZHOU Y, GAO L, ZHOU S X, LIU W H, LI X A. Stromal interaction molecule 1 plays an important role in gastric cancer progression[J]. Oncol Rep, 2016, 35: 3496-3504. DOI:10.3892/or.2016.4704
[33]
XIA J L, WANG H Q, HUANG H X, SUN L, DONG S T, HUANG N, et al. Elevated Orai1 and STIM1 expressions upregulate MACC1 expression to promote tumor cell proliferation, metabolism, migration, and invasion in human gastric cancer[J]. Cancer Lett, 2016, 381: 31-40. DOI:10.1016/j.canlet.2016.07.014
[34]
WU G B, LI Y, TAN B B, FAN L Q, ZHAO Q, LIU Y, et al. Overexpression of stromal interaction molecule 1 may promote epithelial-mesenchymal transition and indicate poor prognosis in gastric cancer[J]. Mol Med Rep, 2017, 16: 151-158. DOI:10.3892/mmr.2017.6607
[35]
ZHANG Z, LIU X, FENG B, LIU N, WU Q, HAN Y, et al. STIM1, a direct target of microRNA-185, promotes tumor metastasis and is associated with poor prognosis in colorectal cancer[J]. Oncogene, 2015, 34: 4808-4820. DOI:10.1038/onc.2014.404
[36]
WONG H S, CHANG W C. Correlation of clinical features and genetic profiles of stromal interaction molecule 1(STIM1) in colorectal cancers[J]. Oncotarget, 2015, 6: 42169-42182. DOI:10.18632/oncotarget.5888
[37]
YANG D, DAI X, LI K, XIE Y, ZHAO J, DONG M, et al. Knockdown of stromal interaction molecule 1 inhibits proliferation of colorectal cancer cells by inducing apoptosis[J]. Oncol Lett, 2018, 15: 8231-8236.
[38]
ZUCCOLO E, LAFORENZA U, FERULLI F, PELLAVIO G, SCARPELLINO G, TANZI M, et al. Stim and Orai mediate constitutive Ca2+ entry and control endoplasmic reticulum Ca2+ refilling in primary cultures of colorectal carcinoma cells[J]. Oncotarget, 2018, 9: 31098-31119. DOI:10.18632/oncotarget.25785
[39]
GUI L, WANG Z J, HAN J G, MA H C, LI Z L. High expression of Orai1 enhances cell proliferation and is associated with poor prognosis in human colorectal cancer[J]. Clin Lab, 2016, 62: 1689-1698.
[40]
PIERRO C, ZHANG X, KANKEU C, TREBAK M, BOOTMAN M D, RODERICK H L. Oncogenic KRAS suppresses store-operated Ca2+ entry and ICRAC through ERK pathway-dependent remodelling of STIM expression in colorectal cancer cell lines[J]. Cell Calcium, 2018, 72: 70-80. DOI:10.1016/j.ceca.2018.03.002
[41]
YANG Z Y, PAN L J, LIU S L, LI F N, LV W, SHU Y J, et al. Inhibition of stromal-interacting molecule 1-mediated store-operated Ca2+ entry as a novel strategy for the treatment of acquired imatinib-resistant gastrointestinal stromal tumors[J]. Cancer Sci, 2018, 109: 2792-2800. DOI:10.1111/cas.13718
[42]
ZHU H, ZHANG H, JIN F, FANG M Z, HUANG M, YANG C S, et al. Elevated Orai1 expression mediates tumor-promoting intracellular Ca2+ oscillations in human esophageal squamous cell carcinoma[J]. Oncotarget, 2014, 5: 3455-3471. DOI:10.18632/oncotarget.1903
[43]
SANDERS K M, WARD S M, KOH S D. Interstitial cells: regulators of smooth muscle function[J]. Physiol Rev, 2014, 94: 859-907. DOI:10.1152/physrev.00037.2013
[44]
ZHENG H F, DRUMM B T, EARLEY S, SUNG T S, KOH S D, SANDERS K M. SOCE mediated by STIM and Orai is essential for pacemaker activity in the interstitial cells of Cajal in the gastrointestinal tract[J/OL]. Sci Signal, 2018, 11: eaaq0918. DOI: 10.1126/scisignal.aaq0918.
[45]
PARK C G, WU M J, HONG C, JO J Y, JIAO H Y, PARK H, et al. Regulation of intracellular calcium by endoplasmic reticulum proteins in small intestinal interstitial cells of Cajal[J]. J Neurogastroenterol Motil, 2018, 24: 128-137. DOI:10.5056/jnm16212