2. 上海交通大学医学院附属第九人民医院骨科, 上海 200011
2. Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
钛及其合金广泛应用于骨科髋、膝关节假体植入和骨折固定[1]。钛及其合金具有良好的机械性能、弹性模量和抗腐蚀性,但缺乏促成骨能力和抗菌能力,易受细菌影响而形成生物膜,导致内植物植入失败[2]。因此,寻找一类能兼具抗感染和促成骨作用的钛金属表面涂层对降低内植物植入术失败率和减轻患者经济负担有非常重要的意义。
抗菌肽又称宿主防御肽,是先天免疫系统的重要组成部分,广泛分布于各种生物体内。它们可以保护机体免受细菌、真菌、寄生虫和病毒等病原体的侵袭,还具有介导催化、凋亡、免疫调节活性和促进伤口愈合等作用。目前可通过内源性和外源性2种途径获得抗菌肽,前者主要是从自然界的各种生物体内提取分离获得,后者则是通过基因工程、蛋白水解、化学合成等方法获得。不同种类的抗菌肽有以下共同的特点:一般由5~50个氨基酸组成,具有氨基酸二级结构,多带有正电荷,具有亲水及疏水性氨基酸残基而呈两亲性[3]。抗菌肽因其抗菌活性而得名,与抗生素相比不但具有广谱抗菌活性、较低的组织毒性,而且在低浓度下即可发挥很好的抗菌活力[4-5]。抗菌肽作为多细胞生物先天免疫系统的一部分,由于其直接破坏细菌细胞膜及其他的抗菌机制很少引起细菌耐药[6]。此外,抗菌肽可通过多种修饰途径改变其特异性,以增加生物相容性和抗菌能力,具有良好的应用前景。本文就应用于钛金属内植物表面的抗菌肽的抗菌机制、加载方式和应用现状等作一综述。
1 钛金属内植物表面抗菌肽的抗菌机制抗菌肽的抗菌机制可分为直接杀伤和免疫调节两大类,前者包括膜渗透作用和非膜靶向作用。
1.1 膜渗透机制大多数抗菌肽带有正电荷,依靠静电作用吸附在细菌的细胞膜上,通过将疏水碳端伸入细胞膜的疏水区而改变细胞膜结构。当抗菌肽在细胞膜内积累到一定浓度时聚集形成离子通道,导致细胞内的离子逸出而使细菌死亡[5, 7]。不同的抗菌肽因其结构差异在细菌细胞膜上形成的通道模型有所不同[8-9]。
1.2 非膜靶向机制非膜靶向分为细胞壁靶向和细胞内靶向。抗菌肽通过结合细菌细胞壁合成所需组分的前体分子抑制细菌细胞壁合成。如人β防御素-3[10]和α防御素-1[11]选择性地与脂质Ⅱ结合,抑制细菌细胞壁的合成。抗菌肽对细胞壁合成的抑制可进一步促进细菌细胞膜的破坏[12]。目前已确定有的抗菌肽具有细胞内靶点,虽然其在最低抑菌浓度(minimum inhibitory concentration,MIC)下不会引起膜渗透作用,但仍会导致细菌死亡。这些抗菌肽透过细胞膜在细菌内积聚,抑制细菌蛋白质和核酸合成,破坏关键酶活性[6]。如来源于蛙精组蛋白的抗菌肽buforin Ⅱ可透过大肠杆菌细胞膜在细胞质内与大肠杆菌DNA及RNA结合实现抗菌目的[13]。人α防御素-1[14]、人β防御素-4[15]及天蚕素PR-39[16]等也被证实能通过靶向结合细菌细胞内组分杀灭细菌。
1.3 免疫调节机制抗菌肽可通过聚集激活免疫细胞杀菌和控制炎症[17-18]。内源性抗菌肽多为免疫细胞来源,在微生物入侵机体时由初始应答的免疫细胞产生[19],一些内源性抗菌肽可聚集激活免疫细胞并诱导其分化,实现不同的免疫效应。人组织杀菌肽LL-37和β防御素具有吸引肥大细胞等免疫细胞的能力[20-21]。除此之外,有些内源性抗菌肽还可以刺激血管生成,通过降低炎性趋化因子的表达控制炎症反应,减少炎症引起的骨丢失[22-23]。
2 钛金属内植物表面抗菌肽的加载方式目前常用的钛金属内植物表面抗菌药物的加载方式均适用于抗菌肽,但不同的加载方式对其抗菌能力及生物相容性的影响不同。通过物理吸附[24]、硅烷化[25]和层-层自组装[26]等技术直接在内植物表面加载抗菌肽,导致植入早期抗菌肽的大量释放并增加组织毒性,晚期植入物因周围抗菌肽浓度低于MIC而不能有效灭菌,还存在诱发细菌耐药的风险。有研究将抗菌肽装载在载药微孔钙磷涂层[3]和载药二氧化钛纳米管(TiO2 nanotube,TNT)[27]中,通过可降解的聚合物封端剂控制释放,解决了抗菌肽在短期内大量释放的问题[28]。
