第二军医大学学报  2020, Vol. 41 Issue (11): 1193-1197   PDF    
腰椎椎体间融合术后邻近节段疾病的研究进展
王超, 杨长伟, 李明, 石志才     
海军军医大学(第二军医大学)长海医院骨科, 上海 200433
摘要: 腰椎椎体间融合术是治疗腰椎退行性疾病的主要方式,而术后邻近节段疾病(ASP)严重影响腰椎融合术的手术效果,部分患者甚至需要二次手术治疗。研究表明,年龄、术前存在的邻近节段退变、矢状面失衡、融合节段长度、手术方式等因素都影响着ASP的发生。近年来,微创及非融合手术在治疗ASP方面取得了较大的进展。本文就ASP的病因、危险因素和治疗相关研究进展进行综述。
关键词: 脊柱融合术    邻近节段疾病    危险因素    手术治疗    研究进展    
Adjacent segment pathology after lumbar interbody fusion: research progress
WANG Chao, YANG Chang-wei, LI Ming, SHI Zhi-cai     
Department of Orthopaedics, Changhai Hospital, Naval Medical University(Second Military Medical University), Shanghai 200433, China
Abstract: Lumbar interbody fusion is the primary treatment of degenerative lumbar diseases; however, the outcome of the operation is seriously affected by the postoperative adjacent segment pathology (ASP), and some patients even need revision surgery. Many factors affect the occurrence of ASP, including age, preoperative adjacent segment degeneration, sagittal imbalance, length of fusion segment and surgical methods. Meanwhile, great progresses, such as minimally invasive and non-fusion surgery, have been made in treating ASP. This paper reviews the pathogeny, risk factors and treatment of ASP.
Key words: spinal fusion    adjacent segmental pathology    risk factors    surgical treatment    research progress    

腰椎椎体间融合术目前仍是恢复腰椎稳定性最常用的手术方式,广泛应用于腰椎退变性疾病的治疗并获得了良好的治疗效果[1]。邻近节段疾病(adjacent segment pathology,ASP)严重影响着腰椎融合术的手术效果,部分患者甚至需要二次手术治疗[2]。ASP的确切发病机制及预防方法尚未明确,减少甚至避免ASP的发生成为脊柱外科领域研究的热点。本文就ASP的病因、危险因素和治疗进展进行综述。

1 ASP的概念和发生率

ASP是指腰椎椎体间融合术后手术节段上方或下方节段的病变,根据是否发生相应的临床症状分为邻近节段退变(adjacent segment degeneration,ASDeg)和邻近节段病变(adjacent segment disease,ASDis)。ASDeg只有影像学表现,一般没有症状、不影响腰椎正常功能,不需要处理。Nakashima等[3]将ASDeg的定义归纳为与前一次检查相比出现下列2项中任意1项:(1)中立位X线片上椎间盘高度下降≤50%、椎体滑移≥3 mm,动力位X线片上椎间角度减少≥5°;(2)MRI上出现Ⅰ度以上椎间盘退变或椎管狭窄的进展。其中,椎间盘退变和椎管狭窄的程度分别使用Pfirrmann分级[4]及Imagama分级[5]进行评价。ASDis是指腰椎融合术后经过3~6个月的症状缓解期[6],再次出现与ASP影像学表现相符的下肢放射痛、间歇性跛行甚至马尾症状[3]

由于不同研究中对ASP诊断标准和患者随访时间的不同,目前报道的ASP发生率存在较大差异。Trivedi等[7]通过对相关研究进行综述发现,ASP的发生率为1.9%~75.7%,其中ASDeg发生率为8%~100%,ASDis发生率为10.7%~75.7%。Okuda等[8]进一步指出,随着随访时间的延长,因腰椎滑脱行腰椎椎体间融合术的患者术后ASP的发生率也逐年增高,随访2、5、10年时ASP的发生率分别为19%、49%、75%,且多发生于手术节段头侧。

