类风湿关节炎(rheumatoid arthritis,RA)是一种以滑膜炎症为基本病理改变的自身免疫病,临床表现为以小关节受累为主的对称性、持续性、进展性多关节炎,部分患者可出现心、肺、肾及神经等系统病变[1]。RA的发病机制尚未阐明,目前研究认为RA是环境因素作用于有遗传背景的个体、诱导免疫病理反应所致,其中免疫紊乱是导致RA发病的中心环节[2]。近年来,随着研究的深入及B细胞清除药物如CD20单抗的临床应用,B细胞功能异常在RA发病机制中所发挥的作用受到广泛关注。自身反应性B细胞过度激活分泌大量抗体、调节性B细胞(regulatory B cell,Breg)比例降低造成免疫失耐受等过程均在RA发病中起着重要作用,B细胞还可通过提呈抗原并激活T细胞、直接分泌细胞因子介导炎症反应等参与RA的发生、发展[3]。深入了解B细胞功能紊乱与RA发病的关系,不仅有助于进一步明确RA的发病机制,也为寻求RA治疗的新策略开拓了思路。本文主要针对B细胞参与RA发病机制的研究进展进行综述。
1 B细胞分泌自身抗体类风湿因子(rheumatoid factor,RF)及抗瓜氨酸蛋白抗体(anti-citrullinated protein antibody,ACPA)等自身抗体的产生是RA的特征之一,甚至可以早于临床症状出现。多种环境因素导致RA患者免疫失耐受,自身反应性B细胞过度激活分泌大量抗体,除RF外,还包括抗环瓜氨酸肽抗体(anti-cyclic citrullinated peptide antibody,抗CCP抗体)、抗氨基甲酰化蛋白抗体(anti-carbamylation protein antibody,抗CarP抗体)、抗角蛋白抗体(anti-keratin antibody,AKA)等[4],这些抗体参与了RA的发病及病情进展,并被广泛应用于辅助临床诊断、评估疾病活动及预后等。
1.1 RFRF是首个在RA患者中发现的自身抗体,主要为IgM型,亦存在IgA、IgG、IgE、IgD等其他亚型。RF的主要抗原为IgG分子的Fc段,抗原与抗体结合形成免疫复合物,通过刺激促炎细胞因子的分泌及参与补体级联反应参与滑膜组织的破坏[5]。RF临床作用广泛,早在1987年,美国风湿病学会就将RF水平纳入疾病的分类标准中。但RF的诊断特异性较差,RF阳性亦可见于其他自身免疫性疾病(如干燥综合征、系统性红斑狼疮等)、感染性疾病(如肝炎、结核等)、肿瘤性疾病(如肺癌等),甚至可见于正常老年人或RA患者亲属,其总体灵敏度为60%~90%,特异度为48%~85%[6]。同时,IgM型RF滴度通常与RA疾病活动度相关,可以作为评估疾病活动的重要标志物[7]。
1.2 ACPAACPA是包括抗CCP抗体、AKA、抗核周蛋白抗体等在内的一组抗体,其主要抗原为人体内经过肽酰基精氨酸脱亚胺酶(peptidylarginine deiminase,PAD)修饰后的瓜氨酸多肽[8]。目前认为其参与RA致病的主要机制为:瓜氨酸多肽通过抗原提呈细胞激活易感个体的T细胞,刺激B细胞分泌ACPA,继而通过形成免疫复合物或直接结合破骨细胞的方式促进滑膜炎和骨侵蚀的发生[9]。ACPA诊断RA的特异度高达95%以上,同时由于其在关节症状出现几年之前即可检出,可作为RA早期诊断的重要标志物[10]。ACPA滴度也可预示骨侵蚀的严重程度、影像学进展[11]及心肺等重要脏器受累情况[12]。
关于分泌ACPA的特异性B细胞的定位尚无定论。有研究提出ACPA主要由CD19+CD20-CD27-浆细胞及浆母细胞分泌产生,这也解释了临床上使用CD20单抗药物难以有效降低ACPA水平并容易出现症状反复的现象[13]。最近Germar等[14]通过分析3个分泌ACPA的特异性B细胞克隆细胞系,发现这些特异性抗体分泌细胞表面高表达CD40和C5aR1,为鉴定ACPA相关的抗体分泌细胞及下一步靶向治疗提供了理论依据。