抗菌肽还可经由共聚物刷、聚多巴胺、3-氯丙基三乙氧基硅烷、聚乙烯和聚苯乙烯等中间聚合物复合体实现在内植物表面的加载,其抗菌活性受中间聚合物性质的影响,包括活性序列与固体基质间隔的长度、柔性和种类等,抗菌肽的固定位置对抗菌效果也有影响。主要有2种加载方法,一种是直接将抗菌肽接枝到聚多巴胺或硅烷偶联剂上。如天蚕素B与聚多巴胺联合固定在钛板上[29],这种聚合物结构不仅增强了内植物的细胞相容性,而且有效抑制了细菌黏附和生物膜的形成;且与纯钛或单纯聚多巴胺修饰钛相比,其上金黄色葡萄球菌、铜绿假单胞菌、大肠杆菌和枯草杆菌的存活率均降低了近50%。另一种方法是由原子转移自由基聚合(atom transfer radical polymerization,ATRP)形成中间共聚物刷,并将其固定在多巴胺或硅化修饰的钛表面,然后用马来酰亚胺基团功能化电刷,连接含有特定位点的抗菌肽[30]。此方法可通过调节端基及中间共聚物刷的分布和长度控制抗菌肽的密度与含量,实现良好的生物相容性和高效的抗菌性。
3 钛金属内植物表面抗菌肽的应用现状目前已发现千余种抗菌肽,但只有少数用于修饰钛金属内植物表面,如天蚕素B、抗菌肽HHC和Tet213、抗菌肽GL13K、人乳铁蛋白(human lactoferrin,hLF)1-11、人组织杀菌肽LL-37等。
3.1 天蚕素B瑞典科学家Boman研究小组用蜡状芽孢杆菌(Bacillus cereus)诱导惜古比天蚕(Hyalophora cecropia)产生抗菌多肽类物质,发现了第1个抗菌肽——天蚕素[31],天蚕素肽链含35~39个氨基酸,三维结构含有2个线性的α-螺旋,有利于其破坏细菌的细胞膜[32-33]。在天蚕素家族中天蚕素B的抑菌活性最高[34]。Xu等[29]以聚多巴胺膜作为中间层将天蚕素B固定在钛表面,并用金黄色葡萄球菌等革兰阳性菌和大肠杆菌、铜绿假单胞菌等革兰阴性菌测定其抗菌能力。结果表明,天蚕素B涂层抑制了细菌的黏附与生长;天蚕素B涂层钛表面与空白钛金属表面相比,提高了内植物细胞相容性并减少了炎症反应,体外实验成骨细胞存活率显著提高。
3.2 抗菌肽HHC和Tet213抗菌肽HHC36是通过大规模定量构效关系研究筛选出的、具有较好抗菌效果的短肽(含9个氨基酸),Tet213为其碳端半胱氨酸化衍生物,增加的半胱氨酸残基有利于Tet213和钛表面的接合。Tet213具有良好的抗菌活性[35],但半胱氨酸残基的存在使其成骨细胞毒性大于HHC36[36]。Shi等[26]在研究中将Tet213通过磺基琥珀酰亚胺基-4-(p-马来酰亚胺基苯基)丁酸酯与Ⅳ型胶原连接,并采用层-层自组装技术在钛表面组装了多层抗菌肽聚合物涂层,经验证该涂层具有更低的细胞毒性,而且抗菌活性和生物膜抑制作用更加持久。Kazemzadeh-Narbat等[3]采用电解沉积法在钛表面成功制备Tet213钙磷涂层,它对成骨细胞样细胞MG-63无细胞毒性,并且对金黄色葡萄球菌和铜绿假单胞菌有抗菌活性。
3.3 抗菌肽GL13K抗菌肽GL13K是源自唾液蛋白腮腺分泌蛋白序列的细菌凝集肽[37]。该肽可凝集革兰阴性菌和革兰阳性菌,在体内和体外均表现出抗脂多糖(lipopolysaccharide,LPS)活性。用赖氨酸残基替换末端产生抗菌肽GL13K,其对铜绿假单胞菌和大肠杆菌均具有显著的杀菌作用,并且保留了抗LPS活性[37],还能破坏铜绿假单胞菌已建立的生物膜,并与氨基糖苷类抗生素妥布霉素联合作用清除生物膜[38]。Zhou等[25]用硅烷化方法将GL13K固定在钛表面,可改善钛表面抗炎性能,下调促炎因子如IL-1β、TNF-α和诱导型一氧化氮合酶的分泌水平,上调抗炎因子IL-10和精氨酸酶的表达,促进骨整合。Li等[27]用TNT负载GL13K(GL13K-TNT),不但具有良好的抗菌能力,而且对成骨前细胞MC3T3-E1无明显的细胞毒性,还可能具有免疫调节功能,促进内植物周围的骨整合。有研究表明,L-GL13K对带负电荷的细菌细胞膜有选择性,导致肽诱导胶束化和短暂的孔隙形成,改变细菌的膜电位和离子排布而使细菌死亡[39]。还有研究检测抗菌肽GL13K的L-和D-对映体对革兰阳性菌的抗菌活性,了解细菌蛋白酶和细胞壁修饰在细菌耐药性中的作用,发现D-GL13K可逃避革兰阳性菌的这2种耐药机制杀灭细菌[40]。