2 ASP的病因

ASP的确切病因尚未完全阐明。既往认为,融合术后邻近节段生物力学的改变是引起ASP的主要原因,包括邻近节段活动度增大、小关节应力增大和椎间盘内压力增高等[9]。一项系统综述指出,单纯减压术后ASP的发生率明显低于融合术[10]。但也有研究发现腰椎融合术后患者与保守治疗患者的ASP发生率没有明显差异,并认为腰椎椎体间融合术后ASP是由于自然病程所致,与融合术无关[11]。目前认为,ASP的发生可能与手术和自然退变2种因素都有关系[7]

3 ASP的危险因素 3.1 个体因素

大多数学者认为,ASP的发生与患者的年龄、体重等个体因素有关。Hashimoto等[10]发现年龄>60岁、BMI≥25 kg/m2,以及术前存在的ASDeg、椎管狭窄(≥47%)和骨质疏松是融合术后ASP高发的危险因素。高龄患者椎间盘蛋白聚糖及水分含量下降,肥胖患者邻近节段所受应力较大可能是融合术后易发生ASP的原因。Hashimoto等[10]进一步指出,应用双膦酸盐及甲状旁腺素类似物治疗骨质疏松可增加骨量、维持椎间盘高度和椎体终板厚度,进而预防融合术后ASP的发生。另有研究认为,ASP与遗传因素也有一定的相关性。Omair等[12]对接受腰椎椎体间融合术治疗的患者进行了平均长达13年的随访,发现IL-18RAP基因单核苷酸多态性通过影响椎间盘高度增加了融合术后ASP的发生率。然而该试验尚未被重复,仍需进一步研究证实。

3.2 手术因素

手术操作因素也影响着术后ASP的发生,主要包括融合节段数目、融合固定方式和手术方式。由于多节段融合导致的力臂增长会使邻近自由活动节段承受的应力明显增加,故而融合节段的数目增多会引起ASP的发生。Zhang等[13]指出融合节段增多是导致术后ASP发生最重要的因素,减少融合节段比更改手术方式对降低ASP发生的作用更强。融合方式对ASP的发生也有明显影响。后方入路是腰椎椎体间融合术最常见、最经典的手术入路,能够暴露神经根并彻底减压,但其对腰部肌肉和腰椎后方韧带复合体也造成了破坏,并且在操作过程中极易损伤邻近节段的小关节突及韧带等结构。Lee等[14]研究认为,与后路腰椎椎体间融合术(posterior lumbar interbody fusion,PLIF)相比,腰椎前路椎体间融合术及侧方入路腰椎椎体间融合术(lateral lumbar interbody fusion,LLIF)有助于降低腰椎滑脱患者术后ASP的发生率。有限元分析表明,保留腰椎后方韧带复合体的半椎板切除融合术与全椎板切除术相比,术后近端节段所受的应力较小,有助于减少术后ASP的发生[15]。一项meta分析发现,微创腰椎融合术后ASDis及ASDeg的发生率均明显低于开放手术[16],作者认为微创操作对小关节突及椎旁软组织的破坏较小可能是ASP发生率较低的原因。因此,在实施PLIF时应注意保护腰椎后方韧带复合体,尤其要减少邻近节段正常结构的损伤,这样有助于减少术后ASP的发生。另外,融合节段椎间隙过度撑开、相邻节段椎板切除、保留L5/S1的长节段固定等手术方式也会增加融合术后ASP的发生[10]

3.3 矢状面失衡

脊柱-骨盆矢状面平衡性对脊柱手术效果的影响受到越来越多的关注。Nakashima等[3]提出,术前脊柱矢状面失衡易导致ASP的发生,这可能是由于患者矢状面力线不良导致邻近节段椎间盘应力增大,使其更容易发生退变。有研究指出,对于手术节段≥3个的患者,术后矢状面失衡导致的邻近节段负荷增大及代偿下降会显著增加ASP的发生[17]。Phan等[18]通过meta分析发现,术前高骨盆倾斜角(pelvic tilt,PT)、低骶骨倾斜角(sacral slope,SS)、低腰椎前凸角(lumbar lordosis,LL)、骨盆入射角(pelvic incidence,PI)与LL不匹配,以及术后高PI、高PT均与ASP的发生相关,通过手术纠正患者矢状面失衡对预防ASP的发生具有重要作用。Tian等[19]进一步指出,手术节段椎间隙高度和LL的恢复有助于预防融合术后ASP的发生。近期本课题组研究也显示腰椎融合术后矢状位失衡与ASDis的发生密切相关,因ASDis行翻修手术的患者手术节段前凸恢复不良,并导致近端节段代偿性后凸,引起椎间不稳[20]

