2. 美国加州大学旧金山分校泌尿外科, 旧金山 94143-0738
2. Department of Urology, University of California, San Francisco, San Francisco 94143-0738, California, USA
物理医学信号向生物信号的转化被誉为是生物医学领域的第三次革命。低强度体外冲击波疗法(low-intensity extracorporeal shock wave therapy,LI-ESWT)作为物理医学的一个代表,具有多疾病、多方向的应用潜力。近年研究显示LI-ESWT可以招募、激活内源性干细胞。利用低强度体外冲击波的这一特性激活精原干细胞(spermatogonial stem cell,SSC)可以给原发性非梗阻性无精症和医源性无精症患者的治疗带来新突破。本文拟对LI-ESWT激活SSC治疗无精症的应用进行展望。
1 内源性干细胞内源性干细胞是成人机体内部所有具有多分化潜能的前体细胞的统称,包括各类间充质干细胞、造血干细胞等,体内各器官组织均存在内源性干细胞。Zou等[1]首次从灵长类糖尿病动物模型的胰腺中分离出前体细胞,在体外成功将这些前体细胞扩增和诱导分化为功能性胰岛细胞。Yu等[2]从人类毛囊中也分离出具有多向分化潜能的成体干细胞。Vernet等[3]报道体外培养的阴茎白膜细胞具有成骨和成纤维分化的潜能,并表达干细胞相关标志物。这些研究结果证明了内源性干细胞的存在及其功能。
根据个体发育过程中出现的先后次序,干细胞分为胚胎干细胞(embryonic stem cell,ESC)和成体干细胞(adult stem cell,ASC)。ASC一般处于静息状态,并通过这种状态维持干细胞特有的功能[4]。处于静息状态的ASC有一些普遍特征,如RNA含量低、缺乏增殖相关标志物、能滞留细胞标志物等[5-7]。由于静息ASC中叉头盒转录因子O(forkhead box O,FOXO)、缺氧诱导因子1α(hypoxia-inducible factor 1α,HIF1α)、肝激酶B1(liver kinase B1,LKB1)等保护因子及DNA损伤修复机制的存在,静息状态的内源性干细胞有一定抵抗环境压力[如活性氧(reactive oxygen species,ROS)]损害并长期存活的能力[8]。外源性信号(疾病、组织损伤、物理刺激等)可通过干细胞龛微环境激活处于静息状态的ASC。
内源性干细胞由静息状态转变为激活状态可能是多种信号通路协同作用的结果,如骨形态发生蛋白(bone morphogenetic protein,BMP)信号通路的抑制和Wnt信号通路的激活[9-10]。在毛囊干细胞的激活过程中就涉及BMP/Wnt信号的相互作用,最终β连环蛋白(β-catenin)进入核内作为转录激活因子促进毛囊干细胞的激活[11]。BMP信号通路与Wnt/β-catenin信号通路的相互作用在肠道干细胞的自我更新过程中同样发挥重要作用[12]。BMP/Wnt信号通路的交互作用在干细胞激活(由静息状态重新进入细胞周期)过程中可能发挥重要作用。一些其他因素,如抑癌基因p 53、Rb缺失时可促进静息的造血干细胞进入细胞周期,同时伴有静息造血干细胞数量的减少[13-14]。此外,Notch信号通路、表观遗传学、siRNA等因素在调节干细胞静息/激动状态的过程中也可能发挥重要作用。
2 物理刺激与细胞分裂的拓扑学改变研究表明,细胞所处的特殊位置是决定细胞命运的影响因素。边界组织的特殊力学特性影响了细胞的行为;同时细胞分裂和相互作用也会对边界组织产生影响[15]。Fink等[16]研究表明,动物细胞所处的外界物理参数可以直接影响细胞分裂。作用于细胞质的外收缩力影响皮质下肌动蛋白结构的动态极性,进而影响纺锤体的位移和旋转,最终改变细胞分裂轴的方向。而后者是最终影响组织形态和功能的关键因素。Lesman等[17]利用3D细胞培养模型研究表明,细胞在分裂过程中会与周围基质产生广泛的、具有方向性和复杂拓扑学参数的力学接触。在有丝分裂过程中,细胞首先失去与细胞外基质的黏附力而仅保留两端细胞突起与外界的牵引力,后者参与分裂过程中分裂轴的维持直至2个子代细胞形成。而Theisen等[18]研究表明,外力可能通过影响细胞微管蛋白的自组装和再分布影响细胞的拓扑学特性。作用在细胞体上的外力直接影响了细胞的形状和细胞分裂时纺锤体的走向及细胞内关键蛋白的定位,进而对细胞极性和子代细胞命运产生影响[19-20]。
细胞分裂的拓扑学研究也为物理刺激的研究奠定了基础。在细胞分裂中期,纺锤体向细胞中心摆动,动力蛋白则沿着远离纺锤体一侧的细胞皮质排列(纺锤体向左摆动,动力蛋白出现在右侧;纺锤体向右摆动,动力蛋白出现在左侧)。当纺锤极靠近细胞皮质时,纺锤极发出Polo样激酶1,后者停止纺锤极前的马达蛋白并释放相关蛋白移动到细胞对面,控制纺锤体的位置和方向[21]。在分裂过程中,细胞膜则随着纺锤体的形成和位置改变不断进行调整与延伸。以上机制使得按计划的细胞精确分裂得以实现[22]。这个过程存在着细胞表面和细胞内力学特性的规律改变,也为外界物理刺激影响细胞分裂行为提供了可能。
3 LI-ESWT对干细胞的招募和激活低强度冲击波通常被认为是发射能量密度低于0.1 mJ/mm 2的物理冲击波。1个典型的冲击波循环包括1个短时间急速升高的空间正向压力和伴随其后的缓慢负向压力。Qiu等[23]率先对LI-ESWT治疗大鼠糖尿病性勃起功能障碍(erectile dysfunction,ED)进行了功能和机制研究,发现LI-ESWT可以显著减少糖尿病相关的海绵体平滑肌、内皮和神经元型一氧化氮合酶,修复糖尿病相关的组织损伤,在一定程度上缓解大鼠的ED状况。此外,更重要的是,LI-ESWT可以增加病变部位局部前体细胞(干细胞)的密度[23-24];通过对标记了前体细胞的组织进行体外培养,然后给予一定剂量的LI-ESWT刺激,发现LI-ESWT可以直接诱导前体细胞的激活与分裂[25]。Aicher等[26]也发现LI-ESWT通过促进趋化因子和血管内皮生长因子的表达招募血液循环中的内皮前体细胞到达病损部位,从而改善患者的慢性缺血性疾病。
