2. 北部战区总医院第一派驻门诊部, 沈阳 110001
2. The First Outpatient Department, General Hospital of PLA Northern Theater Command, Shenyang 110001, Liaoning, China
以68镓(68Ga)标记的靶向前列腺特异性膜抗原(prostate-specific membrane antigen,PSMA)分子探针PSMA-11为示踪剂的PET-CT(68Ga-PSMA-11 PET-CT)对前列腺癌转移有较高的诊断效能,可用于初诊患者的首次分期[1-2]。本研究以68Ga-PSMA-11 PET-CT是否发现转移为金标准,初步探讨前列腺特异性抗原(prostate-specific antigen,PSA)和Gleason评分对经前列腺穿刺活检病理结果初次确诊的前列腺癌患者转移风险的联合预测价值,对未经影像学确诊转移的预判具有一定的参考和指导意义。
1 资料和方法 1.1 资料来源回顾性分析2019年1月至12月经前列腺穿刺活检病理学初次确诊、于海军军医大学(第二军医大学)长海医院核医学科行68Ga-PSMA-11 PET-CT检查的85例前列腺癌患者的影像学及临床资料。患者穿刺检查及血清PSA检测与68Ga-PSMA-11 PET-CT检查间隔时间≤1个月。排除接受过其他局部或系统治疗(如手术、内分泌治疗、放射治疗、化学治疗)者及罹患其他肿瘤者。本研究经海军军医大学(第二军医大学)长海医院伦理委员会审批(CHEC 2019-0905),并在研究数据备案平台备案(2019-029),患者均知情同意并签署知情同意书。
1.2 68Ga-PSMA-11 PET-CT检查利用锗镓发生器(740 MBq 68Ge/68Ga发生器,德国ITG公司,放化纯度>95%)自动化淋洗PSMA-11前体(上海嘉标生物科技有限公司)合成68Ga-PSMA-11。患者注射示踪剂前静息15 min,静脉注射(2.00~2.33 MBq/kg)后静息50 min,饮水及排空尿液后行PET-CT(Biograph 64,德国西门子公司)检查。扫描时患者双手置于身体两侧,扫描范围从头部至股骨中段;先行CT扫描(电压120 kV、重建层厚3.0 mm),然后行PET扫描(共6~7个床位,每个床位约3.0 min);扫描时根据厚度及密度自动调节管电流强度。数据衰减校正后行迭代重建,利用麦迪克斯工作站系统(北京麦迪克斯科技有限公司)进行图像自动对位融合显示,得到水平面、冠状面、矢状面图像及最大密度投影(maximum intensity projection,MIP)图像。
1.3 图像分析与诊断标准68Ga-PSMA-11 PET-CT图像由2位经验丰富的核医学高级职称医师双盲阅片,2位医师结论不一致时讨论确定。前列腺、唾液腺、泪腺、下颌下腺、肝脏、小肠、胰腺可见正常生理性摄取,骨骼、关节退变等可见不规则性摄取,胆囊、肾脏、输尿管、膀胱可见生理性浓聚。生理性摄取和浓聚灶以外的局部异常摄取灶诊断为肿瘤病灶。前列腺内的肿瘤病灶为原发灶,原发灶累及邻近组织器官的病灶为直接侵犯灶,淋巴结和骨骼及其他脏器的肿瘤病灶为转移灶。
1.4 统计学处理应用SPSS 21.0软件进行统计学分析。符合正态分布的计量资料以x±s表示,不符合正态分布的计量资料以中位数(范围)表示,计数资料以例数和百分数表示。组间PSA与Gleason评分的差异性检验采用两独立样本非参数检验(Mann-Whitney U检验)。由于Gleason评分为6~10分时才被临床定义为有意义的前列腺癌,因此以PSA×(Gleason评分-5)的形式纳入PSA和Gleason评分2个转移风险预测因素。以68Ga-PSMA-11 PET-CT阳性发现作为诊断肿瘤转移的金标准,通过ROC曲线分析PSA、Gleason评分和PSA×(Gleason评分-5)对肿瘤转移的诊断效能。以68Ga-PSMA-11 PET-CT诊断结果为因变量,PSA×(Gleason评分-5)为自变量进行二元logistic回归分析,构建转移风险的logistic预测模型和回归方程,再以随后自然到访的20例初诊前列腺癌患者的影像和临床数据为外部验证数据,检验回归方程预测转移风险的准确性。所有检验均为双侧检验,检验水准(α)为0.05。
2 结果 2.1 患者基本情况纳入研究的85例初诊前列腺癌患者年龄为49~88(69.1±7.7)岁,其中无转移组46例(54.1%)、转移组39例(45.9%)。转移组患者的PSA水平[75.0(7.7~533.9)ng/mL vs 13.8(3.8~62.0)ng/mL]、Gleason评分[8(6~10)分vs 8(6~10)分]均高于无转移组,差异均有统计学意义(Z=-5.521,P<0.01;Z=-2.033,P=0.042)。患者的临床特征及影像学参数见表 1。
