现代战争中,新式武器使战创伤集中在失血性休克、烧伤、颅脑创伤等领域,相应的创伤救治工作难度大且恢复周期长,给战场救援带来极大挑战。加快早期救治速度、积极研发新型急救器材和开展新型武器致伤机制及防护设备研究是目前战创伤救治研究的主要热点,与此同时,再生医学的发展也为战创伤救治提供了新的方向[1]。随着干细胞技术成熟,以诱导多能干细胞(induced pluripotent stem cell,iPSC)为核心的再生医学发展迅猛。本文总结了iPSC的特点和相关技术进展,并展望以iPSC为主导的细胞移植疗法在战创伤救治领域的应用前景,旨在为战创伤救治提供新思路。
1 iPSC的特点和相关技术进展iPSC是一类特殊细胞,来源于体细胞,通过基因重组激活干性相关通路,获得自我更新和多向分化能力。在发现iPSC之前,干细胞研究集中在胚胎干细胞(embryonic stem cell,ESC)和非胚胎来源的成体干细胞(adult stem cell,ASC)。ESC和ASC均具干性(即自我更新和分化潜能),但ESC存在伦理学争议,ASC无多能性且细胞来源有限,因此这两类细胞的应用受到限制。iPSC通过特定基因重编程诱导获得,可来源于真皮成纤维细胞、角质形成细胞、脐静脉内皮细胞、肾上皮细胞、脐血来源内皮细胞等多种细胞,自我更新能力强且无伦理学争议,成为细胞移植疗法的研究热点[2]。
重编程关键在于激活干性基因,并抑制分化基因。传统方法是上调4个干性相关转录因子,即八聚体结合转录因子4(octamer-binding transcription factor 4,OCT4)、性别决定区域Y相关高可变区基因盒蛋白2(sex-determining region Y-related high mobility group box protein-2,SOX2)、Kruppel样因子4(Kruppel-like factor 4,LIF4)和c-MYC(OSKM四因子),并补充修饰剂(如丙戊酸),将体细胞诱导为iPSC。病毒或质粒等传统诱导方案可实现iPSC分化,该方案效果确切,但存在基因随机整合风险。此后,重编程方法得到改进,可在不插入外源基因的情况下产生稳定而有效的iPSC,即非整合转染技术(如游离基因载体[3]、修饰后mRNA[4]、miRNA[5]、蛋白质[6]、小分子物质[7]等),该技术突变风险极低,但流程较为复杂、重编程效率较低且周期较长,目前仍在不断改进。
2 iPSC在战创伤救治中的应用展望 2.1 输血疗法失血性休克是战场主要致死因素之一,伤员大多在失血后半小时内死亡[8]。止血补液是失血性休克救治的重要原则,最常使用的为止血材料和补液成分。止血带的止血效果确切,但止血时间过长有肢体麻痹和截肢风险;止血敷料和止血药对局部渗血有效,但不适合较大量出血;新鲜全血是治疗失血性休克的最佳方案,但来源少且存在疾病传播风险;其他血制品虽较安全,但效果不及全血。以iPSC为主导的输血技术有望解决上述问题。通过诱导分化技术,可将外周血单核细胞诱导为iPSC,进而分化为成熟的红细胞及免疫细胞[9]。Christaki等[10]通过iPSC技术分化出红细胞、白细胞、血小板等多种血细胞。Trakarnsanga等[11]将成人骨髓CD34+细胞转染HPV16 E6/E7促癌基因后,获得永生红细胞系。研究发现将iPSC来源的血制品移植哺乳动物后,可发挥正常功能且未发生排斥反应[12]。Lapillonne等[13]将体细胞转化为iPSC,并诱导分化为成熟的红细胞,认为通过对红细胞表型进行组合,可开发出针对稀有血型的血制品,使这些患者能够安全输血。