2 Breg紊乱导致免疫失耐受Breg是一类发挥免疫负性调控功能并维持机体免疫耐受的B细胞,其通过分泌IL-10、TGFβ和IL-35等保护性细胞因子,促进调节性T细胞(regulatory T cell,Treg)的分化、抑制促炎细胞因子的产生,发挥负性免疫调控功能[15],故被认为是自身免疫疾病中的保护性B细胞[16]。目前Breg的特异性表型尚无明确定论,有研究提出人类外周血中Breg主要是CD19+CD24hiCD38hi和CD19+CD24hiCD27+B细胞[17]。CD19+CD24hiCD38hi Breg也被称为"过渡期B细胞",具有抑制CD4+CD25-T细胞向辅助性T细胞(T helper cell,Th)1、Th17分化并使其向Treg方向分化的功能;而CD19+CD24hiCD27+Breg可以通过分泌IL-10进一步抑制单核巨噬细胞分泌TNF-α[18]。
近年来多项研究证明,RA患者外周血中Breg数量下降、功能紊乱是致使RA患者出现免疫失耐受进而导致发病的重要原因[15]。Flores-Borja等[19]及Daien等[20]都发现RA患者外周血中CD19+CD24hiCD38hi Breg绝对值和比例显著下降且与疾病活动度[28处关节的疾病活动评分(disease activity score-28,DAS-28)]呈负相关;同时,这些Breg功能受损、难以促进Treg的分化,提示其免疫调节功能减弱可能是Breg参与RA发病的重要机制。另外,Cui等[21]发现在RA患者中CD19+CD5+CD1dhi Breg数量下降,可能通过增加颗粒酶B(granzyme-B,GzmB)的分泌参与发病;Guo等[22]发现CD19+Foxp3+和CD19+TGFβ+Breg在RA患者中数量减少,同时可能与肺间质纤维化等脏器受累相关;Salomon等[23]发现RA患者中CD19+CD24hiCD27+、CD19+CD24hiCD38hi Breg不仅数量减少、功能受损,而且这2种Breg的基线期水平可以作为生物标志物用来预测阿巴西普的治疗效果,从而指导临床治疗。
研究Breg在RA中的紊乱有助于深入探究RA发病机制、寻找致病性B细胞亚群、发现预测疾病发生和发展的生物标志物、获得新的治疗靶点,但是目前受限于对Breg表型的研究不够深入,关于Breg在RA发病机制中的作用尚存在争议[24],仍有待于进一步研究。
3 B细胞提呈抗原激活T细胞免疫除了分泌抗体,B细胞也是重要的抗原提呈细胞之一,与树突状细胞一起,通过激活T细胞分泌大量促炎因子或直接导致关节破坏来参与RA发病机制。B细胞可以通过其表面的B细胞抗原受体(B-cell receptor,BCR)摄取变异的瓜氨酸肽等自身抗原,形成自身肽/主要组织相容性复合体(major histocompatibility complex,MHC)复合物,刺激自身反应性T细胞向记忆性T细胞分化并促进其迁移至滑膜,调节树突状细胞功能,激活自身免疫应答[25]。与树突状细胞等其他抗原提呈细胞相比,B细胞显示出极强的抗原富集的特性,这主要是由于B细胞表面具有数量庞大的BCR,可使浓度较低的抗原富集后再摄入胞内进行提呈[26]。
Hamel等[27]和Ray等[28]分别观察到,使用CD20单抗后关节炎小鼠模型出现了CD4+CD25+T细胞数量下降、同时Foxp3的表达量下降,提示其功能受损,证明了B细胞具有提呈抗原、促进T细胞分化的功能。O’Neill等[29]通过对B细胞缺陷和Ig缺陷(mIgM)的自身免疫性关节炎小鼠模型的研究发现,这些B细胞功能缺乏的小鼠T细胞的功能也受到限制,同时其关节炎症状也较轻。Takemura等[30]利用异种移植技术将富含B细胞的RA患者的滑膜组织移植给严重免疫缺陷小鼠,再为其注射利妥昔单抗,发现小鼠生发中心结构破坏、滤泡样树突状细胞数量减少、T细胞活化障碍,进而导致促炎因子产生减少、关节炎症状缓解,提示RA滑膜中的T细胞激活及细胞因子分泌可能依赖B细胞的提呈作用。Reddy等[31]也发现,使用利妥昔单抗的RA患者出现了T细胞比例异常及功能障碍。上述研究都证明,B细胞介导的抗原提呈作用在RA的发病机制中发挥着重要的作用。