3.4 hLF1-11hLF1-11是一种合成肽,由hLF氮端的11个残基组成,对各种细菌敏感且对哺乳动物细胞无影响,是一种有效的抗菌剂[24, 41]。Godoy-Gallardo等[24]通过物理吸附将hLF1-11加载到钛表面,显著降低了内植物表面链球菌的黏附,抑制了生物膜的形成。hLF1-11不但具有抗菌活性,在细菌刺激下还可促进人单核细胞细胞因子和趋化因子的产生[41],其可能通过特异性抑制髓过氧化物酶的活性发挥调节作用[42]。
3.5 LL-37LL-37是以1对亮氨酸残基开头、含有37个氨基酸的抗菌肽,对细菌、病毒、真菌和寄生虫具有广泛的抗菌活性,并且具有促进伤口愈合、免疫调节和抗癌作用[43-44]。以其主要抗菌片段FK-16为涂层的钛表面对金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌和大肠杆菌等抗生素耐药菌有广谱抗菌活性,并且对金黄色葡萄球菌和大肠杆菌具有抗黏附和抑制生物膜形成的作用[45]。LL-37还在细胞迁移、细胞因子产生、细胞凋亡和血管生成中起着关键作用。用间充质干细胞(mesenchymal stem cell,MSC)和LPS诱导小鼠颅骨溶骨性骨缺损模型进行体外和体内研究,均发现LL-37在未修饰的MSC和骨形态发生蛋白2(bone morphogenetic protein-2,BMP-2)基因修饰的MSC中显著促进细胞分化、增殖和迁移,并在体外抑制LPS诱导的破骨细胞形成,促进成骨[46]。
4 小结与展望抗菌肽具有显著的广谱抗菌活性,能快速杀灭微生物且可与抗生素联合应用,显示出抗菌肽在医学领域中良好潜力。细菌的多种防御机制使其可对抗菌肽产生耐药[7],细菌可通过分泌蛋白酶或修饰细胞表面阻止阳离子抗菌肽到达细菌细胞膜[42];多肽的结构不稳定性和对蛋白酶降解的敏感性也限制了抗菌肽的应用。目前研究者们已经提出了许多增加抗菌肽结构稳定性的方法,肽烃缝合是其中之一,其通过侧链共价烃桥稳定肽的二级结构,已成功应用于部分多肽[47]。将抗菌肽加载到钛金属内植物表面的方法有很多[29, 48-51],且各有其优缺点及特性。抗菌肽的抗菌活性不仅受载药涂层性质的影响[52-54],而且受pH敏感性、蛋白水解敏感性及抗菌肽释放速率、半衰期及抗菌时效等影响[55-57],因此稳定钛表面抗菌肽涂层的体内抗菌活性并不容易。抗菌肽的促成骨及骨整合能力在人体内复杂微环境的影响下是否有效仍是未知的。在明确抗菌肽种类的情况下,如何选择适当的加载方法实现抗菌活性的最大化及抗菌活性和促成骨作用的优化也是很值得研究的方向。我们近期的研究试图寻找一种可增加抗菌肽载量并延长抗菌肽半衰期的固定抗菌肽GL13K的新技术,以期在骨科内植物术后感染高发时段维持内植物周围有效抗菌浓度从而达到有效抗菌的目的,并在此基础上将BMP-2与GL13K通过该技术按不同比例加载到钛表面,在保证抗菌活力的前提下使内植物表面涂层的促成骨作用最大化。
综上所述,钛金属内植物表面抗菌肽涂层是一种很有前途的预防内植物相关感染、控制炎症、促进成骨的方法,具有良好的应用前景。但仍需要更多更深层次的研究来填补空白,以优化其抗菌效力和促成骨作用及实现临床应用的普及。
[1] |
BRUNETTE D M, TENGVALL P, TEXTOR M, THOMSEN P. Titanium in medicine:material science, surface science, engineering, biological responses and medical applications[M]. Heidelberg: Springer-Verlag Berlin, 2001: 13-24.
|
[2] |
ROY-CHAUDHURY P, MUNDA R. Infections associated with surgical implants[J]. N Engl J Med, 2004, 351: 193-195. DOI:10.1056/NEJM200407083510220 |
[3] |
KAZEMZADEH-NARBAT M, KINDRACHUK J, DUAN K, JENSSEN H, HANCOCK R E W, WANG R. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections[J]. Biomaterials, 2010, 31: 9519-9526. DOI:10.1016/j.biomaterials.2010.08.035 |