2.2 眼部创伤眼部创伤在历次战争中的发生率逐步上升,尤其在可产生碎片的新式炸药出现之后[14]。视网膜感光细胞和视神经元不可再生,创伤严重时可导致永久性失明。当前iPSC在眼科治疗中作用显著,多项技术已投入临床应用。Kokkinaki等[15]通过胚体形成或单层细胞培养方法将iPSC分化为视网膜色素上皮细胞(retinal pigment epithelial,RPE)。Lamba等[16]将iPSC诱导分化为视锥细胞和视杆细胞,使视力受损的小鼠视力恢复。iPSC也可诱导分化为神经节细胞,Jin等[17]利用改良后腺病毒将胰腺特异转录因子1a(pancreas-specific transcription factor 1a,Ptf1a)转染至iPSC,成功获取神经节细胞,后者可接受感光细胞来源视觉信号。有临床试验将老年黄斑变性患者自体iPSC分化为RPE,并证实后者具有生物学功能,且移植后未发生不良反应[18]。上述研究表明iPSC为眼部创伤的治疗提供了一种新的选择。
2.3 听力损伤战场中听力损伤系由高能量冲击波造成,通过移植替代性耳蜗可有效改善听力损失。Oshima等[19]通过转染OSKM四因子,诱导出iPSC并转化为听毛细胞,使听力受损小鼠恢复部分听力。有研究通过3D共培养技术,发现iPSC衍生的神经祖细胞可与听毛细胞建立突触联系[20-21]。上述研究表明,听毛细胞、支持细胞及听神经均可通过iPSC诱导分化。Tang等[22]通过基因编辑技术,将基因缺陷细胞诱导为iPSC,进而分化为听毛细胞,避免了致瘤风险。虽然目前尚无iPSC治疗听力损伤的临床研究,但Lee等[23]通过骨髓干细胞移植治疗听力受损患者,后者恢复听力且未发生不良反应。上述研究结果提示以iPSC为主导的细胞移植疗法可能成为未来治疗听力损伤的一种选择。
2.4 神经系统损伤神经系统损伤主要包括创伤性脑损伤(traumatic brain injury,TBI)、脊髓损伤(spinal cord injury,SCI)和周围神经损伤(peripheral nerve injury,PNI)。神经系统结构复杂且较难再生,短时间内难以准确评估损伤程度,即使创伤控制后再行手术,也会出现后遗症。SCI危害极大,颈椎和腰椎是最常见的受伤部位。TBI和SCI发生后,会出现持续性炎症反应、神经元死亡、电解质失衡。PNI多发生在四肢,往往导致严重残疾。既往上述损伤以支持治疗为主,近年来以干细胞为主的细胞移植疗法为神经系统损伤的治疗提供了希望。Oki等[24]将iPSC注入颅脑受损的小鼠中,发现iPSC可分化为正常神经元,具备电生理功能,且未形成肿瘤。Tsuji等[25]将小鼠来源iPSC在体外诱导为次级神经球(secondary neurosphere,SNS),将其移植到SCI小鼠模型中,结果显示SNS可分化为星形胶质细胞、神经元和少突胶质细胞,从而促进髓鞘再生、轴突再生,改善神经系统功能。对于PNI小鼠模型,移植SNS后可促进神经纤维断端形成神经桥,加速受损坐骨神经功能恢复[26]。这些结果表明,iPSC可能是细胞移植治疗神经系统损伤的细胞来源。