4 LI-ESWT治疗无精子症的应用展望目前全世界有10% ~ 15%的育龄夫妇面临不能生育的难题[27],即使在人工生殖辅助技术高度发展的今天,也不能解决所有不孕不育相关问题,特别是无精症(精液中没有精子)。无精症患者在所有男性中的占比为1%,在不育男性中高达10% ~ 15% [28-31]。无精症分为梗阻性无精症(占15% ~ 20%)和非梗阻性无精症(占80% ~ 85%)。非梗阻性无精症主要是因为精子发生障碍引起的无精子症,其可进一步细分为唯支持细胞综合征、早或晚发育迟滞、混合性萎缩或曲细精管的全玻璃变。睾丸取精是目前公认的治疗方法,但是不同病变引起的非梗阻性无精症患者睾丸取精手术成功率差异较大[32-33]。
对于无法通过睾丸取精获得生育后代机会的非梗阻性无精症患者,目前的研究主要聚焦在可诱导多能干细胞(induced pluripotent stem cell,iPSC)[34-35]。已有众多研究者用鼠、猴及人的胚胎干细胞或iPSC成功分化出原始生殖细胞样细胞,把这些原始生殖细胞样细胞移植到成年不育小鼠的曲细精管可以重新产生精子[36-41]。但是由于伦理原因,这些研究结果无法进一步通过生育加以证实。更为重要的是这种方法的安全性值得担忧,动物实验发现通过这种方法生育的子代容易罹患肿瘤并且容易夭折[42]。
理论上,难治性非梗阻性无精症患者睾丸中或多或少都存在SSC,因此通过SSC使这些无精症患者获得生育能力更为安全、可靠。另外,有恶性肿瘤或其他疾病且需要接受化学治疗/放射治疗的男性患者,经过治疗后会发生永久性不育[27, 42]。美国每年有超过4 000例患者需要接受可能使其成为无精症患者的治疗,但是他们不能或没有保存精液,这已经成为一个影响男性生殖健康的严重问题[43-44]。特别是青春期前的男童,他们可能在治疗前无法保留精液标本,睾丸中存在的SSC有望使他们在成年后重新恢复生育能力[45-46]。但是这些患者即使睾丸内有SSC,数量也应该很少,如何成功获取这些数量极少的SSC是需要解决的关键问题。
近年来,随着LI-ESWT激活干细胞研究的深入,LI-ESWT这一微创治疗方法的临床应用不断拓展,甚至将来有可能解决无精症患者的生育难题。我们课题组在前期实验中发现LI-ESWT可以激活睾丸生殖干细胞(包括SSC);对大鼠睾丸进行LI-ESWT的研究发现,LI-ESWT后睾丸组织生殖细胞无明显凋亡发生,与SSC干性特征相关的标志物Ki-67、增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)和DEAD-box RNA解旋酶4(DEAD- box helicase 4,DDX4;也称为VASA)明显增加(未发表资料)。此外我们还发现保存生育能力的最佳能量远低于激活其他组织中干细胞所需要的能量,我们称之为微能量冲击波治疗(micro-energy shock wave therapy,MESW)。MESW能促进SSC增殖,可以较好地解决临床应用上SSC数量偏少的难题;更为重要的是,MESW可以原位激活非梗阻性无精症患者睾丸内数量稀少的SSC。对MESW激活SSC的深入研究将会为无精症患者提供一个更为微创的治疗方法,但有关该技术的安全性和伦理问题需要进一步探讨。
[1] |
ZOU C, SUEN P M, ZHANG Y, WANG Z, CHAN P, LEUNG P S, et al. Isolation and in vitro characterization of pancreatic progenitor cells from the islets of diabetic monkey models[J]. Int J Biochem Cell Biol, 2006, 38: 973-984. DOI:10.1016/j.biocel.2005.12.012 |
[2] |
YU H, FANG D, KUMAR S M, LI L, NGUYEN T K, ACS G, et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles[J]. Am J Pathol, 2006, 168: 1879-1888. DOI:10.2353/ajpath.2006.051170 |
[3] |
VERNET D, NOLAZCO G, CANTINI L, MAGEE T R, QIAN A, RAJFER J, et al. Evidence that osteogenic progenitor cells in the human tunica albuginea may originate from stem cells:implications for peyronie disease[J]. Biol Reprod, 2005, 73: 1199-1210. DOI:10.1095/biolreprod.105.041038 |
[4] |
CHEUNG T H, RANDO T A. Molecular regulation of stem cell quiescence[J]. Nat Rev Mol Cell Biol, 2013, 14: 329-340. DOI:10.1038/nrm3591 |
[5] |
FUKADA S, UEZUMI A, IKEMOTO M, MASUDA S, SEGAWA M, TANIMURA N, et al. Molecular signature of quiescent satellite cells in adult skeletal muscle[J]. Stem Cells, 2007, 25: 2448-2459. DOI:10.1634/stemcells.2007-0019 |
[6] |
GERDES J, SCHWAB U, LEMKE H, STEIN H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation[J]. Int J Cancer, 1983, 31: 13-20. DOI:10.1002/ijc.2910310104 |
