[1] | |
[2] |
CAI J B, HE M, WANG F L, XIONG J N, MAO J Q, GUAN Z H, et al. Paraplegia after transcatheter artery chemoembolization in a child with clear cell sarcoma of the kidney: a case report[J]. World J Clin Cases, 2020, 8: 2332-2338. DOI:10.12998/wjcc.v8.i11.2332 |
[3] |
ZHANG Y, LI J, WANG Y. Clear cell sarcoma of the kidney in a 62-year-old patient presenting with generalized pruritus[J/OL]. BMC Cancer, 2019, 19: 1034. DOI: 10.1186/s12885-019-6212-1.
|
[4] |
HADLEY G P, SHEIK-GAFOOR M H. Clear cell sarcoma of the kidney in children: experience in a developing country[J]. Pediatr Surg Int, 2010, 26: 345-348. DOI:10.1007/s00383-010-2554-0 |
[5] | |
[6] | |
[7] |
BALAREZO F S, JOSHI V V. Clear cell sarcoma of the pediatric kidney: detailed description and analysis of variant histologic patterns of a tumor with many faces[J]. Adv Anat Pathol, 2001, 8: 98-108. DOI:10.1097/00125480-200103000-00006 |
[8] |
KARLSSON J, HOLMQUIST MENGELBIER L, CIORNEI C D, NARANJO A, O'SULLIVAN M J, GISSELSSON D. Clear cell sarcoma of the kidney demonstrates an embryonic signature indicative of a primitive nephrogenic origin[J]. Genes Chromosomes Cancer, 2014, 53: 381-391. DOI:10.1002/gcc.22149 |
[9] |
CUTCLIFFE C, KERSEY D, HUANG C C, ZENG Y, WALTERHOUSE D, PERLMAN E J, et al. Clear cell sarcoma of the kidney: up-regulation of neural markers with activation of the sonic hedgehog and Akt pathways[J]. Clin Cancer Res, 2005, 11: 7986-7994. DOI:10.1158/1078-0432.CCR-05-1354 |
[10] |
YU G C, WANG L G, HAN Y Y, HE Q Y. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. Omics, 2012, 16: 284-287. DOI:10.1089/omi.2011.0118 |
[11] |
KANEHISA M, FURUMICHI M, TANABE M, SATO Y, MORISHIMA K. KEGG: new perspectives on genomes, pathways, diseases and drugs[J]. Nucleic Acids Res, 2017, 45(D1): D353-D361. DOI:10.1093/nar/gkw1092 |
[12] |
SMOOT M E, ONO K, RUSCHEINSKI J, WANG P L, IDEKER T. Cytoscape 2.8:new features for data integration and network visualization[J]. Bioinformatics, 2011, 27: 431-432. DOI:10.1093/bioinformatics/btq675 |
[13] |
RADULESCU V C, GERRARD M, MOERTEL C, GRUNDY P E, MATHIAS L, FEUSNER J, et al. Treatment of recurrent clear cell sarcoma of the kidney with brain metastasis[J]. Pediatr Blood Cancer, 2008, 50: 246-249. DOI:10.1002/pbc.21131 |
[14] |
HSIEH J J, PURDUE M P, SIGNORETTI S, SWANTON C, ALBIGES L, SCHMIDINGER M, et al. Renal cell carcinoma[J/OL]. Nat Rev Dis Primers, 2017, 3: 17009. DOI: 10.1038/nrdp.2017.9.
|
[15] |
KUMAR R, KAPOOR A. Current management of metastatic renal cell carcinoma: evolving new therapies[J]. Curr Opin Support Palliat Care, 2017, 11: 231-237. DOI:10.1097/SPC.0000000000000277 |
[16] |
BEDKE J, GAULER T, GRÜNWALD V, HEGELE A, HERRMANN E, HINZ S, et al. Systemic therapy in metastatic renal cell carcinoma[J]. World J Urol, 2017, 35: 179-188. DOI:10.1007/s00345-016-1868-5 |
[17] |
MOTZER R J, PENKOV K, HAANEN J, RINI B, ALBIGES L, CAMPBELL M T, et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma[J]. N Engl J Med, 2019, 380: 1103-1115. DOI:10.1056/NEJMoa1816047 |
[18] |
MCDERMOTT D F, HUSENI M A, ATKINS M B, MOTZER R J, RINI B I, ESCUDIER B, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma[J]. Nat Med, 2018, 24: 749-757. DOI:10.1038/s41591-018-0053-3 |
[19] |
GUO H, GERMAN P, BAI S, BARNES S, GUO W, QI X, et al. The PI3K/AKT pathway and renal cell carcinoma[J]. J Genet Genomics, 2015, 42: 343-353. DOI:10.1016/j.jgg.2015.03.003 |
[20] |
KAJIWARA M, MASUDA S. Role of mTOR inhibitors in kidney disease[J/OL]. Int J Mol Sci, 2016, 17: 975. DOI: 10.3390/ijms17060975.