4 B细胞直接分泌炎性因子参与骨破坏多种促炎细胞因子参与RA的发病及进展,主要的促炎细胞因子包括:具有促进滑膜细胞增殖功能的TNF-α、IL-17、IL-8、TGF-β等;具有促进破骨细胞活化作用的TNF-α、IL-1、IL-17、IL-6、IL-23等[32]。既往认为促炎细胞因子的产生主要依赖T细胞、单核/巨噬细胞及滑膜成纤维细胞,但近期研究证明B细胞也可直接分泌TNF-α、IL-6、IL-17、IL-23、TGFβ等促炎细胞因子,直接参与骨破坏而致病[33]。
RA骨破坏主要是由破骨与成骨过程失衡造成的,其中破骨细胞的分化需要核因子κB受体活化因子配体(receptor activator of nuclear factor κB ligand,RANKL)的刺激,而滑膜B细胞源性的IL-17、TNF-α等细胞因子则是RANKL的重要激活分子[34]。Yeo等[35]发现RA患者滑膜组织中表达Fc受体样4蛋白(Fc receptor-like 4,FcRL4)的B细胞可直接分泌RANKL,参与破骨细胞激活、导致骨侵蚀发生。成骨细胞功能障碍也是RA发生骨破坏的重要因素。近期,Sun等[36]发现富集于软骨下的B细胞大量分泌趋化因子C-C模序配体3(chemokine C-C motif ligand 3,CCL3)及TNF-α,通过激活细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)和NF-κB信号通路抑制成骨细胞分化,参与RA骨侵蚀。上述研究结果表明,B细胞不仅可以通过分泌抗体、激活T细胞的方式参与骨质破坏,而且可以通过直接分泌炎性因子造成骨代谢紊乱。
5 常见RA治疗药物对B细胞的影响鉴于B细胞在RA发病中的重要作用,CD20单抗等以B细胞为靶点的药物被广泛使用,并已写入欧洲抗风湿病联盟(European Alliance of Associations for Rheumatology,EULAR)的最新治疗指南中,用于治疗难治性RA患者[37]。利妥昔单抗治疗可显著降低RA患者血清IgM/IgA型RF、ACPA和抗突变型瓜氨酸波形蛋白(mutated citrullinated vimentin,MCV)抗体等自身抗体水平[38],并显著减少RA患者外周血中的BCR克隆,提示患者的自身免疫性显著下降[39]。但是利妥昔单抗对于B细胞的清除作用并不彻底,这与其疗效不佳、病情易复发的临床结局相吻合[39]。
此外,其他药物也可通过影响B细胞的数量及功能起到治疗效果。甲氨蝶呤、来氟米特、柳氮磺吡啶等传统改善病情抗风湿药物(conventional synthetic disease-modifying anti-rheumatic drug,csDMARD)可显著抑制B细胞的克隆增殖及抗体产生[40]。同时,甲氨蝶呤还可显著提高RA患者外周血中B细胞的甲基化水平[41],而甲氨蝶呤、羟氯喹、柳氮磺吡啶的三联疗法可以显著抑制RA患者滑膜组织中与浆母细胞/浆细胞分化相关的基因[42]。TNF-α抑制剂可显著降低RA患者外周血中记忆性B细胞的数量[43],同时增加可以分泌IL-10的Breg的数量[44]。IL-6抑制剂可以显著降低外周血及滑膜组织中记忆性B细胞的数量,降低Ig突变频率和BCR基因重排频率[45]。JAK1/JAK3等靶向合成改善病情抗风湿药物(target synthetic disease-modifying anti-rheumatic drug,tsDMARD)可阻断幼稚B细胞向浆细胞分化[46],并通过降低滑膜组织中的趋化因子C-X-C模序配体(chemokine C-X-C motif ligand,CXCL)10、CXCL13的表达阻碍致病B细胞向靶组织的迁移归巢[47]。上述研究结果不仅阐明了RA的治疗靶点,同时也为评估药物疗效提供了许多可选择的生物标志物。
6 小结近年来的研究从抗体依赖和非抗体依赖等多种途径探讨了B细胞在RA发生、发展中的作用,但相关机制仍未完全阐明。同时,以B细胞为靶点的RA治疗药物的相关研究也在如火如荼地进行,有望为RA的治疗提供新的策略。以单细胞免疫组库技术为代表的一批新研究方法的诞生将会把B细胞如何参与疾病发病机制的研究推向深入,为全面理解RA发病机制、寻找新的治疗靶点提供更系统全面的理论支撑。