2.2 各预测变量的诊断效能
以PSA作为连续自变量预测转移时,预测前列腺癌转移风险的ROC AUC为0.849(95% CI 0.766~0.932,P=0.001),最佳界值58.86 ng/mL对应的灵敏度为61.5%,特异度为97.8%,约登指数为0.593;以Gleason评分单独作为连续自变量预测转移时,预测前列腺癌转移风险的ROC AUC为0.623(95% CI 0.505~0.742,P=0.051),最佳界值7.5分对应的灵敏度为71.8%,特异度为47.8%,约登指数为0.196。PSA×(Gleason评分-5)作为连续自变量预测转移时,预测值ROC AUC为0.857(95% CI 0.772~0.942,P<0.01),最佳界值130.62 ng/mL对应的灵敏度为71.8%,特异度为95.7%,约登指数为0.675。
2.3 回归方程及其准确性检验以PSA×(Gleason评分-5)作为自变量构建回归方程:logit(P)=0.019×PSA×(Gleason评分-5)-2.3;logit(P)>0.50时预测患者有转移,logit(P)≤0.50时预测无转移。该模型对转移风险的预测准确度达81.2%(69/85)。模型构建数据预测情况四格表见表 2。
统计结果表明,PSA[34.9(3.8~533.9)ng/mL vs 61.7(8.1~269.8)ng/mL,Z=-1.616,P=0.106]和Gleason评分[8(6~10)分vs 8(6~10)分,Z=-1.391,P=0.164)在外部验证数据与模型构建数据间差异无统计学意义,符合检验条件;外部验证数据代入回归方程预测转移风险的准确度为85.0%(17/20),预测情况四格表见表 3。
2.4 典型病例
图 1列举了4例预测正确的典型病例的MIP图。病例1与病例2的转移概率logit(P)分别为-2.16和-0.55,均小于0.50,经回归方程预测为无转移,经68Ga-PSMA-11 PET-CT诊断为无转移,预测正确。病例3与病例4的转移概率分别为3.40和35.89,均大于0.50,经回归方程预测为转移,经68Ga-PSMA-11 PET-CT诊断为转移,预测正确。
3 讨论
68Ga-PSMA-11 PET-CT应用于初诊前列腺癌的诊断和分期,诊断效能优异[1-2]。因此,本研究以68Ga-PSMA-11 PET-CT阳性发现作为有无转移的金标准,探索初诊前列腺癌患者PSA联合Gleason评分对转移风险的预测价值。
68Ga-PSMA PET-CT对前列腺癌骨转移的诊断效能较高,或许可代替骨扫描成为指南性检查手段。Pomykala等[3]对5项前瞻性研究共388例接受68Ga-PSMA PET-CT检查的前列腺癌患者资料进行回顾性分析发现,首次分期初诊患者占24%(93/388),生化复发溯源患者占58%(225/388),复发转移再分期患者占18%(70/388),总体阳性率为83%(321/388)。Uslu-Beşli等[4]对28例初诊前列腺癌患者的回顾性研究发现,对所有的骨转移病灶基于患者分析时,骨扫描灵敏度、特异度、阳性预测值、阴性预测值和准确度分别为72.7%、52.9%、50.0%、75.0%和60.7%,68Ga-PSMA-11 PET-CT分别为90.9%、100.0%、100.0%、94.4%和96.4%;基于区域分析时,骨扫描分别为76.2%、80.9%、57.1%、91.1%和79.8%,68Ga-PSMA-11 PET-CT分别为85.7%、100%、100%、95.5%和95.4%。上述结果提示骨扫描和常规影像检查阴性、有转移的高危患者能从68Ga-PSMA-11 PET-CT检查中受益。Lengana等[5]的研究也显示了相似的结果,骨扫描诊断骨转移的灵敏度和准确度分别为73.1%和84.1%,而68Ga-PSMA-11 PET-CT诊断的灵敏度和准确度高达96.2%和99.1%,且对溶骨性和骨髓侵犯的骨转移肿瘤均有较高的检出率。
68Ga-PSMA PET-CT对初诊患者淋巴结转移的诊断效能亦较高。Franklin等[6]发现68Ga-PSMA PET-CT对盆腔淋巴结转移的术前诊断比多参数MRI更优,前者的阳性预测值和阴性预测值分别为66.7%、84.3%,而后者的分别为59.1%、78.7%。Petersen等[7]以腹腔镜下扩大淋巴结清扫术病理结果为金标准,回顾了20例初诊前列腺癌患者术前的多模态影像资料发现,68Ga-PSMA PET-CT定性诊断淋巴结转移的灵敏度和特异度分别为39%和100%,增强CT或常规序列MRI相应值分别为8%和100%,弥散加权序列的相应值分别为36%和83%;68Ga-PSMA PET-CT的阳性预测值和阴性预测值分别为100%和49%,增强CT或常规序列MRI的相应值分别为100%和37%,弥散加权序列的相应值分别为80%和42%。
