第二军医大学学报  2020, Vol. 41 Issue (11): 1250-1254   PDF    
细胞焦亡在代谢性疾病中的研究进展
石建霞, 刘奇, 彭永德     
上海交通大学附属第一人民医院内分泌科, 上海 200080
摘要: 细胞焦亡是一种程序性细胞死亡方式,可导致细胞内容物与炎性因子的释放,参与许多疾病的发生发展过程,是目前学术界研究的又一热点。本文旨在阐述细胞焦亡与2型糖尿病、肥胖、非酒精性脂肪性肝病、痛风等代谢性疾病关系的研究进展,进一步拓宽对该类疾病发病机制的认识,为疾病的治疗提供新的思路。
关键词: 细胞焦亡    2型糖尿病    肥胖    非酒精性脂肪性肝病    痛风    
Pyroptosis in metabolic diseases: recent progress
SHI Jian-xia, LIU Qi, PENG Yong-de     
Department of Endocrinology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
Abstract: Pyroptosis is a kind of programmed cell death that can lead to the release of cellular contents and inflammatory factors involved in the development of many diseases, and it has become another research focus. This paper is to study the research progress in the relationship between pyroptosis and metabolic diseases, such as type 2 diabetes, obesity, non-alcoholic fatty liver disease and gout, so as to further broaden the understanding of the pathogenesis of these diseases and to provide new treatment strategies.
Key words: proptosis    type 2 diabetic mellitus    obesity    non-alcoholic fatty liver disease    gout    

细胞焦亡(pyroptosis)这一概念首先由Brennan和Cooksen[1]于2000年提出,又称细胞炎性坏死,是一种新的细胞程序性死亡方式。细胞焦亡由一系列可形成炎症小体的模式识别受体触发[2],其经典途径分子机制如下:机体受到外来刺激时,固有免疫细胞表面的核苷酸结合寡聚化结构域样受体蛋白3(nucleotide oligomerization domain-like receptor protein-3,NLRP3)识别病原体相关分子模式,引起NLRP3寡聚化[3],并与含胱天蛋白酶募集域的凋亡相关斑点样蛋白(apoptosis-associated speck-like protein containing a caspase-recruitment domain,ASC)结合,募集caspase-1前体(pre-caspase-1)组装成NLRP3炎症小体[4],进而活化caspase-1;活化的caspase-1将底物gasdermin D(GSDMD)切割为有成孔活性的氨基末端(GSDMD-N)和有自抑作用的羧基末端,活化的GSDMD-N与质膜结合并形成大寡聚孔,导致细胞内容物与炎症因子IL-1、IL-18释放,促进炎症反应[5-6]。因此,NLRP3炎症小体又被称为焦亡小体[7]。细胞焦亡和细胞凋亡都属于细胞程序性死亡方式,但是二者在细胞形态学和生物学效应上存在不同:细胞凋亡时细胞发生非炎症性坏死,细胞质和细胞核固缩,细胞膜保持完整,形成凋亡小体;细胞焦亡是炎症性细胞坏死,细胞焦亡过程中细胞膜穿孔,细胞膨胀破裂,释放炎症因子IL-1和IL-18,导致炎症反应[8]

细胞焦亡与许多疾病密切相关,如肿瘤[9]、神经系统疾病[10]、HIV感染[11]和自身免疫性疾病[12]等。炎症因子和炎症反应是糖尿病、肥胖症、非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)和痛风等代谢性疾病的重要发病机制,而细胞焦亡导致炎症因子释放,扩大炎症效应,参与多种代谢性疾病的发生发展过程。本文就细胞焦亡与代谢性疾病关系的研究进展作一综述。

1 细胞焦亡与2型糖尿病

2型糖尿病是由遗传和环境因素共同作用而引起的多基因遗传性复杂病,是一组异质性疾病,其核心是胰岛素抵抗和β细胞功能缺陷。研究表明糖基化终末产物(advanced glycation end product,AGE)诱导胰腺IL-1β成熟依赖NLRP3炎症小体活化,NLRP3敲除可改善注射AGE的小鼠对高糖的异常反应,阻断NLRP3炎症小体作用可抑制AGE作用下胰腺β细胞超微结构改变和细胞死亡;高浓度AGE可促进NLRP3炎症小体复合物形成及IL-1β释放,胰腺微环境中IL-1β可加重胰岛细胞慢性炎症反应[13]。Zheng等[14]报道NLRP3 rs10754558(C/G)多态性的GG基因型与中国汉族人群2型糖尿病、高胆固醇血症和胰岛素抵抗相关,而NLRP3 rs4612666(C/T)多态性与该人群2型糖尿病无相关性。