[7] |
COTSARELIS G, SUN T T, LAVKER R M. Label-retaining cells reside in the bulge area of pilosebaceous unit:implications for follicular stem cells, hair cycle, and skin carcinogenesis[J]. Cell, 1990, 61: 1329-1337. DOI:10.1016/0092-8674(90)90696-C |
[8] |
GARCÍA-PRAT L, MARTÍNEZ-VICENTE M, MUÑOZ-CÁNOVES P. Methods for mitochondria and mitophagy flux analyses in stem cells of resting and regenerating skeletal muscle[J]. Methods Mol Biol, 2016, 1460: 223-240. |
[9] |
GAT U, DASGUPTA R, DEGENSTEIN L, FUCHS E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin[J]. Cell, 1998, 95: 605-614. DOI:10.1016/S0092-8674(00)81631-1 |
[10] |
PLIKUS M V, MAYER J A, DE LA CRUZ D, BAKER R E, MAINI P K, MAXSON R, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration[J]. Nature, 2008, 451: 340-344. DOI:10.1038/nature06457 |
[11] |
ZHANG J, HE X C, TONG WG, JOHNSON T, WIEDEMANN L M, MISHINA Y, et al. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion[J]. Stem Cells, 2006, 24: 2826-2839. DOI:10.1634/stemcells.2005-0544 |
[12] |
HE X C, ZHANG J, TONG W G, TAWFIK O, ROSS J, SCOVILLE D H, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling[J]. Nat Genet, 2004, 36: 1117-1121. DOI:10.1038/ng1430 |
[13] |
CHENG T, RODRIGUES N, SHEN H, YANG Y, DOMBKOWSKI D, SYKES M, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1[J]. Science, 2000, 287: 1804-1808. DOI:10.1126/science.287.5459.1804 |
[14] |
HOSOYAMA T, NISHIJO K, PRAJAPATI S I, LI G, KELLER C. Rb1 gene inactivation expands satellite cell and postnatal myoblast pools[J]. J Biol Chem, 2011, 286: 19556-19564. DOI:10.1074/jbc.M111.229542 |
[15] |
UMETSU D, DAHMANN C. Signals and mechanics shaping compartment boundaries in Drosophila[J]. Wiley Interdiscip Rev Dev Biol, 2015, 4: 407-417. DOI:10.1002/wdev.178 |
[16] |
FINK J, CARPI N, BETZ T, BÉTARD A, CHEBAH M, AZIOUNE A, et al. External forces control mitotic spindle positioning[J]. Nat Cell Biol, 2011, 13: 771-778. DOI:10.1038/ncb2269 |
[17] |
LESMAN A, NOTBOHM J, TIRRELL D A, RAVICHANDRAN G. Contractile forces regulate cell division in three-dimensional environments[J]. J Cell Biol, 2014, 205: 155-162. DOI:10.1083/jcb.201309029 |
[18] |
THEISEN K E, ZHMUROV A, NEWBERRY M E, BARSEGOV V, DIMA R I. Multiscale modeling of the nanomechanics of microtubule protofilaments[J]. J Phys Chem B, 2012, 116: 8545-8555. DOI:10.1021/jp212608f |
[19] |
CLARK A G, PALUCH E. Mechanics and regulation of cell shape during the cell cycle[J]. Results Probl Cell Differ, 2011, 53: 31-73. |
[20] |
MOHAN K, LUO T, ROBINSON D N, IGLESIAS P A. Cell shape regulation through mechanosensory feedback control[J/OL]. J R Soc Interface, 2015, 12: 20150512.doi: 10.1098/rsif.2015.0512. https://pubmed.ncbi.nlm.nih.gov/26224568/