[1] |
SCOTT D L, WOLFE F, HUIZINGA T W. Rheumatoid arthritis[J]. Lancet, 2010, 376: 1094-1108. DOI:10.1016/S0140-6736(10)60826-4 |
[2] |
SMOLEN J S, ALETAHA D, BARTON A, BURMESTER G R, EMERY P, FIRESTEIN G S, et al. Rheumatoid arthritis[J/OL]. Nat Rev Dis Primers, 2018, 4: 18001. DOI: 10.1038/nrdp.2018.1.
|
[3] |
PALA O, DIAZ A, BLOMBERG B B, FRASCA D. B lymphocytes in rheumatoid arthritis and the effects of anti-TNF-α agents on B lymphocytes: a review of the literature[J]. Clin Ther, 2018, 40: 1034-1045. DOI:10.1016/j.clinthera.2018.04.016 |
[4] |
VAN DELFT M A M, HUIZINGA T W J. An overview of autoantibodies in rheumatoid arthritis[J/OL]. J Autoimmun, 2020, 110: 102392. DOI: 10.1016/j.jaut.2019.102392.
|
[5] |
VOLKOV M, VANS CHIE K A, VAN DER WOUDE D. Autoantibodies and B cells: the ABC of rheumatoid arthritis pathophysiology[J]. Immunol Rev, 2020, 294: 148-163. DOI:10.1111/imr.12829 |
[6] |
SPARKS J A. Rheumatoid arthritis[J/OL]. Ann Intern Med, 2019, 170: ITC1-ITC16. DOI: 10.7326/AITC201901010.
|
[7] |
ALETAHA D, ALASTI F, SMOLEN J S. Rheumatoid factor, not antibodies against citrullinated proteins, is associated with baseline disease activity in rheumatoid arthritis clinical trials[J/OL]. Arthritis Res Ther, 2015, 17: 229. DOI: 10.1186/s13075-015-0736-9.
|
[8] |
CATRINA A I, SVENSSON C I, MALMSTRÖM V, SCHETT G, KLARESKOG L. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis[J]. Nat Rev Rheumatol, 2017, 13: 79-86. DOI:10.1038/nrrheum.2016.200 |
[9] |
WU C Y, YANG H Y, LAI J H. Anti-citrullinated protein antibodies in patients with rheumatoid arthritis: biological effects and mechanisms of immunopathogenesis[J/OL]. Int J Mol Sci, 2020, 21: 4015. DOI: 10.3390/ijms21114015.
