第二军医大学学报  2020, Vol. 41 Issue (10): 1136-1141   PDF    
肿瘤治疗相关心血管损伤与冠状动脉微循环障碍
任昌振1,2, 董士铭1, 胡博文1, 贺治青1, 梁春1     
1. 海军军医大学(第二军医大学)长征医院心血管内科, 上海 200003;
2. 解放军960 医院全科医学科, 济南 250031
摘要: 许多接受化学治疗或放射治疗的肿瘤患者心血管疾病发生风险明显增加。研究发现,肿瘤治疗引起心功能障碍及随后的心力衰竭主要由于血管毒性所致,而非心肌毒性。然而,并不是所有肿瘤治疗的血管毒性都可以用阻塞性冠状动脉疾病解释。在过去的几十年里,已经发现心肌缺血可能是由于冠状动脉造影所不能看到的复杂血管网络结构或功能障碍所致,即冠状动脉微循环障碍(CMD)。越来越多的证据表明,肿瘤治疗相关心血管损伤(CTRCD)和CMD存在许多共同的病理生理机制。本文从病理生理学角度阐述CTRCD与CMD的联系,为探索心血管疾病新的诊断方法和治疗策略提供思路。
关键词: 肿瘤治疗相关心血管损伤    冠状动脉微循环障碍    血管毒性    心肌缺血    
Cancer therapy-related cardiovascular dysfunction and coronary microvascular dysfunction: research progress
REN Chang-zhen1,2, DONG Shi-ming1, HU Bo-wen1, HE Zhi-qing1, LIANG Chun1     
1. Department of Cardiovasology, Changzheng Hospital, Naval Medical University(Second Military Medical University), Shanghai 200003, China;
2. Department of General Practice, No. 960 Hospital of PLA, Jinan 250031, Shandong, China
Abstract: The risk of cardiovascular diseases is significantly increased in cancer patients receiving chemotherapy or radiotherapy. Recent evidences suggested that cardiac dysfunction and subsequent heart failure are mainly caused by vascular toxicity rather than myocardial toxicity. However, not all of the vascular toxicity of cancer therapies can be explained by obstructive coronary artery disease. In the past few decades, it has been found that myocardial ischemia may be caused by structural or functional disorders of the complex vascular network that cannot be seen by coronary angiography, known as coronary microvascular dysfunction (CMD). There is growing evidences that cancer therapy-related cardiovascular dysfunction (CTRCD) and CMD have many common pathophysiological mechanisms. This paper elucidates the relationship between CTRCD and CMD from the pathophysiological perspective, providing reference for exploring new diagnostic methods and treatment strategies of cardiovascular diseases.
Key words: cancer therapy-related cardiovascular dysfunction    coronary microvascular dysfunction    vascular toxicity    myocardial ischemia    

近年来,肿瘤治疗相关心血管损伤(cancer therapy-related cardiovascular dysfunction,CTRCD)已成为一个越来越受关注的话题,同时也是肿瘤心脏病学领域的主要研究内容之一。然而,化学治疗、放射治疗及靶向治疗等抗肿瘤手段引起心血管毒性的机制仍然没有得到完全阐明。越来越多的证据表明,CTRCD涉及的主要病理生理机制是血管毒性,而非心肌毒性。无论是否存在阻塞性冠状动脉疾病,冠状动脉微循环功能都在心肌缺血的评估中起着关键作用。本文就CTRCD与冠状动脉微循环障碍(coronary microvascular dysfunction,CMD)的关系及潜在诊断、治疗意义进行综述。

1 CTRCD

CTRCD是抗肿瘤治疗后出现的心血管疾病[1]。无论抗肿瘤治疗手段是物理治疗(电离辐射)、化学治疗,还是免疫治疗(靶向治疗)等,都可能对心血管系统造成负面影响。欧洲心脏病学会的一项研究表明,约50%的抗肿瘤治疗相关心血管毒性事件以功能性或结构性血管损伤为特征,最终导致冠状动脉疾病、周围血管疾病、血栓栓塞性疾病、高血压和肺动脉高压的恶化或进展[2],这一结果表明化学治疗或放射治疗导致的心血管毒性反应主要涉及血管,而非心肌细胞。事实上,心肌缺血是多种抗肿瘤治疗手段极其常见的不良反应。因此,患有心血管疾病或存在心血管疾病高危因素的患者,发生CTRCD的风险也会更高。