|
[21] |
KIYOMITSU T, CHEESEMAN I M. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation[J]. Nat Cell Biol, 2012, 14: 311-317. DOI:10.1038/ncb2440 |
[22] |
KIYOMITSU T, CHEESEMAN I M. Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase[J]. Cell, 2013, 154: 391-402. DOI:10.1016/j.cell.2013.06.010 |
[23] |
QIU X, LIN G, XIN Z, FERRETTI L, ZHANG H, LUE T F, et al. Effects of low-energy shock wave therapy on the erectile function and tissue of a diabetic rat model[J]. J Sex Med, 2013, 10: 738-746. DOI:10.1111/jsm.12024 |
[24] |
LI H, MATHEU M P, SUN F, WANG L, SANFORD M T, NING H, et al. Low-energy shock wave therapy ameliorates erectile dysfunction in a pelvic neurovascular injuries rat model[J]. J Sex Med, 2016, 13: 22-32. DOI:10.1016/j.jsxm.2015.11.008 |
[25] |
LIN G, REED-MALDONADO A B, WANG B, LEE Y C, ZHOU J, LU Z, et al. In situ activation of penile progenitor cells with low-intensity extracorporeal shockwave therapy[J]. J Sex Med, 2017, 14: 493-501. DOI:10.1016/j.jsxm.2017.02.004 |
[26] |
AICHER A, HEESCHEN C, SASAKI K, URBICH C, ZEIHER A M, DIMMELER S. Low-energy shock wave for enhancing recruitment of endothelial progenitor cells:a new modality to increase efficacy of cell therapy in chronic hind limb ischemia[J]. Circulation, 2006, 114: 2823-2830. DOI:10.1161/CIRCULATIONAHA.106.628623 |
[27] |
BAHAMONDES L, MAKUCH M Y. Infertility care and the introduction of new reproductive technologies in poor resource settings[J/OL]. Reprod Biol Endocrinol, 2014, 12: 87. doi: 10.1186/1477-7827-12-87. https://link.springer.com/article/10.1186/1477-7827-12-87
|
[28] |
LEE J Y, DADA R, SABANEGH E, CARPI A, AGARWAL A. Role of genetics in azoospermia[J]. Urology, 2011, 77: 598-601. DOI:10.1016/j.urology.2010.10.001 |
[29] |
WEEDIN J W, BENNETT R C, FENIG D M, LAMB D J, LIPSHULTZ L I. Early versus late maturation arrest:reproductive outcomes of testicular failure[J]. J Urol, 2011, 186: 621-626. DOI:10.1016/j.juro.2011.03.156 |
[30] |
GUDELOGLU A, PAREKATTIL S J. Update in the evaluation of the azoospermic male[J]. Clinics, 2013, Suppl 1: 27-34. |
[31] |
ESTEVES S C. Clinical management of infertile men with nonobstructive azoospermia[J]. Asian J Androl, 2015, 17: 459-470. |
[32] |
HUNG A J, KING P, SCHLEGEL P N. Uniform testicular maturation arrest:a unique subset of men with nonobstructive azoospermia[J]. J Urol, 2007, 178: 608-612. DOI:10.1016/j.juro.2007.03.125 |
[33] |
TSAI M C, CHENG Y S, LIN T Y, YANG W H, LIN Y M. Clinical characteristics and reproductive outcomes in infertile men with testicular early and late maturation arrest[J]. Urology, 2012, 80: 826-832. DOI:10.1016/j.urology.2012.06.054 |