|
[10] |
ELOFF E, MARTINSSON K, ZIEGELASCH M, CEDERGREN J, RECKNER Å, SKOGH T, et al. Autoantibodies are major predictors of arthritis development in patients with anti-citrullinated protein antibodies and musculoskeletal pain[J]. Scand J Rheumatol, 2020, 27: 1-9. |
[11] |
KRISHNAMURTHY A, JOSHUA V, HAJ HENSVOLD A, JIN T, SUN M, VIVAR N, et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss[J]. Ann Rheum Dis, 2016, 75: 721-729. |
[12] |
MALMSTRÖM V, CATRINA A I, KLARESKOG L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting[J]. Nat Rev Immunol, 2017, 17: 60-75. DOI:10.1038/nri.2016.124 |
[13] |
KERKMAN P F, ROMBOUTS Y, VAN DER VOORT E I, TROUW L A, HUIZINGA T W, TOES R E, et al. Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis[J]. Ann Rheum Dis, 2013, 72: 1259-1263. DOI:10.1136/annrheumdis-2012-202893 |
[14] |
GERMAR K, FEHRES C M, SCHERER H U, VAN UDEN N, POLLASTRO S, YEREMENKO N, et al. Generation and characterization of anti-citrullinated protein antibody-producing B cell clones from rheumatoid arthritis patients[J]. Arthritis Rheumatol, 2019, 71: 340-350. DOI:10.1002/art.40739 |
[15] |
UMMARINO D. Rheumatoid arthritis: defective IL-10-producing Breg cells[J/OL]. Nat Rev Rheumatol, 2017, 13: 132. DOI: 10.1038/nrrheum.2017.10.
|
[16] |
DASGUPTA S, DASGUPTA S, BANDYOPADHYAY M. Regulatory B cells in infection, inflammation, and autoimmunity[J/OL]. Cell Immunol, 2020, 352: 104076. DOI: 10.1016/j.cellimm.2020.104076.
|
[17] |
ROSSER E C, MAURI C. Regulatory B cells: origin, phenotype, and function[J]. Immunity, 2015, 42: 607-612. DOI:10.1016/j.immuni.2015.04.005 |
[18] |
WĄSIK M, NAZIMEK K, BRYNIARSKI K. Regulatory B cell phenotype and mechanism of action: the impact of stimulating conditions[J]. Microbiol Immunol, 2018, 62: 485-496. DOI:10.1111/1348-0421.12636 |
[19] |
FLORES-BORJA F, BOSMA A, NG D, REDDY V, EHRENSTEIN M R, ISENBERG D A, et al. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation[J/OL]. Sci Transl Med, 2013, 5: 173ra23. DOI: 10.1126/scitranslmed.3005407.
|
[20] |
DAIEN C I, GAILHAC S, MURA T, AUDO R, COMBE B, HAHNE M, et al. Regulatory B10 cells are decreased in patients with rheumatoid arthritis and are inversely correlated with disease activity[J]. Arthritis Rheumatol, 2014, 66: 2037-2046. DOI:10.1002/art.38666 |
[21] |
CUI D, ZHANG L, CHEN J, ZHU M, HOU L, CHEN B, et al. Changes in regulatory B cells and their relationship with rheumatoid arthritis disease activity[J]. Clin Exp Med, 2015, 15: 285-292. DOI:10.1007/s10238-014-0310-9 |
[22] |
GUO Y, ZHANG X, QIN M, WANG X. Changes in peripheral CD19+Foxp3+ and CD19+TGFβ+ regulatory B cell populations in rheumatoid arthritis patients with interstitial lung disease[J]. J Thorac Dis, 2015, 7: 471-477. |
[23] |
SALOMON S, GUIGNANT C, MOREL P, FLAHAUT G, BRAULT C, GOURGUECHON C, et al. Th17 and CD24hiCD27+ regulatory B lymphocytes are biomarkers of response to biologics in rheumatoid arthritis[J/OL]. Arthritis Res Ther, 2017, 19: 33. DOI: 10.1186/s13075-017-1244-x.