多项研究表明,血清PSA水平及Gleason评分是初诊前列腺癌患者转移风险的关键预测因素。Ho等[8]在一项纳入258例(其中骨扫描阳性90例)初诊前列腺癌患者的研究中发现,诊断时PSA水平和根治术后病理的盆腔淋巴结受累情况是预测骨转移概率的2个独立因素,在PSA水平<20 ng/mL和<10 ng/mL的患者中,骨转移率分别为10.3%(12/117)和9.7%(7/72);而在PSA水平<10 ng/mL且盆腔淋巴结病理呈阴性的患者中,骨扫描阴性率为93.8%。Singh等[9]回顾性分析了68例印度初诊前列腺癌患者的骨扫描资料发现,PSA水平在≤10 ng/mL、>10~20 ng/mL、>20~100 ng/mL和>100 ng/mL 4个区间时,骨扫描阳性率分别为0(0/4)、38.46%(5/13)、60.87%(14/23)和100%(28/28),各组间差异有统计学意义(P<0.05);以PSA=10 ng/mL为界值时,对应的灵敏度为100%,特异度为19.05%,阳性预测值为73.44%。Zaman等[10]对204例初诊前列腺癌患者的研究发现,骨转移的发生率为33%(67/204);PSA水平≤10 ng/mL、>10~20 ng/mL、>20~50 ng/mL、>50~100 ng/mL和>100 ng/mL时,骨扫描阳性率分别为14%、10%、32%、56%和82%,中位Gleason评分分别为7、6、7、8和8分,2个指标差异均有统计学意义;以PSA=48 ng/mL为界值时,诊断骨转移的灵敏度为68.3%,特异度为86.1%;以Gleason评分=8分为界值时,诊断骨转移的灵敏度为88.9%,特异度为56.2%。Hamstra等[11]研究发现,与Gleason评分为6~7分的患者相比,8~10分的患者的总生存时间更短,更倾向发生远处转移。Chen等[12]对80例(其中骨转移45例)初诊患者进行多因素回归分析显示,PSA、Gleason评分、雄激素受体表达是骨转移的独立危险因素,三者的OR值分别为1.005、4.095、14.023,界值分别为67.1 ng/mL、7.5分、2.5,灵敏度分别为55.6%、75.6%、84.0%,特异度分别为97.1%、82.9%、91.4%。Markowski等[13]发现Gleason评分与生化复发性多发转移亦有关联,该研究的656例生化复发患者中有250例发生了肿瘤转移复发,Gleason评分是发生转移复发的独立危险因素。
本研究只纳入PSA及Gleason评分2个转移风险预测因素,回归方程简易、可操作性强。由于临床上有意义的前列腺癌的Gleason评分为6~10分,PSA和Gleason评分是初诊前列腺癌患者最常用的临床参数,本研究创造性地将两者以PSA×(Gleason评分-5)的方式联合为单变量来预测转移风险,进一步增加Gleason评分的变异系数,更利于回归方程的优化和拟合。
根据美国国家综合癌症网络(National Comprehensive Cancer Network,NCCN)指南推荐,Gleason评分≥8分或PSA>20 ng/mL或临床T分期≥3a者即被列为转移的高风险组[14]。在基层医疗机构对低风险患者行PSA监测随访时,本研究结果可能存在一定转化价值,可结合骨扫描进一步增加转移风险诊断的准确性。对高风险患者,不具备骨扫描条件的医疗机构应该及时告知患者转诊,有条件的医疗机构应考虑让患者进行骨扫描检查、磁共振全身弥散加权成像(类PET成像),甚至68Ga-PSMA PET-CT和68Ga-PSMA PET-MRI等检查。
本研究存在一定的不足:(1)单中心、小样本量的回顾性研究,未对预测变量进行进一步分层。(2)内分泌治疗会改变肿瘤细胞的PSMA表达和血清PSA水平[15],从而干扰SUVmax阈值,因此本模型的适应人群仅为初诊患者。(3)本研究以68Ga-PSMA-11 PET-CT阳性发现作为判断是否有前列腺癌转移的金标准,低表达PSMA的转移病灶可能为假阴性病灶。
[1] |
HOPE T A, GOODMAN J Z, ALLEN I E, CALAIS J, FENDLER W P, CARROLL P R. Metaanalysis of 68Ga-PSMA-11 PET accuracy for the detection of prostate cancer validated by histopathology[J]. J Nucl Med, 2019, 60: 786-793. DOI:10.2967/jnumed.118.219501 |