细胞焦亡也导致糖尿病靶器官功能损害,在高胰岛素环境下,氧化应激增强,促进炎症小体形成,发生细胞焦亡、释放炎症因子,进一步导致肌纤维破坏、线粒体肿胀、脂质沉积和间质纤维化,NLRP3抑制剂可逆转这些改变[15]。二甲双胍是治疗2型糖尿病的最基本用药,研究发现二甲双胍可显著降低糖尿病小鼠心肌组织和高糖诱导心肌细胞的NLRP3炎症小体水平,并通过腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路抑制糖尿病心肌细胞NLRP3炎症小体形成[16]。另有研究发现,在糖尿病大鼠缺血再灌注损伤的心肌细胞中,NLRP3炎症小体激活显著增加,BAY11-7082(NF-κB抑制剂)可抑制NLRP3表达和NLRP3炎症小体激活,使caspase-1激活程度下降、IL-1β分泌减少;氧化应激介导的NLRP3炎症小体激活可引起caspase-1依赖性细胞焦亡,使糖尿病心肌缺血再灌注损伤敏感性升高、程度更重,用BAY-11-7082抑制NLRP3炎症小体活化可抑制caspase-1依赖的细胞焦亡和炎症反应,改善糖尿病大鼠心肌细胞的缺血再灌注损伤[17]。丁酸钠可通过抑制细胞焦亡作用减轻高糖诱导的肾小球内皮细胞损伤[18]。由此可见,在糖尿病及其并发症发生、发展中,细胞焦亡是一种损伤机制,这个过程与NLRP3炎症小体活化密切相关,抑制炎症小体的作用可能是一种有效的治疗方法。

2 细胞焦亡与肥胖

肥胖是以全身低度炎症反应为特征的疾病,并与胰岛素抵抗互为因果,越来越多的证据表明NLRP3炎症小体活化与肥胖的发生密切相关。研究发现NLRP3敲除的小鼠高脂喂养后不能发展成肥胖和胰岛素抵抗,表明NLRP3炎症小体在肥胖的发生中具有重要作用;肥胖的2型糖尿病患者通过能量限制和运动使体重下降后,胰岛素敏感性随之增加,而腹部皮下脂肪组织NLRP3IL-1β基因表达减少[19]。另有研究发现NLRP3和caspase-1活化在脂肪细胞分化和脂肪细胞直接发展为胰岛素抵抗表型中起着决定性作用[20]。Esser等[21]研究发现,与代谢正常的肥胖患者相比,代谢异常的肥胖患者内脏脂肪NLRP3和IL-1β表达增加,并且NLRP3表达量与胰岛素抵抗指数呈正相关。Kursawe等[22]报道,相对于内脏脂肪少的肥胖患者,内脏脂肪多的青少年肥胖患者NLRP3和IL-1β表达增加。动物研究也得到了类似结果,Yin等[23]研究发现相对于非高脂喂养的小鼠,高脂喂养的小鼠皮下脂肪NLRP3表达增加。Vandanmagsar等[19]研究表明相对于普通喂养的小鼠,40%能量限制喂养的小鼠内脏脂肪和皮下脂肪NLRP3表达下降,并且NLRP3表达水平与体重呈正相关。同样,Stienstra等[24]研究表明NLRP3炎症小体活化引起的IL-1β释放在肥胖导致的胰岛素抵抗和2型糖尿病中有重要作用。总之,细胞焦亡过程中NLRP3炎症小体活化及炎症因子释放在脂肪细胞分化、胰岛素抵抗和肥胖的发生中具有重要作用,阻断NLRP3炎症小体活化通路能否用来治疗肥胖还需进一步研究探索。