|
[21] |
SÁNCHEZ-GASTALDO A, KEMPF E, GONZÁLEZ DEL ALBA A, DURAN I. Systemic treatment of renal cell cancer: a comprehensive review[J]. Cancer Treat Rev, 2017, 60: 77-89. DOI:10.1016/j.ctrv.2017.08.010 |
[22] |
WINOGRAD-KATZ S E, FÄSSLER R, GEIGER B, LEGATE K R. The integrin adhesome: from genes and proteins to human disease[J]. Nat Rev Mol Cell Biol, 2014, 15: 273-288. DOI:10.1038/nrm3769 |
[23] |
SUN Z, TSENG H Y, TAN S, SENGER F, KURZAWA L, DEDDEN D, et al. Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation[J]. Nat Cell Biol, 2016, 18: 941-953. DOI:10.1038/ncb3402 |
[24] |
HUANG R, ROFSTAD E K. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma[J/OL]. J Exp Clin Cancer Res, 2018, 37: 92. DOI: 10.1186/s13046-018-0763-x.
|
[25] |
ERSHAID N, SHARON Y, DORON H, RAZ Y, SHANI O, COHEN N, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis[J/OL]. Nat Commun, 2019, 10: 4375. DOI: 10.1038/s41467-019-12370-8.
|
[26] |
TORRES-MARTÍNEZ A C, GALLARDO-VERA J F, LARA-HOLGUIN A N, MONTAÑO L F, RENDÓN-HUERTA E P. Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells[J]. Exp Cell Res, 2017, 350: 226-235. DOI:10.1016/j.yexcr.2016.11.025 |
[27] |
MATSUDA Y, SEMBA S, UEDA J, FUKU T, HASUO T, CHIBA H, et al. Gastric and intestinal claudin expression at the invasive front of gastric carcinoma[J]. Cancer Sci, 2007, 98: 1014-1019. DOI:10.1111/j.1349-7006.2007.00490.x |
[28] |
LUO Y, KISHI S, SASAKI T, OHMORI H, FUJIWARA-TANI R, MORI S, et al. Targeting claudin-4 enhances chemosensitivity in breast cancer[J]. Cancer Sci, 2020, 111: 1840-1850. DOI:10.1111/cas.14361 |
[29] |
VAN ROY F. Beyond E-cadherin: roles of other cadherin superfamily members in cancer[J]. Nat Rev Cancer, 2014, 14: 121-134. DOI:10.1038/nrc3647 |
[30] | |
[31] |
ALTREE-TACHA D, TYRRELL J, HAAS T. CDH17 is a more sensitive marker for gastric adenocarcinoma than CK20 and CDX2[J]. Arch Pathol Lab Med, 2017, 141: 144-150. DOI:10.5858/arpa.2015-0404-OA |
[32] |
LIU X J, HUANG Y, YUAN H, QI X Q, MANJUNATH Y, AVELLA D, et al. Disruption of oncogenic liver-intestine cadherin (CDH17) drives apoptotic pancreatic cancer death[J]. Cancer Lett, 2019, 454: 204-214. DOI:10.1016/j.canlet.2019.04.022 |
[33] |
MARSHALL J F. Targeting CDH17 in cancer: when blocking the ligand beats blocking the receptor?[J]. Clin Cancer Res, 2018, 24: 253-255. DOI:10.1158/1078-0432.CCR-17-2823 |
[34] |
MALEKI VAREKI S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors[J/OL]. J Immunother Cancer, 2018, 6: 157. DOI: 10.1186/s40425-018-0479-7.
|
[35] |
YARMARKOVICH M, MARIS J M. When cold is hot: immune checkpoint inhibition therapy for rhabdoid tumors[J]. Cancer Cell, 2019, 36: 575-576. DOI:10.1016/j.ccell.2019.11.006 |
[36] |
NOMAN M Z, PARPAL S, VAN MOER K, XIAO M, YU Y, VIKLUND J, et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti-PD-1/PD-L1 immunotherapy[J/OL]. Sci Adv, 2020, 6: eaax7881. DOI: 10.1126/sciadv.aax7881.
|