2.5 骨骼肌肉损伤骨骼肌肉(骨骼、肌肉、软骨及结缔组织)损伤是常见的战创伤,延期治疗将造成严重并发症如异位骨化、骨髓炎和软组织挛缩等,严重影响部队战斗力和伤员的生活质量[27]。研究发现小鼠iPSC在无血清培养条件下可逐步诱导分化为血小板源性生长因子受体α(platelet-derived growth factor receptor α,PDGFRα)+/Fik-1-中胚层祖细胞,后者可分化为软骨细胞、肌纤维和成骨细胞,提示该方案具有用于骨、软骨和肌肉疾病干细胞治疗的潜力[28]。3D生物材料可加速肌肉和骨骼组织生成,Jeon等[29]将iPSC来源的间充质干细胞和巨噬细胞在3D复合支架上共培养,不仅诱导巨噬细胞向破骨细胞方向分化,而且能促进间充质干细胞向成骨细胞分化,以此构建合适的骨材料。Incitti等[30]将iPSC细胞诱导为肌肉组织,并移植至肌肉缺乏的小鼠模型中,后者分化为功能性肌肉组织。已有iPSC主导的骨骼肌材料用于Ⅰ期临床研究,并取得良好效果[31]。
2.6 皮肤损伤皮肤损伤是最常见的战创伤,损伤范围包括表皮到皮下脂肪组织。与其他组织器官不同,皮肤及附属组织有较好的再生能力,皮肤中存在大量祖细胞,损伤修复过程中分化为表皮细胞。但严重穿透伤、化学损伤和烧伤可破坏皮肤祖细胞,影响再生能力并形成瘢痕组织。iPSC分化而来的皮肤组织有助于解决上述问题。Itoh等[32]通过3D支架在体外培养出角质细胞和成纤维细胞,后者表达Ⅶ型胶原蛋白,可用于治疗营养不良性大疱性表皮松解症。Ohta等[33]通过SOX2、OCT3/4、KLF4三因子或OSKM四因子诱导iPSC转化为黑色素细胞,两类细胞均表达黑色素细胞标志物。Yang等[34]通过iPSC诱导出CD200+/整合素α6亚基(integrin subunit α6,ITGA6)+的毛囊干细胞,用于治疗瘢痕诱发的脱发。综上可见,iPSC可诱导出角质层细胞、成纤维细胞、黑色素细胞及毛囊干细胞,上述研究丰富了皮肤损伤的救治手段。
3 小结现代战争作战环境复杂,战创伤发生率较高。以iPSC为主的细胞移植疗法可以完善传统战创伤救治系统,极具前景。干细胞技术发展迅速,随着转染技术的进步,其生物安全性得到极大提高,部分成果已投入临床应用。目前iPSC治疗战创伤仍缺乏临床试验验证,组织工程的产出效率也有待提高。一旦解决上述问题,iPSC主导的细胞移植疗法将有望推进战创伤救治的发展。
[1] |
付小兵. 组织再生: 梦想、希望和挑战[J]. 中国工程科学, 2009, 11: 122-128. DOI:10.3969/j.issn.1009-1742.2009.10.017 |
[2] |
RAAB S, KLINGENSTEIN M, LIEBAU S, LINTA L. A comparative view on human somatic cell sources for iPSC generation[J/OL]. Stem Cells Int, 2014, 2014: 768391. DOI: 10.1155/2014/768391.