3 细胞焦亡与NAFLD

NAFLD病因较多,高能量饮食、含糖饮料等生活方式及肥胖、2型糖尿病、高脂血症、代谢综合征等疾病均为其易感因素,氧化应激、线粒体功能障碍、炎症因子在其病理生理过程中具有重要作用。Dixon等[25]在小鼠脂肪肝模型中发现肝实质细胞炎症小体可活化caspase,并促进炎症和纤维化进程。氧化应激一直以来被认为是诱导脂肪肝致死性肝损伤因素,损伤的线粒体释放危险相关分子模式(danger-associated molecular pattern,DAMP)和氧化应激产物,促进NLRP3小体活化[26]。在无炎症的单纯脂肪肝动物模型中很少观察到NLRP3小体活化,细胞焦亡是单纯性脂肪肝和脂肪性肝炎的重要炎症纽带[27]

在细胞焦亡过程中,前炎症因子释放是NAFLD发展变化过程中的重要分子因素。IL-1β是肝脏炎症、脂肪变和纤维化的重要病理机制,也是扩大其他炎症因子效应的重要介质,炎症小体和IL-1信号活化在NAFLD发病机制中起着重要作用[28]。肝细胞和巨噬细胞焦亡参与肝纤维化和NAFLD的发展过程,细胞损伤后释放DAMP、IL-1β/IL-18和炎症小体颗粒,DAMP和炎症因子结合到肝细胞表面受体,上调细胞纤维化标志物,导致肝纤维化发生[29]。细胞焦亡产生的IL-18在NAFLD发展过程中起着不同于其他细胞因子的作用,在IL-18敲除小鼠的肝脏中糖原异生基因表达增多,小鼠易发展为肥胖、易饥和胰岛素抵抗[30]。Farrell等[31]对动物和人脂肪肝性肝炎的研究发现,含有胆固醇结晶的肝细胞是NLRP3的重要活化因子,可引起IL-1β和IL-18分泌,并吸引、活化巨噬细胞和中性粒细胞。动物体内研究发现,抑制NLRP3作用可减少巨噬细胞和中性粒细胞浸润,从而降低肝脏IL-1β、IL-6和单核细胞趋化蛋白1(monocyte chemotactic protein 1,MCP-1)水平,缓解NAFLD肝脏炎症和肝细胞损伤,减少肝纤维化发生[28]。由此可见,细胞焦亡释放的炎症因子不同,对机体的作用也不同,IL-18对机体有利,而IL-1β对机体有害。如何调控细胞焦亡的启动及选择性释放对机体有利的细胞因子,从而起到防治疾病的作用,需深入研究予以明确。

4 细胞焦亡与痛风

痛风是嘌呤代谢紊乱和尿酸排泄障碍所致的一组异质性疾病,其主要机制为由尿酸盐结晶沉积引起的炎症反应。单钠尿酸盐结晶通过巨噬细胞启动炎症反应,巨噬细胞吞噬单钠尿酸盐结晶促进NLRP3炎症小体形成和活化[32-33]。在单钠尿酸盐结晶启动的炎症反应中,NLRP3是重要环节,阻断NLRP3炎症小体活化或减弱其活性可能会减轻痛风的炎症反应。Misawa等[34]发现微管可介导NLRP3炎症小体的组装,而秋水仙碱阻断单钠尿酸盐结晶诱导的巨噬细胞NLRP3炎症小体激活可能与其抑制了线粒体微管的重排有关。能量缺乏时,肝脏产生的β-羟基丁酸能抑制单钠尿酸盐结晶诱导的炎症小体活化,使caspase-1活化程度下降、IL-1β水平降低[35]。另有研究显示,生酮饮食可抑制巨噬细胞中NLRP3炎症小体,减少大鼠单钠尿酸盐结晶诱发的痛风发作[36]