[4] |
KOCZULLA A R, BALS R. Antimicrobial peptides:current status and therapeutic potential[J]. Drugs, 2003, 63: 389-406. DOI:10.2165/00003495-200363040-00005 |
[5] |
MORAVEJ H, MORAVEJ Z, YAZDANPARAST M, HEIAT M, MIRHOSSEINI A, MOOSAZADEH MOGHADDAM M, et al. Antimicrobial peptides:features, action, and their resistance mechanisms in bacteria[J]. Microb Drug Resist, 2018, 24: 747-767. DOI:10.1089/mdr.2017.0392 |
[6] |
BROGDEN K A. Antimicrobial peptides:pore formers or metabolic inhibitors in bacteria[J]. Nat Rev Microbiol, 2005, 3: 238-250. DOI:10.1038/nrmicro1098 |
[7] |
BECHINGER B, GORR S U. Antimicrobial peptides:mechanisms of action and resistance[J]. J Dent Res, 2017, 96: 254-260. DOI:10.1177/0022034516679973 |
[8] |
SALDITT T, LI C, SPAAR A. Structure of antimicrobial peptides and lipid membranes probed by interface-sensitive X-ray scattering[J]. Biochim Biophys Acta, 2006, 1758: 1483-1498. DOI:10.1016/j.bbamem.2006.08.002 |
[9] |
CHAN D I, PRENNER E J, VOGEL H J. Tryptophan-and arginine-rich antimicrobial peptides:structures and mechanisms of action[J]. Biochim Biophys Acta, 2006, 1758: 1184-1202. DOI:10.1016/j.bbamem.2006.04.006 |
[10] |
MÜNCH D, SAHL H G. Structural variations of the cell wall precursor lipid Ⅱ in Gram-positive bacteria-impact on binding and efficacy of antimicrobial peptides[J]. Biochim Biophys Acta, 2015, 1848(11 Pt B): 3062-3071. |
[11] |
DE LEEUW E, LI C, ZENG P, LI C, DIEPEVEEN-DE BUIN M, LU W Y, et al. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid Ⅱ[J]. FEBS Lett, 2010, 584: 1543-1548. DOI:10.1016/j.febslet.2010.03.004 |
[12] |
MALANOVIC N, LOHNER K. Antimicrobial peptides targeting Gram-positive bacteria[J/OL]. Pharmaceuticals (Basel), 2016, 9: 59. doi: 10.3390/ph9030059.
