[1] |
WONG M C, GOGGINS W B, WANG H H, FUNG F D, LEUNG C, WONG S Y, et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries[J]. Eur Urol, 2016, 70: 862-874. DOI:10.1016/j.eururo.2016.05.043 |
[2] |
CULP M B, SOERJOMATARAM I, EFSTATHIOU J A, BRAY F, JEMAL A. Recent global patterns in prostate cancer incidence and mortality rates[J]. Eur Urol, 2020, 77: 38-52. DOI:10.1016/j.eururo.2019.08.005 |
[3] |
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70: 7-30. DOI:10.3322/caac.21590 |
[4] |
CHEN W, ZHENG R, BAADE P D, ZHANG S, ZENG H, BRAY F, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66: 115-132. DOI:10.3322/caac.21338 |
[5] |
FENG R M, ZONG Y N, CAO S M, XU R H. Current cancer situation in China: good or bad news from the 2018 global cancer statistics?[J/OL]. Cancer Commun (Lond), 2019, 39: 22. DOI: 10.1186/s40880-019-0368-6.
|
[6] |
CHEN L, ZHANG Y H, WANG S, ZHANG Y, HUANG T, CAI Y D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways[J/OL]. PLoS One, 2017, 12: e0184129. DOI: 10.1371/journal.pone.0184129.
|
[7] |
HAN M, PARTIN A W, POUND C R, EPSTEIN J I, WALSH P C. Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15-year Johns Hopkins experience[J]. Urol Clin North Am, 2001, 28: 555-565. DOI:10.1016/S0094-0143(05)70163-4 |
[8] |
STARK J R, PERNER S, STAMPFER M J, SINNOTT J A, FINN S, EISENSTEIN A S, et al. Gleason score and lethal prostate cancer: does 3+4=4+3?[J]. J Clin Oncol, 2009, 27: 3459-3464. DOI:10.1200/JCO.2008.20.4669 |
[9] |
RIZZO S, BOTTA F, RAIMONDI S, ORIGGI D, FANCIULLO C, MORGANTI A G, et al. Radiomics: the facts and the challenges of image analysis[J/OL]. Eur Radiol Exp, 2018, 2: 36. DOI: 10.1186/s41747-018-0068-z.
|
[10] | |
[11] |
HECTORS S J, CHERNY M, YADAV K K, BEKSAÇ A T, THULASIDASS H, LEWIS S, et al. Radiomics features measured with multiparametric magnetic resonance imaging predict prostate cancer aggressiveness[J]. J Urol, 2019, 202: 498-505. DOI:10.1097/JU.0000000000000272 |
[12] |
WEINREB J C, BARENTSZ J O, CHOYKE P L, CORNUD F, HAIDER M A, MACURA K J, et al. PI-RADS prostate imaging-reporting and data system: 2015, version 2[J]. Eur Urol, 2016, 69: 16-40. DOI:10.1016/j.eururo.2015.08.052 |
[13] |
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, PADHANI A R, VILLEIRS G, MACURA K J, et al. Prostate imaging reporting and data system version 2.1:2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76: 340-351. DOI:10.1016/j.eururo.2019.02.033 |
[14] |
KUHL C K, BRUHN R, KRÄMER N, NEBELUNG S, HEIDENREICH A, SCHRADING S. Abbreviated biparametric prostate MR imaging in men with elevated prostate-specific antigen[J]. Radiology, 2017, 285: 493-505. DOI:10.1148/radiol.2017170129 |
[15] |
WANG J, WU C J, BAO M L, ZHANG J, WANG X N, ZHANG Y D. Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer[J]. Eur Radiol, 2017, 27: 4082-4090. DOI:10.1007/s00330-017-4800-5 |
[16] | |
[17] |
EGEVAD L, DELAHUNT B, SRIGLEY J R, SAMARATUNGA H. International Society of Urological Pathology (ISUP) grading of prostate cancer-An ISUP consensus on contemporary grading[J]. APMIS, 2016, 124: 433-435. DOI:10.1111/apm.12533 |
[18] |
GIBBS P, TURNBULL L W. Textural analysis of contrast-enhanced MR images of the breast[J]. Magn Reson Med, 2003, 50: 92-98. DOI:10.1002/mrm.10496 |
[19] |
COLLEWET G, STRZELECKI M, MARIETTE F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification[J]. Magn Reson Imaging, 2004, 22: 81-91. DOI:10.1016/j.mri.2003.09.001 |
[20] |
VICKERS A J, CRONIN A M, ELKIN E B, GONEN M. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers[J/OL]. BMC Med Inform Decis Mak, 2008, 8: 53. DOI: 10.1186/1472-6947-8-53.