降尿酸药物黄嘌呤氧化酶抑制剂可减少线粒体氧化应激产生,抑制单钠尿酸盐结晶诱发的炎症反应[37]。二芳基磺脲类化合物MCC950最初被认为与细胞外ATP介导的IL-1β成熟有关[38],后来研究发现,MCC950可特异性阻断NLRP3诱导的ASC寡聚反应,而不影响炎症小体中NLRP1、黑素瘤缺乏因子2(absent in melanoma 2,AIM2)和核苷酸结合寡聚化结构域样受体家族胱天蛋白募集结构域蛋白4(nucleotide binding oligomerization domain-like receptor family caspase recruitment domain containing 4,NLRC4)功能,同时可抑制单钠尿酸盐结晶诱发的炎症反应[39],提示它能直接阻断NLRP3活化通路。GSDMD是细胞焦亡途径中的重要因子。Rashidi等[40]研究发现,单钠尿酸盐结晶可迅速激活小鼠巨噬细胞GSDMD,但敲除GSDMD基因并不能阻断单钠尿酸盐结晶诱导的细胞死亡,GSDMD不能阻断单钠尿酸盐结晶诱导的具有生物活性的IL-1β释放;在GSDMD敲除小鼠中用单钠尿酸盐结晶诱导腹膜炎后,小鼠IL-1β和其他炎症因子并未减少。上述研究表明并非所有由IL-1β导致的自身免疫疾病都能从GSDMD靶向治疗中获益,炎症小体中GSDMD上游还存在其他重要因子决定细胞焦亡和IL-1β的释放。总之,细胞焦亡过程中的NLRP3炎症小体活化是痛风急性发作的重要原因,研究细胞焦亡在痛风中的作用或许可为该类疾病的治疗提供新的思路和方法。

5 小结

细胞焦亡释放的炎症因子及激活的炎症反应是2型糖尿病、肥胖、NAFLD和痛风等代谢性疾病的重要发病机制。已有多项动物实验研究证实,抑制细胞焦亡中关键步骤NLRP3炎症小体活化,可减轻疾病炎症反应和细胞损伤。然而细胞焦亡过程中涉及的级联反应较为复杂,NLRP3炎症小体上下游还存在许多未知的重要因子决定细胞焦亡和炎症因子释放。细胞焦亡抑制剂为代谢性疾病的治疗提供了新的思路和方法,但其具体分子机制仍需进一步研究。