[2] |
JANSSEN J C, MEIßNER S, WOYTHAL N, PRASAD V, BRENNER W, DIEDERICHS G, et al. Comparison of hybrid 68Ga-PSMA-PET/CT and 99mTc-DPD-SPECT/CT for the detection of bone metastases in prostate cancer patients: additional value of morphologic information from low dose CT[J]. Eur Radiol, 2018, 28: 610-619. DOI:10.1007/s00330-017-4994-6 |
[3] |
POMYKALA K L, CZERNIN J, GROGAN T R, ARMSTRONG W R, WILLIAMS J, CALAIS J. Total-body 68Ga-PSMA-11 PET/CT for bone metastasis detection in prostate cancer patients: potential impact on bone scan guidelines[J]. J Nucl Med, 2020, 61: 405-411. DOI:10.2967/jnumed.119.230318 |
[4] |
USLU-BEŞLI L, SAĞER S, AKGÜN E, ASA S, ŞAHIN O E, DEMIRDAĞ Ç, et al. Comparison of 68Ga-PSMA positron emission tomography/computerized tomography with Tc-99m MDP bone scan in prostate cancer patients[J]. Turk J Med Sci, 2019, 49: 301-310. DOI:10.3906/sag-1807-4 |
[5] |
LENGANA T, LAWAL I O, BOSHOMANE T G, POPOOLA G O, MOKOALA K M G, MOSHOKOA E, et al. 68Ga-PSMA PET/CT replacing bone scan in the initial staging of skeletal metastasis in prostate cancer: a fait accompli?[J]. Clin Genitourin Cancer, 2018, 16: 392-401. DOI:10.1016/j.clgc.2018.07.009 |
[6] |
FRANKLIN A, YAXLEY W J, RAVEENTHIRAN S, COUGHLIN G, GIANDUZZO T, KUA B, et al. Histological comparison between predictive value of preoperative 3-T multiparametric MRI and 68Ga-PSMA PET/CT scan for pathological outcomes at radical prostatectomy and pelvic lymph node dissection for prostate cancer[J]. BJU Int, 2021, 127: 71-79. DOI:10.1111/bju.15134 |
[7] |
PETERSEN L J, NIELSEN J B, LANGKILDE N C, PETERSEN A, AFSHAR-OROMIEH A, DE SOUZA N M, et al. 68Ga-PSMA PET/CT compared with MRI/CT and diffusion-weighted MRI for primary lymph node staging prior to definitive radiotherapy in prostate cancer: a prospective diagnostic test accuracy study[J]. World J Urol, 2020, 38: 939-948. DOI:10.1007/s00345-019-02846-z |
[8] |