|
[21] |
KHAWAJA A Z, CASSIDY D B, AL SHAKARCHI J, MCGROGAN D G, INSTON N G, JONES R G. Revisiting the risks of MRI with gadolinium based contrast agents-review of literature and guidelines[J]. Insights Imaging, 2015, 6: 553-558. DOI:10.1007/s13244-015-0420-2 |
[22] |
MCDONALD R J, MCDONALD J S, KALLMES D F, JENTOFT M E, MURRAY D L, THIELEN K R, et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging[J]. Radiology, 2015, 275: 772-782. DOI:10.1148/radiol.15150025 |
[23] |
MCDONALD R J, MCDONALD J S, KALLMES D F, JENTOFT M E, PAOLINI M A, MURRAY D L, et al. Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities[J]. Radiology, 2017, 285: 546-554. DOI:10.1148/radiol.2017161595 |
[24] |
ABDOLLAHI H, MOSTAFAEI S, CHERAGHI S, SHIRI I, RABI MAHDAVI S, KAZEMNEJAD A. Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: a machine learning and multi-variable modelling study[J]. Phys Med, 2018, 45: 192-197. DOI:10.1016/j.ejmp.2017.10.008 |
[25] |
宋涛, 陆建平, 张倩雯. 人工智能医学影像技术在胰腺神经内分泌肿瘤分级中的应用[J]. 第二军医大学学报, 2020, 41: 433-438. SONG T, LU J P, ZHANG Q W. Application of artificial intelligence medical imaging technology in grading of pancreatic neuroendocrine neoplasms[J]. Acad J Sec Mil Med Univ, 2020, 41: 433-438. |
[26] |
STOYANOVA R, TAKHAR M, TSCHUDI Y, FORD J C, SOLÓRZANO G, ERHO N, et al. Prostate cancer radiomics and the promise of radiogenomics[J]. Transl Cancer Res, 2016, 5: 432-447. DOI:10.21037/tcr.2016.06.20 |
[27] |
NIU X K, CHEN Z F, CHEN L, LI J, PENG T, LI X. Clinical application of biparametric MRI texture analysis for detection and evaluation of high-grade prostate cancer in zone-specific regions[J]. AJR Am J Roentgenol, 2018, 210: 549-556. DOI:10.2214/AJR.17.18494 |
[28] |
BATES A, MILES K. Prostate-specific membrane antigen PET/MRI validation of MR textural analysis for detection of transition zone prostate cancer[J]. Eur Radiol, 2017, 27: 5290-5298. DOI:10.1007/s00330-017-4877-x |
[29] |
VIGNATI A, MAZZETTI S, GIANNINI V, RUSSO F, BOLLITO E, PORPIGLIA F, et al. Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness[J]. Phys Med Biol, 2015, 60: 2685-2701. DOI:10.1088/0031-9155/60/7/2685 |
[30] |
STOYANOVA R, POLLACK A, TAKHAR M, LYNNE C, PARRA N, LAM L L, et al. Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies[J]. Oncotarget, 2016, 7: 53362-53376. DOI:10.18632/oncotarget.10523 |
[31] |
LAU W K, BLUTE M L, BOSTWICK D G, WEAVER A L, SEBO T J, ZINCKE H. Prognostic factors for survival of patients with pathological Gleason score 7 prostate cancer: differences in outcome between primary Gleason grades 3 and 4[J]. J Urol, 2001, 166: 1692-1697. DOI:10.1016/S0022-5347(05)65655-8 |
[32] |
WIBMER A, HRICAK H, GONDO T, MATSUMOTO K, VEERARAGHAVAN H, FEHR D, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores[J]. Eur Radiol, 2015, 25: 2840-2850. DOI:10.1007/s00330-015-3701-8 |
[33] |
CHADDAD A, KUCHARCZYK M J, NIAZI T. Multimodal radiomic features for the predicting Gleason score of prostate cancer[J/OL]. Cancers (Basel), 2018, 10: 249. DOI: 10.3390/cancers10080249.