参考文献
[1]
BRENNAN M A, COOKSON B T. Salmonella induces macrophage death by caspase-1-dependent necrosis[J]. Mol Microbiol, 2000, 38: 31-40. DOI:10.1046/j.1365-2958.2000.02103.x
[2]
AACHOUI Y, SAGULENKO V, MIAO E A, STACEY K J. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection[J]. Curr Opin Microbiol, 2013, 16: 319-326. DOI:10.1016/j.mib.2013.04.004
[3]
HORNUNG V, LATZ E. Critical functions of priming and lysosomal damage for NLRP3 activation[J]. Eur J Immunol, 2010, 40: 620-623. DOI:10.1002/eji.200940185
[4]
RUBARTELLI A. Redox control of NLRP3 inflammasome activation in health and disease[J]. J Leukoc Biol, 2012, 92: 951-958. DOI:10.1189/jlb.0512265
[5]
SHI J J, GAO W, SHAO F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42: 245-254. DOI:10.1016/j.tibs.2016.10.004
[6]
SCHRODER K, TSCHOPP J. The inflammasomes[J]. Cell, 2010, 140: 821-832. DOI:10.1016/j.cell.2010.01.040
[7]
XU B, JIANG M, CHU Y, WANG W, CHEN D, LI X, et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice[J]. J Hepatol, 2018, 68: 773-782.
[8]
MIAO E A, RAJAN J V, ADEREM A. Caspase-1-induced pyroptotic cell death[J]. Immunol Rev, 2011, 243: 206-214. DOI:10.1111/j.1600-065X.2011.01044.x
[9]
ZHOU B, ZHANG J Y, LIU X S, CHEN H Z, AI Y L, CHENG K, et al. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis[J]. Cell Res, 2018, 28: 1171-1185. DOI:10.1038/s41422-018-0090-y
[10]
TRICARICO P M, MARCUZZI A, PISCIANZ E, MONASTA L, CROVELLA S, KLEINER G. Mevalonate kinase deficiency and neuroinflammation: balance between apoptosis and pyroptosis[J]. Int J Mol Sci, 2013, 14: 23274-23288. DOI:10.3390/ijms141223274
[11]
DOITSH G, GALLOWAY N L, GENG X, YANG Z, MONROE K M, ZEPEDA O, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection[J]. Nature, 2014, 505: 509-514. DOI:10.1038/nature12940
[12]
JESUS A A, GOLDBACH-MANSKY R. IL-1 blockade in autoinflammatory syndromes[J]. Annu Rev Med, 2014, 65: 223-244. DOI:10.1146/annurev-med-061512-150641
[13]
KONG X, LU A L, YAO X M, HUA Q, LI X Y, QIN L, et al. Activation of NLRP3 inflammasome by advanced glycation end products promotes pancreatic islet damage[J]. Oxid Med Cell Longev, 2017, 2017: 9692546. DOI:10.1155/2017/9692546
[14]
ZHENG Y, ZHANG D, ZHANG L, FU M, ZENG Y, RUSSELL R. Variants of NLRP3 gene are associated with insulin resistance in Chinese Han population with type-2 diabetes[J]. Gene, 2013, 530: 151-154. DOI:10.1016/j.gene.2013.07.082
[15]
ROJAS J, BERMUDEZ V, PALMAR J, MARTÍNEZ M S, OLIVAR L C, NAVA M, et al. Pancreatic beta cell death: novel potential mechanisms in diabetes therapy[J/OL]. J Diabetes Res, 2018, 9601801. doi: 10.1155/2018/9601801.
[16]
YANG F, QIN Y, WANG Y, MENG S, XIAN H, CHE H, et al. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy[J]. Int J Biol Sci, 2019, 15: 1010-1019. DOI:10.7150/ijbs.29680
[17]
QIU Z, LEI S, ZHAO B, WU Y, SU W, LIU M, et al. NLRP3 inflammasome activation-mediated pyroptosis aggravates myocardial ischemia/reperfusion injury in diabetic rats[J/OL]. Oxid Med Cell Longev, 2017, 9743280. doi: 10.1155/2017/9743280.
[18]
GU J, HUANG W, ZHANG W, ZHAO T, GAO C, GAN W, et al. Sodium butyrate alleviates high-glucose-induced renal glomerular endothelial cells damage via inhibiting pyroptosis[J/OL]. Int Immunopharmacol, 2019, 75: 105832. doi: 10.1016/j.intimp.2019.105832.
[19]
VANDANMAGSAR B, YOUM Y H, RAVUSSIN A, GALGANI J E, STADLER K, MYNATT R L, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance[J]. Nat Med, 2011, 17: 179-188. DOI:10.1038/nm.2279
[20]
STIENSTRA R, JOOSTEN L A B, KOENEN T, VAN TITS B, VAN DIEPEN J A, VAN DEN BERG S A, et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity[J]. Cell Metab, 2010, 12: 593-605. DOI:10.1016/j.cmet.2010.11.011
[21]
ESSER N, L'HOMME L, DE ROOVER A, KOHNEN L, SCHEEN A J, MOUTSCHEN M, et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue[J]. Diabetologia, 2013, 56: 2487-2497. DOI:10.1007/s00125-013-3023-9
[22]