|
[13] |
PARK C B, KIM H S, KIM S C. Mechanism of action of the antimicrobial peptide buforin Ⅱ:buforin Ⅱ kills microorganisms by penetrating the cell membrane and inhibiting cellular functions[J]. Biochem Biophys Res Commun, 1998, 244: 253-257. DOI:10.1006/bbrc.1998.8159 |
[14] |
LEHRER R I, BARTON A, DAHER K A, HARWIG S S, GANZ T, SELSTED M E. Interaction of human defensins with Escherichia coli. mechanism of bactericidal activity[J]. J Clin Invest, 1989, 84: 553-561. DOI:10.1172/JCI114198 |
[15] |
SHARMA H, NAGARAJ R. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity[J/OL]. PLoS One, 2015, 10: e0119525. doi: 10.1371/journal.pone.0119525.
|
[16] |
BOMAN H G, AGERBERTH B, BOMAN A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine[J]. Infect Immun, 1993, 61: 2978-2984. DOI:10.1128/IAI.61.7.2978-2984.1993 |
[17] |
MADER J S, HOSKIN D W. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment[J]. Expert Opin Investig Drugs, 2006, 15: 933-946. DOI:10.1517/13543784.15.8.933 |
[18] |
HANEY E F, HANCOCK R E. Peptide design for antimicrobial and immunomodulatory applications[J]. Biopolymers, 2013, 100: 572-583. DOI:10.1002/bip.22250 |
[19] |
JENSSEN H, HAMILL P, HANCOCK R E W. Peptide antimicrobial agents[J]. Clin Microbiol Rev, 2006, 19: 491-511. DOI:10.1128/CMR.00056-05 |
[20] |
NIYONSABA F, IWABUCHI K, SOMEYA A, HIRATA M, MATSUDA H, OGAWA H, et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis[J]. Immunology, 2002, 106: 20-26. DOI:10.1046/j.1365-2567.2002.01398.x |
[21] |
GARCÍA J R, JAUMANN F, SCHULZ S, KRAUSE A, RODRÍGUEZ-JIMÉNEZ J, FORSSMANN U, et al. Identification of a novel, multifunctional β-defensin (human β-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction[J]. Cell Tissue Res, 2001, 306: 257-164. DOI:10.1007/s004410100433 |
[22] |
HILCHIE A L, WUERTH K, HANCOCK R E W. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides[J]. Nat Chem Biol, 2013, 9: 761-768. DOI:10.1038/nchembio.1393 |
[23] |
LAI Y, GALLO R L. AMPed up immunity:how antimicrobial peptides have multiple roles in immune defense[J]. Trends Immunol, 2009, 30: 131-141. DOI:10.1016/j.it.2008.12.003 |
[24] |
GODOY-GALLARDO M, MAS-MORUNO C, YU K, MANERO J M, GIL F J, KIZHAKKEDATHU J N, et al. Antibacterial properties of hLf1-11 peptide onto titanium surfaces:a comparison study between silanization and surface initiated polymerization[J]. Biomacromolecules, 2015, 16: 483-496. DOI:10.1021/bm501528x |
[25] |
ZHOU L, LIN Z, DING J, HUANG W, CHEN J, WU D. Inflammatory and biocompatibility evaluation of antimicrobial peptide GL13K immobilized onto titanium by silanization[J]. Colloids Surf B Biointerfaces, 2017, 160: 581-588. DOI:10.1016/j.colsurfb.2017.10.007 |
[26] |
SHI J, LIU Y, WANG Y, ZHANG J, ZHAO S, YANG G. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium[J/OL]. Sci Rep, 2015, 5: 16336. doi: 10.1038/srep16336.