|
[24] |
MOHD JAYA F N, GARCIA S G, BORRÀS F E, CHAN G C F, FRANQUESA M. Paradoxical role of Breg-inducing cytokines in autoimmune diseases[J/OL]. J Transl Autoimmun, 2019, 2: 100011. DOI: 10.1016/j.jtauto.2019.100011.
|
[25] |
TAKEUCHI Y, HIROTA K, SAKAGUCHI S. Impaired T cell receptor signaling and development of T cell-mediated autoimmune arthritis[J]. Immunol Rev, 2020, 294: 164-176. DOI:10.1111/imr.12841 |
[26] |
LEBRE M C, JONGBLOED S L, TAS S W, SMEETS T J, MCINNES I B, TAK P P. Rheumatoid arthritis synovium contains two subsets of CD83-DC-LAMP- dendritic cells with distinct cytokine profiles[J]. Am J Pathol, 2008, 172: 940-950. DOI:10.2353/ajpath.2008.070703 |
[27] |
HAMEL K M, CAO Y, ASHAYE S, WANG Y, DUNN R, KEHRY M R, et al. B cell depletion enhances T regulatory cell activity essential in the suppression of arthritis[J]. J Immunol, 2011, 187: 4900-4906. DOI:10.4049/jimmunol.1101844 |
[28] |
RAY A, KHALIL M I, PULAKANTI K L, BURNS R T, GURSKI C J, BASU S, et al. Mature IgDlow/- B cells maintain tolerance by promoting regulatory T cell homeostasis[J/OL]. Nat Commun, 2019, 10: 190. DOI: 10.1038/s41467-018-08122-9.
|
[29] |
O'NEILL S K, SHLOMCHIK M J, GLANT T T, CAO Y, DOODES P D, FINNEGAN A. Antigen-specific B cells are required as APCs and autoantibody-producing cells for induction of severe autoimmune arthritis[J]. J Immunol, 2005, 174: 3781-3788. DOI:10.4049/jimmunol.174.6.3781 |
[30] |
TAKEMURA S, KLIMIUK P A, BRAUN A, GORONZY J J, WEYAND C M. T cell activation in rheumatoid synovium is B cell dependent[J]. J Immunol, 2001, 167: 4710-4718. DOI:10.4049/jimmunol.167.8.4710 |
[31] |
REDDY V, CAMBRIDGE G, ISENBERG D A, GLENNIE M J, CRAGG M S, LEANDRO M. Internalization of rituximab and the efficiency of B Cell depletion in rheumatoid arthritis and systemic lupus erythematosus[J]. Arthritis Rheumatol, 2015, 67: 2046-2055. DOI:10.1002/art.39167 |
[32] |
MCINNES I B, SCHETT G. Pathogenetic insights from the treatment of rheumatoid arthritis[J]. Lancet, 2017, 389: 2328-2337. DOI:10.1016/S0140-6736(17)31472-1 |
[33] |
FILLATREAU S. B cells and their cytokine activities implications in human diseases[J]. Clin Immunol, 2018, 186: 26-31. DOI:10.1016/j.clim.2017.07.020 |
[34] |
YEO L, TOELLNER K M, SALMON M, FILER A, BUCKLEY C D, RAZA K, et al. Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis[J]. Ann Rheum Dis, 2011, 70: 2022-2028. DOI:10.1136/ard.2011.153312 |
[35] |
YEO L, LOM H, JUAREZ M, SNOW M, BUCKLEY C D, FILER A, et al. Expression of FcRL4 defines a pro-inflammatory, RANKL-producing B cell subset in rheumatoid arthritis[J]. Ann Rheum Dis, 2015, 74: 928-935. DOI:10.1136/annrheumdis-2013-204116 |
[36] |
SUN W, MEEDNU N, ROSENBERG A, RANGEL-MORENO J, WANG V, GLANZMAN J, et al. B cells inhibit bone formation in rheumatoid arthritis by suppressing osteoblast differentiation[J/OL]. Nat Commun, 2018, 9: 5127. DOI: 10.1038/s41467-018-07626-8.