4 ASP的治疗

腰椎椎体间融合术后ASP的治疗分为保守治疗和手术治疗2种方法,其中保守治疗方法与腰椎间盘退变的保守治疗相同,当保守治疗无效时可考虑手术治疗。手术治疗以解除神经压迫、重建脊柱生物力学稳定为目的,腰椎翻修手术难度较大,应综合考虑患者实际病情选择合适的手术方式。对于年龄较大、全身情况较差的患者,应注意控制手术创伤,选择单纯减压或微创手术;而当患者邻近节段存在椎间不稳或需广泛减压时,可选用合适的融合固定手术。

4.1 PLIF

PLIF在临床中广泛应用于腰椎退变性疾病的治疗,能够对病变节段进行彻底减压并重建稳定性,疗效确切,也是融合术后发生ASDis时常用的治疗方案。Miwa等[21]通过对18例因ASDis再次行PLIF的患者资料进行分析发现,术后患者的症状明显改善,但术后也可能再次出现ASP,并且有学者指出二次手术失血量及脑脊液漏的发生率明显高于初次手术[22]。微创置钉技术如微创经椎间孔入路腰椎椎体间融合术(minimally invasive surgery-transforaminal lumbar interbody fusion,MIS-TLIF)对椎旁结构破坏小,安全性高,Li等[16]认为采用微创技术能够减少ASP的再次发生。近年来出现的皮质骨轨迹螺钉(cortical bone trajectory screw,CBT)内固定技术在治疗ASDis时具有不取出原有内固定、减少肌肉剥离且螺钉固定牢固、抗拔出力强等优势,Chen等[23]应用CBT技术治疗6例融合术后ASDis患者,取得满意效果。

4.2 LLIF

LLIF经腹部腔隙入路,具有创伤小、不损伤前纵韧带及腰椎后柱结构等优势,融合器植骨面积大,具有较高的融合率。Tu等[24]比较了LLIF和PLIF治疗ASDis的效果,认为LLIF治疗ASDis效果满意,且在手术时间、失血量及住院时间等方面均明显优于PLIF。生物力学实验也证实,LLIF用于治疗ASDis时可避免取出原有内固定器,并能够提供有效的稳定性[25]。但也有学者认为这种稳定性仍较PLIF差,并建议联合后路经皮椎弓根螺钉固定[26]。Kotheeranurak等[27]采用前路腹腔镜下腰椎椎体间融合术联合后路导航下CBT技术治疗L5/S1节段ASDis,患者术后症状明显改善,认为这种微创技术可作为治疗L5/S1节段ASDis的替代方法。

4.3 动态固定及非融合技术

动态固定及非融合技术主要包括棘突间撑开装置及腰椎人工椎间盘。Nachanakian等[28]应用棘突间撑开装置治疗融合术后ASDis患者,取得了满意的疗效,指出该技术能够降低再次发生ASP的概率。Bertagnoli等[29]发现腰椎人工椎间盘置换治疗ASDis效果满意,未出现再次ASP,但作者同时指出,病变节段若存在严重的不稳定(如小关节突破坏或假关节形成)则不宜行腰椎人工椎间盘置换术。

4.4 单纯减压及椎间孔镜手术

单纯减压及椎间孔镜手术可以明显缩短住院时间并减少失血量,而且有显而易见的经济优势,但其在ASDis治疗方面的应用仍有争议。Ryu等[30]指出单纯减压术治疗ASDis效果不佳,尤其是当ASP发生于融合术后腰椎最下方的活动节段时。Gu等[31]应用椎间孔镜治疗65岁以上的ASDis患者取得了较好的短期效果,然而Telfeian[32]指出这种效果可能只是暂时的,长期随访仍有较高的失败率。但对于身体条件较差的高龄患者,单纯减压及椎间孔镜手术仍是治疗ASDis的可选方案。

