[1] |
DONGHUI C, SHICAI C, WEI W, FEI L, JIANJUN J, GANG C, et al. Functional modulation of satellite cells in long-term denervated human laryngeal muscle[J]. Laryngoscope, 2010, 120: 353-358. DOI:10.1002/lary.20796 |
[2] |
IWATA Y, OZAKI N, HIRATA H, SUGIURA Y, HORII E, NAKAO E, et al. Fibroblast growth factor-2 enhances functional recovery of reinnervated muscle[J]. Muscle Nerve, 2006, 34: 623-630. DOI:10.1002/mus.20634 |
[3] |
JENG S F, RAU C S, LILIANG P C, WU C J, LU T H, CHEN Y C, et al. Profiling muscle-specific microRNA expression after peripheral denervation and reinnervation in a rat model[J]. J Neurotrauma, 2009, 26: 2345-2353. DOI:10.1089/neu.2009.0960 |
[4] |
HSIEH C H, JENG S F, WU C J, LU T H, YANG J C, CHEN Y C, et al. Altered expression of the microRNAs and their potential target genes in the soleus muscle after peripheral denervation and reinnervation in rats[J]. J Trauma, 2011, 70: 472-480. |
[5] |
WILUSZ J E, SHARP P A. Molecular biology. A circuitous route to noncoding RNA[J]. Science, 2013, 340: 440-441. DOI:10.1126/science.1238522 |
[6] |
LI Z, LIU S, LI X, ZHAO W, LI J, XU Y. Circular RNA in schizophrenia and depression[J/OL]. Front Psychiatry, 2020, 11: 392. DOI: 10.3389/fpsyt.2020.00392.
|
[7] |
WU X, XIAO Y, MA J, WANG A. Circular RNA: a novel potential biomarker for skin diseases[J/OL]. Pharmacol Res, 2020, 158: 104841. DOI: 10.1016/j.phrs.2020.104841.
|
[8] |
JIN J, SUN H, SHI C, YANG H, WU Y, LI W, et al. Circular RNA in renal diseases[J]. J Cell Mol Med, 2020, 24: 6523-6533. DOI:10.1111/jcmm.15295 |
[9] |
GENG X, LIN X, ZHANG Y, LI Q, GUO Y, FANG C, et al. Exosomal circular RNA sorting mechanisms and their function in promoting or inhibiting cancer[J]. Oncol Lett, 2020, 19: 3369-3380. |
[10] |
XU S, ZHOU L, PONNUSAMY M, ZHANG L, DONG Y, ZHANG Y, et al. A comprehensive review of circRNA: from purification and identification to disease marker potential[J/OL]. PeerJ, 2018, 6: e5503. DOI: 10.7717/peerj.5503.
|
[11] |
SANGER H L, KLOTZ G, RIESNER D, GROSS H J, KLEINSCHMIDT A K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73: 3852-3856. DOI:10.1073/pnas.73.11.3852 |
[12] |
SALZMAN J, GAWAD C, WANG P L, LACAYO N, BROWN P O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J/OL]. PLoS One, 2012, 7: e30733. DOI: 10.1371/journal.pone.0030733.
|
[13] |
WU W, JI P, ZHAO F. CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes[J/OL]. Genome Biol, 2020, 21: 101. DOI: 10.1186/s13059-020-02018-y.
|
[14] |
HUANG A, ZHENG H, WU Z, CHEN M, HUANG Y. Circular RNA-protein interactions: functions, mechanisms, and identification[J]. Theranostics, 2020, 10: 3503-3517. DOI:10.7150/thno.42174 |
[15] |
QUAN G, LI J. Circular RNAs: biogenesis, expression and their potential roles in reproduction[J/OL]. J Ovarian Res, 2018, 11: 9. DOI: 10.1186/s13048-018-0381-4.
|
[16] |
JECK W R, SORRENTINO J A, WANG K, SLEVIN M K, BURD C E, LIU J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19: 141-157. DOI:10.1261/rna.035667.112 |
[17] |
ZHANG Y, ZHANG X O, CHEN T, XIANG J F, YIN Q F, XING Y H, et al. Circular intronic long noncoding RNAs[J]. Mol Cell, 2013, 51: 792-806. DOI:10.1016/j.molcel.2013.08.017 |
[18] |
HSIAO K Y, SUN H S, TSAI S J. Circular RNA-New member of noncoding RNA with novel functions[J]. Exp Biol Med (Maywood), 2017, 242: 1136-1141. DOI:10.1177/1535370217708978 |
[19] |
DAS A, DAS A, DAS D, ABDELMOHSEN K, PANDA A C. Circular RNAs in myogenesis[J/OL]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863: 194372. DOI: 10.1016/j.bbagrm.2019.02.011.