|
[3] |
CHOU B K, MALI P, HUANG X S, YE Z H, DOWEY S N, RESAR L M, et al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures[J]. Cell Res, 2011, 21: 518-529. DOI:10.1038/cr.2011.12 |
[4] |
YAKUBOV E, RECHAVI G, ROZENBLATT S, GIVOL D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors[J]. Biochem Biophys Res Commun, 2010, 394: 189-193. DOI:10.1016/j.bbrc.2010.02.150 |
[5] |
MIYOSHI N, ISHII H, NAGANO H, HARAGUCHI N, DEWI D L, KANO Y, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs[J]. Cell Stem Cell, 2011, 8: 633-638. DOI:10.1016/j.stem.2011.05.001 |
[6] |
HAASE A, OLMER R, SCHWANKE K, WUNDERLICH S, MERKERT S, HESS C, et al. Generation of induced pluripotent stem cells from human cord blood[J]. Cell Stem Cell, 2009, 5: 434-441. DOI:10.1016/j.stem.2009.08.021 |
[7] |
HOU P, LI Y, ZHANG X, LIU C, GUAN J, LI H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013, 341: 651-654. DOI:10.1126/science.1239278 |
[8] |
刘良明, 白祥军, 李涛, 周锡渊, 杨光明, 高伟, 等. 创伤失血性休克早期救治规范[J]. 创伤外科杂志, 2017, 19: 881-883, 891. DOI:10.3969/j.issn.1009-4237.2017.12.001 |
[9] |
OLIVIER E N, MARENAH L, MCCAHILL A, CONDIE A, COWAN S, MOUNTFORD J C. High-efficiency serum-free feeder-free erythroid differentiation of human pluripotent stem cells using small molecules[J]. Stem Cells Transl Med, 2016, 5: 1394-1405. DOI:10.5966/sctm.2015-0371 |
[10] |
CHRISTAKI E E, POLITOU M, ANTONELOU M, ATHANASOPOULOS A, SIMANTIRAKIS E, SEGHATCHIAN J, et al. Ex vivo generation of transfusable red blood cells from various stem cell sources: a concise revisit of where we are now[J]. Transfus Apher Sci, 2019, 58: 108-112. DOI:10.1016/j.transci.2018.12.015 |
[11] |
TRAKARNSANGA K, GRIFFITHS R E, WILSON M C, BLAIR A, SATCHWELL T J, MEINDERS M, et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells[J/OL]. Nat Commun, 2017, 8: 14750. DOI: 10.1038/ncomms14750.
|
[12] |
SHAH S N, GELDERMAN M P, LEWIS E M, FARREL J, WOOD F, STRADER M B, et al. Evaluation of stem cell-derived red blood cells as a transfusion product using a novel animal model[J/OL]. PLoS One, 2016, 11: e0166657. DOI: 10.1371/journal.pone.0166657.
|
[13] |
LAPILLONNE H, KOBARI L, MAZURIER C, TROPEL P, GIARRATANA M C, ZANELLA-CLEON I, et al. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine[J]. Haematologica, 2010, 95: 1651-1659. DOI:10.3324/haematol.2010.023556 |
[14] |
ARI A B. Eye injuries on the battlefields of Iraq and Afghanistan: public health implications[J]. Optometry, 2006, 77: 329-339. DOI:10.1016/j.optm.2006.03.015 |
[15] |
KOKKINAKI M, SAHIBZADA N, GOLESTANEH N. Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE[J]. Stem Cells, 2011, 29: 825-835. DOI:10.1002/stem.635 |
[16] |
LAMBA D A, MCUSIC A, HIRATA R K, WANG P R, RUSSELL D, REH T A. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells[J/OL]. PLoS One, 2010, 5: e8763. DOI: 10.1371/journal.pone.0008763.
|
[17] |
JIN K, ZOU M, XIAO D, XIANG M. Reprogramming fibroblasts to neural stem cells by overexpression of the transcription factor Ptf1a[J]. Methods Mol Biol, 2020, 2117: 245-263. |
[18] |
SOUIED E, PULIDO J, STAURENGHI G. Autologous induced stem-cell-derived retinal cells for macular degeneration[J/OL]. N Engl J Med, 2017, 377: 792. DOI: 10.1056/NEJMc1706274.
|
[19] |
OSHIMA K, SHIN K, DIENSTHUBER M, PENG A W, RICCI A J, HELLER S. Mechanosensitive hair cell-like cells from embryonic and induced pluripotent stem cells[J]. Cell, 2010, 141: 704-716. DOI:10.1016/j.cell.2010.03.035 |
[20] |
GUNEWARDENE N, CROMBIE D, DOTTORI M, NAYAGAM B A. Innervation of cochlear hair cells by human induced pluripotent stem cell-derived neurons in vitro[J/OL]. Stem Cells Int, 2016, 2016: 1781202. DOI: 10.1155/2016/1781202.