5 小结

腰椎椎体间融合术后ASP是严重影响手术效果的远期并发症,个体生理因素、矢状面失衡和手术因素都不同程度地影响着术后ASP的发生。保留椎体后结构、维持矢状面平衡等方法可以预防融合术后ASP的发生。现阶段对ASDis的手术干预方式主要包括PLIF、LLIF、单纯减压术和椎间孔镜技术,需综合考虑患者的年龄、全身情况及ASDis类型选择合理的治疗方案。需要注意的是,Nagamoto等[33]指出,0.4%的患者会经历2次以上的ASDis翻修手术,其后果是患者会出现平背畸形,且需要行胸腰椎或腰骶椎矫形手术治疗。

既往关于ASP的文献,无论是报道其发生率、危险因素还是治疗效果,大都存在样本量小、随访时间短等不足,甚至存在研究设计方面的缺陷,导致证据等级较低,未来还需要更多高质量的循证医学证据来指导临床实践。此外,目前关于腰椎椎体间融合术后ASP的分类及命名并不统一,迫切需要规范的分类及评价方法以利于进一步研究及学术交流。

参考文献
[1]
MORCOS M W, JIANG F, MCINTOSH G, JOHNSON M, CHRISTIE S, WAI E, et al. Predictors of blood transfusion in posterior lumbar spinal fusion: a canadian spine outcome and research network study[J/OL]. Spine (Phila Pa 1976), 2018, 43: E35-E39. doi: 10.1097/BRS.0000000000002115.
[2]
SUN J, WANG J J, ZHANG L W, HUANG H, FU N X. Sagittal alignment as predictor of adjacent segment disease after lumbar transforaminal interbody fusion[J/OL]. World Neurosurg, 2018, 110: e567-e571. doi: 10.1016/j.wneu.2017.11.049.
[3]
NAKASHIMA H, KAWAKAMI N, TSUJI T, OHARA T, SUZUKI Y, SAITO T, et al. Adjacent segment disease after posterior lumbar interbody fusion: based on cases with a minimum of 10 years of follow-up[J/OL]. Spine (Phila Pa 1976), 2015, 40: E831-E841. doi: 10.1097/BRS.0000000000000917.
[4]
PFIRRMANN C W, METZDORF A, ZANETTI M, HODLER J, BOOS N. Magnetic resonance classification of lumbar intervertebral disc degeneration[J]. Spine (Phila Pa 1976), 2001, 26: 1873-1878. DOI:10.1097/00007632-200109010-00011
[5]
IMAGAMA S, KAWAKAMI N, MATSUBARA Y, KANEMURA T, TSUJI T, OHARA T. Preventive effect of artificial ligamentous stabilization on the upper adjacent segment impairment following posterior lumbar interbody fusion[J]. Spine (Phila Pa 1976), 2009, 34: 2775-2781. DOI:10.1097/BRS.0b013e3181b4b1c2
[6]
ZHONG Z M, DEVIREN V, TAY B, BURCH S, BERVEN S H. Adjacent segment disease after instrumented fusion for adult lumbar spondylolisthesis:incidence and risk factors[J]. Clin Neurol Neurosurg, 2017, 156: 29-34. DOI:10.1016/j.clineuro.2017.02.020
[7]
TRIVEDI N N, WILSON S M, PUCHI L A, LEBL D R. Evidence-based analysis of adjacent segment degeneration and disease after LIF:a narrative review[J]. Global Spine J, 2018, 8: 95-102. DOI:10.1177/2192568217734876
[8]
OKUDA S, NAGAMOTO Y, MATSUMOTO T, SUGIURA T, TAKAHASHI Y, IWASAKI M. Adjacent segment disease after single segment posterior lumbar interbody fusion for degenerative spondylolisthesis: minimum 10 years follow-up[J/OL]. Spine (Phila Pa 1976), 2018, 43: E1384-E1388. doi: 10.1097/BRS.0000000000002710.
[9]
STRUBE P, TOHTZ S, HOFF E, GROSS C, PERKA C, PUTZIER M. Dynamic stabilization adjacent to single-level fusion:part Ⅰ. Biomechanical effects on lumbar spinal motion[J]. Eur Spine J, 2010, 19: 2171-2180. DOI:10.1007/s00586-010-1549-9
[10]
HASHIMOTO K, AIZAWA T, KANNO H, ITOI E. Adjacent segment degeneration after fusion spinal surgery-a systematic review[J]. Int Orthop, 2019, 43: 987-993. DOI:10.1007/s00264-018-4241-z
[11]