|
[20] |
CHEN L L. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol, 2020, 21: 475-490. DOI:10.1038/s41580-020-0243-y |
[21] |
YAO T, CHEN Q, FU L, GUO J. Circular RNAs: biogenesis, properties, roles, and their relationships with liver diseases[J]. Hepatol Res, 2017, 47: 497-504. DOI:10.1111/hepr.12871 |
[22] |
ZHANG X O, WANG H B, ZHANG Y, LU X, CHEN L L, YANG L. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159: 134-147. DOI:10.1016/j.cell.2014.09.001 |
[23] |
JECK W R, SHARPLESS N E. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32: 453-461. DOI:10.1038/nbt.2890 |
[24] |
DONG R, ZHANG X O, ZHANG Y, MA X K, CHEN L L, YANG L. CircRNA-derived pseudogenes[J]. Cell Res, 2016, 26: 747-750. DOI:10.1038/cr.2016.42 |
[25] |
IVANOV A, MEMCZAK S, WYLER E, TORTI F, PORATH H T, OREJUELA M R, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals[J]. Cell Rep, 2015, 10: 170-177. DOI:10.1016/j.celrep.2014.12.019 |
[26] |
RYBAK-WOLF A, STOTTMEISTER C, GLA Ž AR P, JENS M, PINO N, GIUSTI S, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58: 870-885. DOI:10.1016/j.molcel.2015.03.027 |
[27] |
CHEN Z, WANG H, ZHONG J, YANG J, DARWAZEH R, TIAN X, et al. Significant changes in circular RNA in the mouse cerebral cortex around an injury site after traumatic brain injury[J]. Exp Neurol, 2019, 313: 37-48. DOI:10.1016/j.expneurol.2018.12.003 |
[28] |
QIN C, LIU C B, YANG D G, GAO F, ZHANG X, ZHANG C, et al. Circular RNA expression alteration and bioinformatics analysis in rats after traumatic spinal cord injury[J/OL]. Front Mol Neurosci, 2019, 11: 497. DOI: 10.3389/fnmol.2018.00497.
|
[29] |
SOHN E J, PARK H T. Differential expression of circular RNAs in the proximal and distal segments of the sciatic nerve after injury[J]. Neuroreport, 2020, 31: 76-84. DOI:10.1097/WNR.0000000000001371 |
[30] |
ZHOU Z B, NIU Y L, HUANG G X, LU J J, CHEN A, ZHU L. Silencing of circRNA.2837 plays a protective role in sciatic nerve injury by sponging the miR-34 family via regulating neuronal autophagy[J]. Mol Ther Nucleic Acids, 2018, 12: 718-729. DOI:10.1016/j.omtn.2018.07.011 |
[31] |
ZHAO Y, ALEXANDROV P N, JABER V, LUKIW W J. Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer's disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7)[J/OL]. Genes (Basel), 2016, 7: 116. DOI: 10.3390/genes7120116.
|
[32] |
FENG Z, ZHANG L, WANG S, HONG Q. Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson's disease[J]. Biochem Biophys Res Commun, 2020, 522: 388-394. DOI:10.1016/j.bbrc.2019.11.102 |
[33] |
CERVERA-CARLES L, DOLS-ICARDO O, MOLINA-PORCEL L, ALCOLEA D, CERVANTES-GONZALEZ A, MUÑOZ-LLAHUNA L, et al. Assessing circular RNAs in Alzheimer's disease and frontotemporal lobar degeneration[J]. Neurobiol Aging, 2020, 92: 7-11. DOI:10.1016/j.neurobiolaging.2020.03.017 |
[34] |
WANG J J, LIU C, SHAN K, LIU B H, LI X M, ZHANG S J, et al. Circular RNA-ZNF609 regulates retinal neurodegeneration by acting as miR-615 sponge[J]. Theranostics, 2018, 8: 3408-3415. DOI:10.7150/thno.25156 |
[35] |
ZHANG H H, ZHANG Y, WANG X, YANG P, ZHANG B Y, HU S, et al. Circular RNA profile in diabetic peripheral neuropathy: analysis of coexpression networks of circular RNAs and mRNAs[J]. Epigenomics, 2020, 12: 843-857. DOI:10.2217/epi-2020-0011 |
[36] |
LI G F, LI L, YAO Z Q, ZHUANG S J. Hsa_circ_0007534/miR-761/ZIC5 regulatory loop modulates the proliferation and migration of glioma cells[J]. Biochem Biophys Res Commun, 2018, 499: 765-771. DOI:10.1016/j.bbrc.2018.03.219 |
[37] |
ZHANG S B, LIN S Y, LIU M, LIU C C, DING H H, SUN Y, et al. CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain[J/OL]. Nat Commun, 2019, 10: 4119. DOI: 10.1038/s41467-019-12049-0.