|
[27] |
LI T, WANG N, CHEN S, LU R, LI H, ZHANG Z. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO2 nanotubes combined with a GL13K antimicrobial peptide[J]. Int J Nanomedicine, 2017, 12: 2995-3007. DOI:10.2147/IJN.S128775 |
[28] |
MA M, KAZEMZADEH-NARBAT M, HUI Y, LU S, DING C, CHEN D D, et al. Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections[J]. J Biomed Mater Res A, 2012, 100: 278-285. |
[29] |
XU D, YANG W, HU Y, LUO Z, LI J, HOU Y, et al. Surface functionalization of titanium substrates with cecropin B to improve their cytocompatibility and reduce inflammation responses[J]. Colloids Surf B Biointerfaces, 2013, 110: 225-235. DOI:10.1016/j.colsurfb.2013.04.050 |
[30] |
GAO G, LANGE D, HILPERT K, KINDRACHUK J, ZOU Y, CHENG J T, et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides[J]. Biomaterials, 2011, 32: 3899-3909. DOI:10.1016/j.biomaterials.2011.02.013 |
[31] |
STEINER H, HULTMARK D, ENGSTRÖM A, BENNICH H, BOMAN H G. Sequence and specificity of two antibacterial proteins involved in insect immunity[J]. Nature, 1981, 292: 246-248. DOI:10.1038/292246a0 |
[32] |
CHARROUX B, RIVAL T, NARBONNE-REVEAU K, ROYET J. Bacterial detection by Drosophila peptidoglycan recognition proteins[J]. Microbes Infect, 2009, 11: 631-636. DOI:10.1016/j.micinf.2009.03.004 |
[33] |
IMAMURA M, WADA S, UEDA K, SAITO A, KOIZUMI N, IWAHANA H, et al. Multipeptide precursor structure of acaloleptin A isoforms, antibacterial peptides from the Udo longicorn beetle, Acalolepta luxuriosa[J]. Dev Comp Immunol, 2009, 33: 1120-1127. DOI:10.1016/j.dci.2009.06.004 |
[34] |
HULTMARK D, ENGSTRÖM A, BENNICH H, KAPUR R, BOMAN H G. Insect immunity:isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae[J]. Eur J Biochem, 1982, 127: 207-217. DOI:10.1111/j.1432-1033.1982.tb06857.x |
[35] |
FJELL C D, JENSSEN H, HILPERT K, CHEUNG W A, PANTÉ N, HANCOCK R E W, et al. Identification of novel antibacterial peptides by chemoinformatics and machine learning[J]. J Med Chem, 2009, 52: 2006-2015. DOI:10.1021/jm8015365 |
[36] |
KAZEMZADEH-NARBAT M, NOORDIN S, MASRI B A, GARBUZ D S, DUNCAN C P, HANCOCK R E W, et al. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium[J]. J Biomed Mater Res B Appl Biomater, 2012, 100: 1344-1352. |
[37] |
ABDOLHOSSEINI M, NANDULA S R, SONG J, HIRT H, GORR S U. Lysine substitutions convert a bacterial-agglutinating peptide into a bactericidal peptide that retains anti-lipopolysaccharide activity and low hemolytic activity[J]. Peptides, 2012, 35: 231-238. DOI:10.1016/j.peptides.2012.03.017 |
[38] |
HIRT H, GORR S U. Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2013, 57: 4903-4910. DOI:10.1128/AAC.00311-13 |
[39] |
BALHARA V, SCHMIDT R, GORR S U, DEWOLF C. Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K[J]. Biochim Biophys Acta, 2013, 1828: 2193-2203. DOI:10.1016/j.bbamem.2013.05.027 |
[40] |
HIRT H, HALL J W, LARSON E, GORR S U. A D-enantiomer of the antimicrobial peptide GL13K evades antimicrobial resistance in the Gram positive bacteria Enterococcus faecalis and Streptococcus gordonii[J/OL]. PLoS One, 2018, 13: e0194900. doi: 10.1371/journal.pone.0194900.