[34] |
TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126: 663-676. DOI:10.1016/j.cell.2006.07.024 |
[35] |
TAKAHASHI K, TANABE K, OHNUKI M, NARITA M, ICHISAKA T, TOMODA K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131: 861-872. DOI:10.1016/j.cell.2007.11.019 |
[36] |
KEE K, ANGELES V T, FLORES M, NGUYEN H N, REIJO PERA R A. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation[J]. Nature, 2009, 462: 222-225. DOI:10.1038/nature08562 |
[37] |
DURRUTHY DURRUTHY J, RAMATHAL C, SUKHWANI M, FANG F, CUI J, ORWIG K E, et al. Fate of induced pluripotent stem cells following transplantation to murine seminiferous tubules[J]. Hum Mol Genet, 2014, 23: 3071-3084. DOI:10.1093/hmg/ddu012 |
[38] |
IRIE N, WEINBERGER L, TANG W W, KOBAYASHI T, VIUKOV S, MANOR Y S, et al. Sox17 is a critical specifier of human primordial germ cell fate[J]. Cell, 2015, 160: 253-268. DOI:10.1016/j.cell.2014.12.013 |
[39] |
RAMATHAL C, ANGULO B, SUKHWANI M, CUI J, DURRUTHY-DURRUTHY J, FANG F, et al. DDX3Y gene rescue of a Y chromosome AZFa deletion restores germ cell formation and transcriptional programs[J/OL]. Sci Rep, 2015, 5: 15041. doi: 10.1038/srep15041. https://www.nature.com/articles/srep15041
|
[40] |
SASAKI K, YOKOBAYASHI S, NAKAMURA T, OKAMOTO I, YABUTA Y, KURIMOTO K, et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells[J]. Cell Stem Cell, 2015, 17: 178-194. DOI:10.1016/j.stem.2015.06.014 |
[41] |
HAYASHI K, OHTA H, KURIMOTO K, ARAMAKI S, SAITOU M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells[J]. Cell, 2011, 146: 519-532. DOI:10.1016/j.cell.2011.06.052 |
[42] |
FANG F, LI Z, ZHAO Q, LI H, XIONG C. Human induced pluripotent stem cells and male infertility:an overview of current progress and perspectives[J]. Hum Reprod, 2018, 33: 188-195. DOI:10.1093/humrep/dex369 |
[43] |
FALCONE T, HURD W W. Clinical reproductive medicine and surgery[M]. Philadelphia: Elsevier, 2007: 539.
|
[44] |
PLANT T M, ZELEZNIK A J. Knobil and Neill's physiology of reproduction[M]. 4th ed. San Diego: Elsevie, 2015: 595.
|
[45] |
VALLI H, PHILLIPS B T, SHETTY G, BYRNE J A, CLARK A T, MEISTRICH M L, et al. Germline stem cells:toward the regeneration of spermatogenesis[J]. Fertil Steril, 2014, 101: 3-13. DOI:10.1016/j.fertnstert.2013.10.052 |
[46] |
PICTON H M, WYNS C, ANDERSON R A, GOOSSENS E, JAHNUKAINEN K, KLIESCH S, et al. A European perspective on testicular tissue cryopreservation for fertility preservation in prepubertal and adolescent boys[J]. Hum Reprod, 2015, 30: 2463-2475. DOI:10.1093/humrep/dev190 |