|
[38] |
ZHUO C J, HOU W H, JIANG D G, TIAN H J, WANG L N, JIA F, et al. Circular RNAs in early brain development and their influence and clinical significance in neuropsychiatric disorders[J]. Neural Regen Res, 2020, 15: 817-823. DOI:10.4103/1673-5374.268969 |
[39] | |
[40] |
MAO S, HUANG T, CHEN Y, SHEN L, ZHOU S, ZHANG S, et al. Circ-Spidr enhances axon regeneration after peripheral nerve injury[J/OL]. Cell Death Dis, 2019, 10: 787. DOI: 10.1038/s41419-019-2027-x.
|
[41] |
MAO S, ZHANG S, ZHOU S, HUANG T, FENG W, GU X, et al. A Schwann cell-enriched circular RNA circ-Ankib1 regulates Schwann cell proliferation following peripheral nerve injury[J]. FASEB J, 2019, 33: 12409-12424. DOI:10.1096/fj.201900965R |
[42] |
JOHNSON A N, MOKALLED M H, VALERA J M, POSS K D, OLSON E N. Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi[J]. Development, 2013, 140: 3645-3656. DOI:10.1242/dev.095596 |
[43] |
WANG Y, LI M, WANG Y, LIU J, ZHANG M, FANG X, et al. A Zfp609 circular RNA regulates myoblast differentiation by sponging miR-194-5p[J]. Int J Biol Macromol, 2019, 121: 1308-1313. DOI:10.1016/j.ijbiomac.2018.09.039 |
[44] |
WEI X, LI H, YANG J, HAO D, DONG D, HUANG Y, et al. Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p[J/OL]. Cell Death Dis, 2017, 8: e3153. DOI: 10.1038/cddis.2017.541.
|
[45] |
LI H, WEI X, YANG J, DONG D, HAO D, HUANG Y, et al. circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a[J]. Mol Ther Nucleic Acids, 2018, 11: 272-283. DOI:10.1016/j.omtn.2018.02.012 |
[46] |
LI H, YANG J, WEI X, SONG C, DONG D, HUANG Y, et al. CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a[J]. J Cell Physiol, 2018, 233: 4643-4651. DOI:10.1002/jcp.26230 |
[47] |
OUYANG H, CHEN X, LI W, LI Z, NIE Q, ZHANG X. Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken[J/OL]. Front Genet, 2018, 9: 172. DOI: 10.3389/fgene.2018.00172.
|
[48] |
LEGNINI I, DI TIMOTEO G, ROSSI F, MORLANDO M, BRIGANTI F, STHANDIER O, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis[J/OL]. Mol Cell, 2017, 66: 22-37. e9. DOI: 10.1016/j.molcel.2017.02.017.
|
[49] | |
[50] |
SUZUKI H, AOKI Y, KAMEYAMA T, SAITO T, MASUDA S, TANIHATA J, et al. Endogenous multiple exon skipping and back-splicing at the DMD mutation hotspot[J/OL]. Int J Mol Sci, 2016, 17: 1722. DOI: 10.3390/ijms17101722.
|
[51] |
VOELLENKLE C, PERFETTI A, CARRARA M, FUSCHI P, RENNA L V, LONGO M, et al. Dysregulation of circular RNAs in myotonic dystrophy type 1[J/OL]. Int J Mol Sci, 2019, 20: 1838. DOI: 10.3390/ijms20081938.
|
[52] |
WENG J, ZHANG P, YIN X, JIANG B. The whole transcriptome involved in denervated muscle atrophy following peripheral nerve injury[J/OL]. Front Mol Neurosci, 2018, 11: 69. DOI: 10.3389/fnmol.2018.00069.
|
[53] |
SIEDE D, RAPTI K, GORSKA A A, KATUS H A, ALTMÜLLER J, BOECKEL J N, et al. Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease[J]. J Mol Cell Cardiol, 2017, 109: 48-56. DOI:10.1016/j.yjmcc.2017.06.015 |
[54] |
ZENG Y, DU W W, WU Y, YANG Z, AWAN F M, LI X, et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair[J]. Theranostics, 2017, 7: 3842-3855. DOI:10.7150/thno.19764 |
[55] |
GENG H H, LI R, SU Y M, XIAO J, PAN M, CAI X X, et al. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression[J/OL]. PLoS One, 2016, 11: e0151753. DOI: 10.1371/journal.pone.0151753.
|
[56] |
WANG K, GAN T Y, LI N, LIU C Y, ZHOU L Y, GAO J N, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression[J]. Cell Death Differ, 2017, 24: 1111-1120. DOI:10.1038/cdd.2017.61 |
[57] |
TANG C M, ZHANG M, HUANG L, HU Z Q, ZHU J N, XIAO Z, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts[J/OL]. Sci Rep, 2017, 7: 40342. DOI: 10.1038/srep40342.
|
[58] |
LAVENNIAH A, LUU T D A, LI Y P, LIM T B, JIANG J, ACKERS-JOHNSON M, et al. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy[J]. Mol Ther, 2020, 28: 1506-1517. DOI:10.1016/j.ymthe.2020.04.006 |