|
[37] |
SMOLEN J S, LANDEWÉ R B M, BIJLSMA J W J, BURMESTER G R, DOUGADOS M, KERSCHBAUMER A, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update[J]. Ann Rheum Dis, 2020, 79: 685-699. |
[38] |
FABRIS M, DE VITA S, BLASONE N, VISENTINI D, PEZZARINI E, PONTARINI E, et al. Serum levels of anti-CCP antibodies, anti-MCV antibodies and RF IgA in the follow-up of patients with rheumatoid arthritis treated with rituximab[J]. Auto Immun Highlights, 2010, 1: 87-94. DOI:10.1007/s13317-010-0013-5 |
[39] |
POLLASTRO S, KLARENBEEK P L, DOORENSPLEET M E, VAN SCHAIK B D C, ESVELDT R E E, THURLINGS R M, et al. Non-response to rituximab therapy in rheumatoid arthritis is associated with incomplete disruption of the B cell receptor repertoire[J]. Ann Rheum Dis, 2019, 78: 1339-1345. DOI:10.1136/annrheumdis-2018-214898 |
[40] |
YAP H Y, TEE S Z, WONG M M, CHOW S K, PEH S C, TEOW S Y. Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development[J/OL]. Cells, 2018, 7: 161. DOI: 10.3390/cells7100161.
|
[41] |
DE ANDRES M C, PEREZ-PAMPIN E, CALAZA M, SANTACLARA F J, ORTEA I, GOMEZ-REINO J J, et al. Assessment of global DNA methylation in peripheral blood cell subpopulations of early rheumatoid arthritis before and after methotrexate[J/OL]. Arthritis Res Ther, 2015, 17: 233. DOI: 10.1186/s13075-015-0748-5.
|
[42] |
WALSH A M, WECHALEKAR M D, GUO Y, YIN X, WEEDON H, PROUDMAN S M, et al. Triple DMARD treatment in early rheumatoid arthritis modulates synovial T cell activation and plasmablast/plasma cell differentiation pathways[J/OL]. PLoS One, 2017, 12: e0183928. DOI: 10.1371/journal.pone.0183928.
|
[43] |
MOURA R A, QUARESMA C, VIEIRA A R, GONÇALVES M J, POLIDO-PEREIRA J, ROMÃO V C, et al. B-cell phenotype and IgDˉCD27ˉmemory B cells are affected by TNF-inhibitors and tocilizumab treatment in rheumatoid arthritis[J/OL]. PLoS One, 2017, 12: e0182927. DOI: 10.1371/journal.pone.0182927.
|
[44] |
BANKÓ Z, POZSGAY J, GÁTI T, ROJKOVICH B, UJFALUSSY I, SÁRMAY G. Regulatory B cells in rheumatoid arthritis: alterations in patients receiving anti-TNF therapy[J]. Clin Immunol, 2017, 184: 63-69. DOI:10.1016/j.clim.2017.05.012 |
[45] |
NAKAYAMADA S, KUBO S, YOSHIKAWA M, MIYAZAKI Y, YUNOUE N, IWATA S, et al. Differential effects of biological DMARDs on peripheral immune cell phenotypes in patients with rheumatoid arthritis[J]. Rheumatology (Oxford), 2018, 57: 164-174. DOI:10.1093/rheumatology/kex012 |
[46] |
RIZZI M, LORENZETTI R, FISCHER K, STANIEK J, JANOWSKA I, TROILO A, et al. Impact of tofacitinib treatment on human B-cells in vitro and in vivo[J]. J Autoimmun, 2017, 77: 55-66. DOI:10.1016/j.jaut.2016.10.005 |
[47] |
BOYLE D L, SOMA K, HODGE J, KAVANAUGH A, MANDEL D, MEASE P, et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis[J]. Ann Rheum Dis, 2015, 74: 1311-1316. |