2 CMD

冠状动脉微循环由微动脉、毛细血管和微静脉组成,其不仅是心肌内血液流通的网络结构,还控制着心肌血供和代谢。冠状动脉微循环的结构和(或)功能发生异常会损害心肌灌注而引起心肌缺血,这一病理过程被称为CMD[3]。与大的心外膜冠状动脉相比,冠状动脉微血管由于其体积小和现有成像技术空间分辨率有限等原因而无法直接显示。近40%的心绞痛患者在接受冠状动脉造影时未发现明显的心外膜血管狭窄,部分患者甚至显示正常[4],而这些患者中相当一部分存在CMD,即已发生微血管性心绞痛(microvascular angina,MVA)。CMD患者心力衰竭、心脏猝死和心肌梗死等心血管事件的发生率明显增加,CMD已被证实是除阻塞性冠状动脉疾病和血管痉挛疾病外诱发心绞痛和心肌缺血的另一机制[5]

3 CTRCD与CMD共同的病理生理机制

抗肿瘤治疗引起心肌缺血的机制多种多样,包括内皮功能障碍、冠状动脉粥样硬化、血栓形成、冠状动脉痉挛和冠状动脉微血管损伤等,其中的许多机制都与CMD相似,因此也有可能成为患者抗肿瘤治疗过程中心脏保护的合适靶点。

3.1 内皮功能障碍

内皮细胞在毛细血管的分化和维持中发挥了重要作用,而内皮功能障碍是大多数心血管疾病共同的病理基础。

3.1.1 一氧化氮(nitric oxide,NO)生成

NO的产生和释放是内皮介导血管舒张最重要的机制。在化学治疗药物中,血管内皮生长因子(vascular endothelial growth factor,VEGF)抑制剂贝伐单抗、舒尼替尼和索拉非尼等,通过抑制血管新生发挥抗肿瘤作用[2]。然而值得注意的是,这类药物会减少NO的生成,导致血管收缩[6]。而在CMD中,内皮介导的血管舒张功能受损主要是由于一氧化氮合酶活性降低引起NO生成减少所致[7]

3.1.2 活性氧(reactive oxygen species,ROS)

ROS的释放在内皮功能障碍的病理生理学中起着关键作用。ROS增多是最早发现的与抗肿瘤治疗内皮损伤相关的机制,也是蒽环类化学治疗药物和顺铂导致内皮功能损伤的主要机制之一[8]。类似地,5-氟尿嘧啶[9]、长春花碱[10]、抗人表皮生长因子受体2(human epidermal growth factor receptor 2,HER2)靶向治疗药物[11]等都会导致ROS过度生成,显著损害内皮功能。然而这可能与CMD存在平行关系,因为ROS过度生成是多种心血管危险因素诱发冠状动脉微血管损伤的共同机制,如糖尿病、肥胖和吸烟等[12]

3.1.3 内皮素1和血管紧张素Ⅱ(angiotensin Ⅱ,AngⅡ)

内皮素1和AngⅡ是人体内产生的2种缩血管物质,贝伐单抗和其他VEGF抑制剂导致的内皮功能障碍主要与这2种物质的产生和释放有关[13]。在CMD中,已经证实局部释放的血管舒张和血管收缩物质之间存在不平衡,从而增加了内皮细胞对血管收缩物质的敏感性[14]