|
[21] |
NISHIMURA K, NAKAGAWA T, SAKAMOTO T, ITO J. Fates of murine pluripotent stem cell-derived neural progenitors following transplantation into mouse cochleae[J]. Cell Transplant, 2012, 21: 763-771. DOI:10.3727/096368911X623907 |
[22] |
TANG Z H, CHEN J R, ZHENG J, SHI H S, DING J, QIAN X D, et al. Genetic correction of induced pluripotent stem cells from a deaf patient with MYO7A mutation results in morphologic and functional recovery of the derived hair cell-like cells[J]. Stem Cells Transl Med, 2016, 5: 561-571. DOI:10.5966/sctm.2015-0252 |
[23] |
LEE H S, KIM W J, GONG J S, PARK K H. Clinical safety and efficacy of autologous bone marrow-derived mesenchymal stem cell transplantation in sensorineural hearing loss patients[J]. J Audiol Otol, 2018, 22: 105-109. DOI:10.7874/jao.2017.00150 |
[24] |
OKI K, TATARISHVILI J, WOOD J, KOCH P, WATTANANIT S, MINE Y, et al. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain[J]. Stem Cells, 2012, 30: 1120-1133. DOI:10.1002/stem.1104 |
[25] |
TSUJI O, MIURA K, OKADA Y, FUJIYOSHI K, MUKAINO M, NAGOSHI N, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury[J]. Proc Natl Acad Sci USA, 2010, 107: 12704-12709. DOI:10.1073/pnas.0910106107 |
[26] |
UEMURA T, TAKAMATSU K, IKEDA M, OKADA M, KAZUKI K, IKADA Y, et al. Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair[J]. Biochem Biophys Res Commun, 2012, 419: 130-135. DOI:10.1016/j.bbrc.2012.01.154 |
[27] |
SCHOENFELD A J, BELMONT P J. Traumatic combat injuries[M]//CAMERON K L, OWENS B D. Musculoskeletal injuries in the military. New York, NY: Springer, 2016: 11-23.
|
[28] |
SAKURAI H, SAKAGUCHI Y, SHOJI E, NISHINO T, MAKI I, SAKAI H, et al. In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells[J/OL]. PLoS One, 2012, 7: e47078. DOI: 10.1371/journal.pone.0047078.
|
[29] |
JEON O H, PANICKER L M, LU Q, CHAE J J, FELDMAN R A, ELISSEEFF J H. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials[J/OL]. Sci Rep, 2016, 6: 26761. DOI: 10.1038/srep26761.
|
[30] |
INCITTI T, MAGLI A, DARABI R, YUAN C, LIN K, ARPKE R W, et al. Pluripotent stem cell-derived myogenic progenitors remodel their molecular signature upon in vivo engraftment[J]. Proc Natl Acad Sci USA, 2019, 116: 4346-4351. DOI:10.1073/pnas.1808303116 |
[31] |
JIWLAWAT N, LYNCH E M, NAPIWOCKI B N, STEMPIEN A, ASHTON R S, KAMP T J, et al. Micropatterned substrates with physiological stiffness promote cell maturation and Pompe disease phenotype in human induced pluripotent stem cell-derived skeletal myocytes[J]. Biotechnol Bioeng, 2019, 116: 2377-2392. DOI:10.1002/bit.27075 |
[32] |
ITOH M, UMEGAKI-ARAO N, GUO Z, LIU L, HIGGINS C A, CHRISTIANO A M. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs)[J/OL]. PLoS One, 2013, 8: e77673. DOI: 10.1371/journal.pone.0077673.
|
[33] |
OHTA S, IMAIZUMI Y, OKADA Y, AKAMATSU W, KUWAHARA R, OHYAMA M, et al. Generation of human melanocytes from induced pluripotent stem cells[J/OL]. PLoS One, 2011, 6: e16182. DOI: 10.1371/journal.pone.0016182.
|
[34] |
YANG R, ZHENG Y, BURROWS M, LIU S, WEI Z, NACE A, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells[J/OL]. Nat Commun, 2014, 5: 3071. DOI: 10.1038/ncomms4071.
|