WAI E K, SANTOS E R, MORCOM R A, FRASER R D. Magnetic resonance imaging 20 years after anterior lumbar interbody fusion[J]. Spine (Phila Pa 1976), 2006, 31: 1952-1956. DOI:10.1097/01.brs.0000228849.37321.a8
[12]
OMAIR A, MANNION A F, HOLDEN M, LEIVSETH G, FAIRBANK J, HÄGG O, et al. Age and pro-inflammatory gene polymorphisms influence adjacent segment disc degeneration more than fusion does in patients treated for chronic low back pain[J]. Eur Spine J, 2016, 25: 2-13. DOI:10.1007/s00586-015-4181-x
[13]
ZHANG C, BERVEN S H, FORTIN M, WEBER M H. Adjacent segment degeneration versus disease after lumbar spine fusion for degenerative pathology:a systematic review with meta-analysis of the literature[J]. Clin Spine Surg, 2016, 29: 21-29. DOI:10.1097/BSD.0000000000000328
[14]
LEE C W, YOON K J, HA S S. Which approach is advantageous to preventing development of adjacent segment disease? Comparative analysis of 3 different lumbar interbody fusion techniques (ALIF, LLIF, and PLIF) in L4-5 spondylolisthesis[J]. World Neurosurg, 2017, 105: 612-622. DOI:10.1016/j.wneu.2017.06.005
[15]
HUANG Y P, DU C F, CHENG C K, ZHONG Z C, CHEN X W, WU G, et al. Preserving posterior complex can prevent adjacent segment disease following posterior lumbar interbody fusion surgeries: a finite element analysis[J/OL]. PLoS One, 2016, 11: e0166452. doi: 10.1371/journal.pone.0166452.
[16]
LI X C, HUANG C M, ZHONG C F, LIANG R W, LUO S J. Minimally invasive procedure reduces adjacent segment degeneration and disease: new benefit-based global meta-analysis[J/OL]. PLoS One, 2017, 12: e0171546. doi: 10.1371/journal.pone.0171546.
[17]
MASEVNIN S, PTASHNIKOV D, MICHAYLOV D, MENG H, SMEKALENKOV O, ZABOROVSKII N. Risk factors for adjacent segment disease development after lumbar fusion[J]. Asian Spine J, 2015, 9: 239-244. DOI:10.4184/asj.2015.9.2.239
[18]
PHAN K, NAZARETH A, HUSSAIN A K, DMYTRIW A A, NAMBIAR M, NGUYEN D, et al. Relationship between sagittal balance and adjacent segment disease in surgical treatment of degenerative lumbar spine disease:meta-analysis and implications for choice of fusion technique[J]. Eur Spine J, 2018, 27: 1981-1991. DOI:10.1007/s00586-018-5629-6
[19]
TIAN H, WU A, GUO M, ZHANG K, CHEN C, LI X, et al. Adequate restoration of disc height and segmental lordosis by lumbar interbody fusion decreases adjacent segment degeneration[J/OL]. World Neurosurg, 2018, 118: e856-e864. doi: 10.1016/j.wneu.2018.07.075.
[20]
袁佳滨, 王超, 杨长伟, 李孝明, 刘澍, 林徐苗, 等. 腰椎融合术后邻近节段病变与脊柱-骨盆矢状位参数的相关性[J]. 第二军医大学学报, 2019, 40: 377-380.
[21]
MIWA T, SAKAURA H, YAMASHITA T, SUZUKI S, OHWADA T. Surgical outcomes of additional posterior lumbar interbody fusion for adjacent segment disease after single-level posterior lumbar interbody fusion[J]. Eur Spine J, 2013, 22: 2864-2868. DOI:10.1007/s00586-013-2863-9
[22]
SMORGICK Y, BAKER K C, FISCHGRUND J S. Hidden blood loss during posterior spine fusion surgery:in response to the letter by ZhiNan et al[J]. Spine J, 2015, 15: 2114-2115. DOI:10.1016/j.spinee.2015.06.021