HO C C, SEONG P K, ZAINUDDIN Z M, ABDUL MANAF M R, PARAMESWARAN M, RAZACK A H. Retrospective study of predictors of bone metastasis in prostate cancer cases[J]. Asian Pac J Cancer Prev, 2013, 14: 3289-3292. DOI:10.7314/APJCP.2013.14.5.3289 |
[9] |
SINGH O P, YOGI V, REDHU P, GHORI H U, PAREEK A, LAL N. Role of serum prostate-specific antigen as predictor for bone metastases in newly diagnosed prostate cancer[J]. J Cancer Res Ther, 2019, 15: S39-S41. DOI:10.4103/jcrt.JCRT_189_18 |
[10] |
ZAMAN MU, FATIMA N, SAJJAD Z. Metastasis on bone scan with low prostate specific antigen (≤ 20 ng/mL) and Gleason's score (< 8) in newly diagnosed Pakistani males with prostate cancer: should we follow Western guidelines?[J]. Asian Pac J Cancer Prev, 2011, 12: 1529-1532. |
[11] |
HAMSTRA D A, PUGH S L, LEPOR H, ROSENTHAL S A, PIENTA K J, GOMELLA L, et al. Gleason pattern 5 is associated with an increased risk for metastasis following androgen deprivation therapy and radiation: an analysis of RTOG 9202 and 9902[J]. Radiother Oncol, 2019, 141: 137-143. DOI:10.1016/j.radonc.2019.08.020 |
[12] |
CHEN Y H, LIN Y, NIE P, JIANG W, LIU Y Q, YUAN R Q, et al. Associations of prostate-specific antigen, prostate carcinoma tissue Gleason score, and androgen receptor expression with bone metastasis in patients with prostate carcinoma[J]. Med Sci Monit, 2017, 23: 1768-1774. DOI:10.12659/MSM.900977 |
[13] |
MARKOWSKI M C, CHEN Y, FENG Z, CULLEN J, TROCK B J, SUZMAN D, et al. PSA doubling time and absolute PSA predict metastasis-free survival in men with biochemically recurrent prostate cancer after radical prostatectomy[J]. Clin Genitourin Cancer, 2019, 17: 470-475. DOI:10.1016/j.clgc.2019.08.002 |
[14] |
MOHLER J L, ANTONARAKIS E S, ARMSTRONG A J, D'AMICO A V, DAVIS B J, DORFF T, et al. Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2019, 17: 479-505. DOI:10.6004/jnccn.2019.0023 |
[15] |
BATRA J S, PIENTA K J, POMPER M G, GORIN M A, ROWE S P. Can the interplay between androgen signaling and PSMA expression be leveraged for theranostic applications?[J]. Transl Androl Urol, 2019, 8: S263-S264. DOI:10.21037/tau.2019.03.13 |