[1] |
CHEN W, ZHENG R, BAADE P D, ZHANG S, ZENG H, BRAY F, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66: 115-132. DOI:10.3322/caac.21338 |
[2] |
ALLEMANI C, MATSUDA T, DI CARLO V, HAREWOOD R, MATZ M, NIKŠIĆ M, et al. Global surveillance of trends in cancer survival 2000-14(CONCORD-3): analysis of individual records for 37513025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. Lancet, 2018, 391: 1023-1075. DOI:10.1016/S0140-6736(17)33326-3 |
[3] |
TANG S, WEI L, SUN Y, ZHOU F, ZHU S, YANG R, et al. CA153 in breast secretions as a potential molecular marker for diagnosing breast cancer: a meta analysis[J/OL]. PLoS One, 2016, 11: e0163030. DOI: 10.1371/journal.pone.0163030.
|
[4] |
MANIG F, KUHNE K, VON NEUBECK C, SCHWARZENBOLZ U, YU Z R, KESSLER B M, et al. The why and how of amino acid analytics in cancer diagnostics and therapy[J]. J Biotechnol, 2017, 242: 30-54. DOI:10.1016/j.jbiotec.2016.12.001 |
[5] |
CHENG F, WANG Z, HUANG Y, DUAN Y, WANG X. Investigation of salivary free amino acid profile for early diagnosis of breast cancer with ultra performance liquid chromatography-mass spectrometry[J]. Clin Chim Acta, 2015, 447: 23-31. DOI:10.1016/j.cca.2015.05.008 |
[6] |
SHINGYOJI M, IIZASA T, HIGASHIYAMA M, IMAMURA F, SARUKI N, IMAIZUMI A, et al. The significance and robustness of a plasma free amino acid (PFAA) profile-based multiplex function for detecting lung cancer[J/OL]. BMC Cancer, 2013, 13: 77. DOI: 10.1186/1471-2407-13-77.
|
[7] |
ZHAO Q H, CAO Y, WANG Y, HU C L, HU A L, RUAN L, et al. Plasma and tissue free amino acid profiles and their concentration correlation in patients with lung cancer[J]. Asia Pac J Clin Nutr, 2014, 23: 429-436. |
[8] |
PLEWA S, HORAŁA A, DEREZIŃSKI P, KLUPCZYNSKA A, NOWAK-MARKWITZ E, MATYSIAK J, et al. Usefulness of amino acid profiling in ovarian cancer screening with special emphasis on their role in cancerogenesis[J/OL]. Int J Mol Sci, 2017, 18: 2727. DOI: 10.3390/ijms18122727.
|
[9] |
JING F, HU X, CAO Y, XU M, WANG Y, JING Y, et al. Discriminating gastric cancer and gastric ulcer using human plasma amino acid metabolic profile[J]. IUBMB Life, 2018, 70: 553-562. DOI:10.1002/iub.1748 |
[10] |
GAO P, ZHOU C, ZHAO L, ZHANG G, ZHANG Y. Tissue amino acid profile could be used to differentiate advanced adenoma from colorectal cancer[J]. J Pharm Biomed Anal, 2016, 118: 349-355. DOI:10.1016/j.jpba.2015.11.007 |
[11] |
TUMAS J, BASKIROVA I, PETRENAS T, NORKUNIENE J, STRUPAS K, SILEIKIS A. Towards a personalized approach in pancreatic cancer diagnostics through plasma amino acid analysis[J]. Anticancer Res, 2019, 39: 2035-2042. DOI:10.21873/anticanres.13314 |
[12] |
VAN DER MEIJ B S, TELENI L, ENGELEN M P K J, DEUTZ N E P. Amino acid kinetics and the response to nutrition in patients with cancer[J]. Int J Radiat Biol, 2019, 95: 480-492. DOI:10.1080/09553002.2018.1466209 |
[13] |
SIMIŃSKA E, KOBA M. Amino acid profiling as a method of discovering biomarkers for early diagnosis of cancer[J]. Amino Acids, 2016, 48: 1339-1345. DOI:10.1007/s00726-016-2215-2 |
[14] |
BERNFELD E, FOSTER D A. Glutamine as an essential amino acid for KRas-driven cancer cells[J]. Trends Endocrinol Metab, 2019, 30: 357-368. DOI:10.1016/j.tem.2019.03.003 |
[15] |
SAITO Y, MORIYA S, KAZAMA H, HIRASAWA K, MIYAHARA K, KOKUBA H, et al. Amino acid starvation culture condition sensitizes EGFR-expressing cancer cell lines to gefitinib-mediated cytotoxicity by inducing atypical necroptosis[J]. Int J Oncol, 2018, 52: 1165-1177. |
[16] |
POSCHKE I, MAO Y, KIESSLING R, DE BONIFACE J. Tumor-dependent increase of serum amino acid levels in breast cancer patients has diagnostic potential and correlates with molecular tumor subtypes[J/OL]. J Transl Med, 2013, 11: 290. DOI: 10.1186/1479-5876-11-290.