[23]
CHEN C H, HUANG H M, CHEN D C, WU C Y, LEE H C, CHO D Y. Cortical bone trajectory screws fixation in lumbar adjacent segment disease:a technique note with case series[J]. J Clin Neurosci, 2018, 48: 224-228. DOI:10.1016/j.jocn.2017.11.008
[24]
TU Z, LI L, WANG B, LI Y, LV G, DAI Y. Stand-alone anterolateral interbody fusion versus extended posterior fusion for symptomatic adjacent-segment degeneration: a retrospective study of 2 years' follow-up[J/OL]. World Neurosurg, 2018, 115: e748-e755. doi: 10.1016/j.wneu.2018.04.165.
[25]
METZGER M F, ROBINSON S T, MALDONADO R C, RAWLINSON J, LIU J, ACOSTA F L. Biomechanical analysis of lateral interbody fusion strategies for adjacent segment degeneration in the lumbar spine[J]. Spine J, 2017, 17: 1004-1011. DOI:10.1016/j.spinee.2017.03.005
[26]
SHASTI M, KOENIG S J, NASH A B, BAHRAMI S, JAUREGUI J J, O'HARA N N, et al. Biomechanical evaluation of lumbar lateral interbody fusion for the treatment of adjacent segment disease[J]. Spine J, 2019, 19: 545-551. DOI:10.1016/j.spinee.2018.09.002
[27]
KOTHEERANURAK V, LIN G X, MAHATTHANATRAKUL A, KIM J S. Endoscope-assisted anterior lumbar interbody fusion with computed tomography-guided, image-navigated unilateral cortical bone trajectory screw fixation in managing adjacent segment disease in L5/S1:technical note[J]. World Neurosurg, 2019, 122: 469-473. DOI:10.1016/j.wneu.2018.10.029
[28]
NACHANAKIAN A, EL HELOU A, ALAYWAN M. The interspinous spacer: a new posterior dynamic stabilization concept for prevention of adjacent segment disease[J/OL]. Adv Orthop, 2013, 2013: 637362. doi: 10.1155/2013/637362.
[29]
BERTAGNOLI R, YUE J J, FENK-MAYER A, EERULKAR J, EMERSON J W. Treatment of symptomatic adjacent-segment degeneration after lumbar fusion with total disc arthroplasty by using the prodisc prosthesis:a prospective study with 2-year minimum follow up[J]. J Neurosurg Spine, 2006, 4: 91-97. DOI:10.3171/spi.2006.4.2.91
[30]
RYU D S, PARK J Y, KUH S U, CHIN D K, KIM K S, CHO Y E, et al. Surgical outcomes after segmental limited surgery for adjacent segment disease: the consequences of makeshift surgery[J/OL]. World Neurosurg, 2018, 110: e258-e265. doi: 10.3349/ymj.2016.57.6.1386.
[31]
GU G, WANG C, GU X, ZHANG H, ZHAO Y, HE S. Percutaneous transforaminal endoscopic discectomy for adjacent segment disease after lumbar fusion in elderly patients over 65 years old[J/OL]. World Neurosurg, 2018, 112: e830-e836. doi: 10.1016/j.wneu.2018.01.170.
[32]
TELFEIAN A E. Transforaminal endoscopic surgery for adjacent segment disease after lumbar fusion[J]. World Neurosurg, 2017, 97: 231-235. DOI:10.1016/j.wneu.2016.09.099
[33]
NAGAMOTO Y, OKUDA S, MATSUMOTO T, SUGIURA T, TAKAHASHI Y, IWASAKI M. Multiple-repeated adjacent segment disease after posterior lumbar interbody fusion[J/OL]. World Neurosurg, 2019, 121: e808-e816. doi: 10.1016/j.wneu.2018.09.227.