|
[41] |
VAN DER DOES A M, BOGAARDS S J, JONK L, WULFERINK M, VELDERS M P, NIBBERING P H. The human lactoferrin-derived peptide hLF1-11 primes monocytes for an enhanced TLR-mediated immune response[J]. Biometals, 2010, 23: 493-505. DOI:10.1007/s10534-010-9322-4 |
[42] |
VAN DER DOES A M, HENSBERGEN P J, BOGAARDS S J, CANSOY M, DEELDER A M, VAN LEEUWEN H C, et al. The human lactoferrin-derived peptide hLF1-11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity[J]. J Immunol, 2012, 188: 5012-5019. DOI:10.4049/jimmunol.1102777 |
[43] |
DÜRR U H, SUDHEENDRA U S, RAMAMOORTHY A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides[J]. Biochim Biophys Acta, 2006, 1758: 1408-1425. DOI:10.1016/j.bbamem.2006.03.030 |
[44] |
WANG G. Human antimicrobial peptides and proteins[J]. Pharmaceuticals (Basel), 2014, 7: 545-594. DOI:10.3390/ph7050545 |
[45] |
MISHRA B, WANG G. Titanium surfaces immobilized with the major antimicrobial fragment FK-16 of human cathelicidin LL-37 are potent against multiple antibiotic-resistant bacteria[J]. Biofouling, 2017, 33: 544-555. DOI:10.1080/08927014.2017.1332186 |
[46] |
LIU Z, YUAN X, LIU M, FERNANDES G, ZHANG Y, YANG S, et al. Antimicrobial peptide combined with BMP2-modified mesenchymal stem cells promotes calvarial repair in an osteolytic model[J]. Mol Ther, 2018, 26: 199-207. DOI:10.1016/j.ymthe.2017.09.011 |
[47] |
MIGOŃ D, NEUBAUER D, KAMYSZ W. Hydrocarbon stapled antimicrobial peptides[J]. Protein J, 2018, 37: 2-12. DOI:10.1007/s10930-018-9755-0 |
[48] |
HOLMBERG K V, ABDOLHOSSEINI M, LI Y, CHEN X, GORR S U, APARICIO C. Bio-inspired stable antimicrobial peptide coatings for dental applications[J]. Acta Biomater, 2013, 9: 8224-8231. DOI:10.1016/j.actbio.2013.06.017 |
[49] |
STEVEN MD, HOTCHKISS J H. Covalent immobilization of an antimicrobial peptide on poly(ethylene) film[J]. J Appl Polymer Sci, 2008, 110: 2665-2670. DOI:10.1002/app.27638 |
[50] |
APPENDINI P, HOTCHKISS J H. Surface modification of poly(styrene) by the attachment of an antimicrobial peptide[J]. J Appl Polymer Sci, 2001, 81: 609-616. DOI:10.1002/app.1476 |
[51] |
GLINEL K, JONAS A M, JOUENNE T, LEPRINCE J, GALAS L, HUCK W T. Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide[J]. Bioconjug Chem, 2009, 20: 71-77. DOI:10.1021/bc800280u |
[52] |
GABRIEL M, NAZMI K, VEERMAN E C, NIEUW AMERONGEN A V, ZENTNER A. Preparation of LL-37-grafted titanium surfaces with bactericidal activity[J]. Bioconjug Chem, 2006, 17: 548-550. DOI:10.1021/bc050091v |
[53] |
HASAN J, CRAWFORD R J, IVANOVA E P. Antibacterial surfaces:the quest for a new generation of biomaterials[J]. Trends Biotechnol, 2013, 31: 295-304. DOI:10.1016/j.tibtech.2013.01.017 |
[54] |
COSTA F, MAIA S, GOMES J, GOMES P, MARTINS M C. Characterization of hLF1-11 immobilization onto chitosan ultrathin films, and its effects on antimicrobial activity[J]. Acta Biomater, 2014, 10: 3513-3521. DOI:10.1016/j.actbio.2014.02.028 |
[55] |
GLINEL K, THEBAULT P, HUMBLOT V, PRADIER C M, JOUENNE T. Antibacterial surfaces developed from bio-inspired approaches[J]. Acta Biomater, 2012, 8: 1670-1684. DOI:10.1016/j.actbio.2012.01.011 |
[56] |
SCHMIDTCHEN A, PASUPULETI M, MALMSTEN M. Effect of hydrophobic modifications in antimicrobial peptides[J]. Adv Colloid Interface Sci, 2014, 205: 265-274. DOI:10.1016/j.cis.2013.06.009 |
[57] |
WALKENHORST W F, KLEIN J W, VO P, WIMLEY W C. pH dependence of microbe sterilization by cationic antimicrobial peptides[J]. Antimicrob Agents Chemother, 2013, 57: 3312-3320. DOI:10.1128/AAC.00063-13 |