KURSAWE R, DIXIT V D, SCHERER P E, SANTORO N, NARAYAN D, GORDILLO R, et al. A Role of the inflammasome in the low storage capacity of the abdominal subcutaneous adipose tissue in obese adolescents[J]. Diabetes, 2016, 65: 610-618. DOI:10.2337/db15-1478
[23]
YIN Z, DENG T, PETERSON L E, YU R, LIN J, HAMILTON D J, et al. Transcriptome analysis of human adipocytes implicates the NOD-like receptor pathway in obesity-induced adipose inflammation[J]. Mol Cell Endocrinol, 2014, 394(1/2): 80-87.
[24]
STIENSTRA R, VAN DIEPEN J A, TACK C J, ZAKI M H, VAN DE VEERDONK F L, PERERA D, et al. Inflammasome is a central player in the induction of obesity and insulin resistance[J]. Proc Natl Acad Sci USA, 2011, 108: 15324-15329. DOI:10.1073/pnas.1100255108
[25]
DIXON L J, BERK M, THAPALIVA S, PAPOUCHADO B G, FELDSTEIN A E. Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis[J]. Lab Invest, 2012, 92: 713-723. DOI:10.1038/labinvest.2012.45
[26]
NAKAHIRA K, HASPEI J A, RATHINAM V A, LEE S J, DOLINAY T, LAM H C, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome[J]. Nat Immunol, 2011, 12: 222-230.
[27]
BEIER J I, BANALES J M. Pyroptosis: an inflammatory link between NAFLD and NASH with potential therapeutic implications[J]. J Hepatol, 2018, 68: 643-645. DOI:10.1016/j.jhep.2018.01.017
[28]
MRIDHA A R, WREE A, ROBERTSON A A B, YEH M M, JOHNSON C D, VAN ROOYEN D M, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice[J]. J Hepatol, 2017, 66: 1037-1046. DOI:10.1016/j.jhep.2017.01.022
[29]
WATANABE A, SOHAIL M A, GOMES D A, HASHMI A, NAGATA J, SUTTETMALA F S, et al. Inflammasome-mediated regulation of hepatic stellate cells[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296: G1248-G1257. DOI:10.1152/ajpgi.90223.2008
[30]
NETEA M G, JOOSTEN L A, LEWIS E, JENSEN D R, VOSHOL P J, KULLBERG B J, et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance[J]. Nat Med, 2006, 12: 650-656. DOI:10.1038/nm1415
[31]
FARRELL G C, HACZEYNI F, CHITTURI S. Pathogenesis of NASH: how metabolic complications of overnutrition favour lipotoxicity and pro-inflammatory fatty liver disease[J]. Adv Exp Med Biol, 2018, 1061: 19-44.
[32]
MARTINON F, GLIMCHER L H. Gout: new insights into an old disease[J]. J Clin Invest, 2006, 116: 2073-2075. DOI:10.1172/JCI29404
[33]
MARTINON F, PÉTRILLI V, MAYOR A, TARDIVEL A, TSCHOPP J. Gout-associated uric acid crystals activate the NALP3 inflammasome[J]. Nature, 2006, 440: 237-241. DOI:10.1038/nature04516
[34]
MISAWA T, TAKAHAMA M, KOZAKI T, LEE H, ZOU J, SAITOH T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome[J]. Nat Immunol, 2013, 14: 454-460. DOI:10.1038/ni.2550
[35]
YOUM Y H, NGUYEN K Y, GRANT R W, GOLDBERG E L, BODOGAI M, KIM D, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease[J]. Nat Med, 2015, 21: 263-269. DOI:10.1038/nm.3804
[36]
GOLDBERG E L, ASHER J L, MOLONY R D, SHAW A C, ZEISS C J, WANG C, et al. β-hydroxybutyrate deactivates neutrophil NLRP3 inflammasome to relieve gout flares[J]. Cell Rep, 2017, 18: 2077-2087. DOI:10.1016/j.celrep.2017.02.004
[37]
IVES A, NOMURA J, MARTINON F, ROGER T, LEROY D, MINER J N, et al. Xanthine oxidoreductase regulates macrophage IL-1β secretion upon NLRP3 inflammasome activation[J/OL]. Nat Commun, 2015, 6: 6555. doi: 10.1038/ncomms7555.
[38]
PERREGAUX D G, MCNIFF P, LABLBERTE R, HAWRYLUK N, PEURANO H, STAM E, et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors[J]. J Pharmacol Exp Ther, 2001, 299: 187-197.
[39]
COLL R C, ROBERTSON A A B, CHAE J J, HIGGINS S C, MUNOZ-PLANILLO R, INSERRA M C, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases[J]. Nat Med, 2015, 21: 248-255. DOI:10.1038/nm.3806
[40]
RASHIDI M, SIMPSON D S, HEMPEL A, FRANK D, PETRIE E, VINCE A, et al. The pyroptotic cell death effector gasdermin D is activated by gout-associated uric acid crystals but is dispensable for cell death and IL-1β release[J]. J Immunol, 2019, 203: 736-748. DOI:10.4049/jimmunol.1900228