|
[17] |
MIYAGI Y, HIGASHIYAMA M, GOCHI A, AKAIKE M, ISHIKAWA T, MIURA T, et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection[J/OL]. PLoS One, 2011, 6: e24143. DOI: 10.1371/journal.pone.0024143.
|
[18] |
GU Y, CHEN T, FU S, SUN X, WANG L, WANG J, et al. Perioperative dynamics and significance of amino acid profiles in patients with cancer[J/OL]. J Transl Med, 2015, 13: 35. DOI: 10.1186/s12967-015-0408-1.
|
[19] |
GOLDHIRSCH A, WINER E P, COATES A S, GELBER R D, PICCART-GEBHART M, THÜRLIMANN B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J]. Ann Oncol, 2013, 24: 2206-2223. DOI:10.1093/annonc/mdt303 |
[20] | |
[21] |
CHANGOU C A, CHEN Y R, XING L, YEN Y, CHUANG F Y, CHENG R H, et al. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy[J]. Proc Natl Acad Sci U S A, 2014, 111: 14147-14152. DOI:10.1073/pnas.1404171111 |
[22] |
VYNNYTSKA-MYRONOVSKA B, KURLISHCHUK Y, BOBAK Y, DITTFELD C, KUNZ-SCHUGHART L A, STASYK O. Three-dimensional environment renders cancer cells profoundly less susceptible to a single amino acid starvation[J]. Amino Acids, 2013, 45: 1221-1230. DOI:10.1007/s00726-013-1586-x |
[23] |
VYNNYTSKA-MYRONOVSKA B, BOBAK Y, GARBE Y, DITTFELD C, STASYK O, KUNZ-SCHUGHART L A. Single amino acid arginine starvation efficiently sensitizes cancer cells to canavanine treatment and irradiation[J]. Int J Cancer, 2012, 130: 2164-2175. DOI:10.1002/ijc.26221 |
[24] |
VAN GELDERMALSEN M, QUEK L E, TURNER N, FREIDMAN N, PANG A, GUAN Y F, et al. Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways[J/OL]. BMC Cancer, 2018, 18: 689. DOI: 10.1186/s12885-018-4599-8.
|
[25] |
VISSERS Y L, DEJONG C H, LUIKING Y C, FEARON K C, VON MEYENFELDT M F, DEUTZ N E. Plasma arginine concentrations are reduced in cancer patients: evidence for arginine deficiency?[J]. Am J Clin Nutr, 2005, 81: 1142-1146. DOI:10.1093/ajcn/81.5.1142 |
[26] |
DELAGE B, FENNELL D A, NICHOLSON L, MCNEISH I, LEMOINE N R, CROOK T, et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer[J]. Int J Cancer, 2010, 126: 2762-2772. |
[27] |
ENSOR C M, HOLTSBERG F W, BOMALASKI J S, CLARK M A. Pegylated arginine deiminase (ADI-SS PEG20, 000 mW) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo[J]. Cancer Res, 2002, 62: 5443-5450. |
[28] |
LONG Y, TSAI W B, WANG D, HAWKE D H, SAVARAJ N, FEUN L G, et al. Argininosuccinate synthetase 1(ASS1) is a common metabolic marker of chemosensitivity for targeted arginine-and glutamine-starvation therapy[J]. Cancer Lett, 2017, 388: 54-63. DOI:10.1016/j.canlet.2016.11.028 |
[29] | |
[30] |
HU G D, WANG X, HAN Y, WANG P. Protein arginine methyltransferase 5 promotes bladder cancer growth through inhibiting NF-kB dependent apoptosis[J]. Excli J, 2018, 17: 1157-1166. |
[31] |
ZHANG M, WU W, GAO M, ZHANG J, DING X, ZHU R, et al. Coactivator-associated arginine methyltransferase 1 promotes cell growth and is targeted by microRNA-195-5p in human colorectal cancer[J/OL]. Tumour Biol, 2017, 39: 1010428317694305. DOI: 10.1177/1010428317694305.
|