|
[34] |
TURKBEY B, SHAH V P, PANG Y X, BERNARDO M, XU S, KRUECKER J, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images?[J]. Radiology, 2011, 258: 488-495. DOI:10.1148/radiol.10100667 |
[35] |
DONATI O F, MAZAHERI Y, AFAQ A, VARGAS H A, ZHENG J T, MOSKOWITZ C S, et al. Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient[J]. Radiology, 2014, 271: 143-152. DOI:10.1148/radiol.13130973 |
[36] |
CHADDAD A, NIAZI T, PROBST S, BLADOU F, ANIDJAR M, BAHORIC B. Predicting Gleason score of prostate cancer patients using radiomic analysis[J/OL]. Front Oncol, 2018, 8: 630. DOI: 10.3389/fonc.2018.00630.
|
[37] |
GONG L X, XU M, FANG M J, ZOU J, YANG S D, YU X Y, et al. Noninvasive prediction of high-grade prostate cancer via biparametric MRI radiomics[J]. J Magn Reson Imaging, 2020, 52: 1102-1109. DOI:10.1002/jmri.27132 |
[38] |
ROMEO V, RICCIARDI C, CUOCOLO R, STANZIONE A, VERDE F, SARNO L, et al. Machine learning analysis of MRI-derived texture features to predict placenta accreta spectrum in patients with placenta previa[J]. Magn Reson Imaging, 2019, 64: 71-76. DOI:10.1016/j.mri.2019.05.017 |
[39] |
SHIRI I, MALEKI H, HAJIANFAR G, ABDOLLAHI H, ASHRAFINIA S, HATT M, et al. Next-generation radiogenomics sequencing for prediction of EGFR and KRAS mutation status in NSCLC patients using multimodal imaging and machine learning algorithms[J]. Mol Imaging Biol, 2020, 22: 1132-1148. DOI:10.1007/s11307-020-01487-8 |
[40] |
ZHANG Y, ZHU Y F, SHI X M, TAO J, CUI J J, DAI Y, et al. Soft tissue sarcomas: preoperative predictive histopathological grading based on radiomics of MRI[J]. Acad Radiol, 2019, 26: 1262-1268. DOI:10.1016/j.acra.2018.09.025 |
[41] |
张加辉, 陈峰, 薛星, 张思影, 尧林鹏, 王小丽, 等. 基于支持向量机的MRI影像组学方法鉴别不同病理分型原发性肝癌的价值[J]. 中华放射学杂志, 2018, 52: 333-337. |
[42] |
ISARIYAWONGSE B K, SUN L, BAÑEZ L L, ROBERTSON C, POLASCIK T J, MALONEY K, et al. Significant discrepancies between diagnostic and pathologic Gleason sums in prostate cancer: the predictive role of age and prostate-specific antigen[J]. Urology, 2008, 72: 882-886. DOI:10.1016/j.urology.2008.02.021 |
[43] |
LOPES VENDRAMI C, MCCARTHY R J, CHATTERJEE A, CASALINO D, SCHAEFFER E M, CATALONA W J, et al. The utility of prostate specific antigen density, prostate health index, and prostate health index density in predicting positive prostate biopsy outcome is dependent on the prostate biopsy methods[J]. Urology, 2019, 129: 153-159. DOI:10.1016/j.urology.2019.03.018 |
[44] |
GÜNDOĞDU E, EMEKLI E, KEBAPÇI M. Evaluation of relationships between the final Gleason score, PI-RADS v2 score, ADC value, PSA level, and tumor diameter in patients that underwent radical prostatectomy due to prostate cancer[J]. Radiol Med, 2020, 125: 827-837. DOI:10.1007/s11547-020-01183-1 |