3.2 冠状动脉粥样硬化

在肿瘤心脏病学中,加速冠状动脉粥样硬化的主要危险因素是放射治疗,其可能导致严重的冠状动脉疾病,并诱发斑块破裂和血栓形成[15]。在大/微动脉粥样硬化的发展中,肾素-血管紧张素-醛固酮系统(renin-angiotensin-aldosterone system,RAAS)激活也发挥着重要作用。RAAS可通过激活转录因子NF-κB、刺激细胞黏附分子表达和IL-1、IL-6、TNF-α等促炎细胞因子释放,促进炎症背景形成[16]。此外,氧化低密度脂蛋白(low density lipoprotein,LDL)激活巨噬细胞可导致血管紧张素转换酶(angiotensin-converting enzyme,ACE)表达增加[17],而AngⅡ则可直接刺激生长因子激活和基质金属蛋白酶释放[18],从而使冠状动脉粥样硬化斑块更容易破裂引起血栓形成。

3.3 血栓形成

血栓形成是心肌梗死、脑卒中和静脉血栓栓塞等疾病的关键事件,而抗肿瘤治疗本身可以引起血液凝固、血栓形成和血栓栓塞事件[19]。顺铂尤其如此,它可能导致动脉血栓形成,从而引起心脏和脑血管缺血[20]。在乳腺癌[21]或转移性肿瘤[22]患者的研究中发现,靶向治疗中VEGF信号通路抑制药物也会增加冠状动脉血栓形成风险。冠状动脉微血管闭塞(microvascular occlusion,MVO)属于CMD的一种类型,可导致心肌微小梗死灶,使心肌坏死标志物轻度升高,对预后有不利影响[23]。缺血-再灌注损伤、内皮功能障碍、血小板活化和血栓形成等复杂相互作用共同导致了这一类型的CMD,而所有这些机制在很大程度上与抗肿瘤治疗引起的血管毒性有关。

3.4 冠状动脉痉挛

冠状动脉痉挛是指相对较大的心外膜冠状动脉短暂地表现出异常收缩,导致该动脉出现短暂完全或不完全闭塞的情况。这种异常的血管反应可能是由多种刺激引起的,而这些刺激主要作用于血管平滑肌细胞(vascular smooth muscle cell,VSMC)。在抗肿瘤药物中,被批准用于治疗多发性骨髓瘤和非霍奇金淋巴瘤的蛋白酶体抑制剂硼替佐米能够直接干扰VSMC中细胞周期蛋白的降解,导致细胞凋亡并引起冠状动脉痉挛[24]。而对于氟嘧啶类药物,如5-氟尿嘧啶,则可通过在VSMC中激活蛋白激酶C(protein kinase C,PKC)从而产生间接的血管收缩作用[25]。目前靶向治疗也有类似的效果,如索拉非尼可诱发心外膜血管痉挛[26]。同样,在CMD存在的情况下,VSMC对血管舒张刺激的反应受损[27]

3.5 激素影响

男性和女性肿瘤患者在CTRCD发生率方面存在差异,这可能是雌激素水平的不同导致了某些药物心脏毒性的性别差异。例如,酪氨酸激酶抑制剂舒尼替尼在女性多器官系统中表现出比男性更强的心血管毒性,这可能与雌激素调节药物转运和代谢增强了舒尼替尼诱导的心脏毒性有关[28]。雌激素缺乏也已被证实发生在原发性CMD患者中,这一定程度解释了CMD在绝经前后女性中的高患病率[29]

3.6 自主神经功能障碍

自主神经支配在心率、心功能和心肌血流量调节中起着关键作用。肿瘤患者自主神经功能的损害与心血管疾病的发生和进展也密切相关。首先,放射治疗可直接影响自主神经功能[30]。其次,在使用长春新碱、阿霉素和紫杉醇等化学治疗药物的患者中,经常能观察到心率和血压变异的异常[31]。最后,化学治疗或放射治疗导致的心脏神经系统损害可使交感-迷走神经失衡,诱发窦性心动过速,缩短心脏舒张时间并增加心肌耗氧量,从而逐渐导致心肌缺血[2]。冠状动脉微循环也受自主神经系统的控制。已有研究证明,运动过程中无论是β2受体介导血管舒张功能受损还是α受体介导的收缩功能增强都足以引起心肌缺血和MVA[32]

4 CMD在CTRCD诊断与治疗中的价值 4.1 CTRCD与CMD的早期评估手段

心脏毒性监测中最常用的生物标志物是肌钙蛋白Ⅰ和利尿钠肽,然而它们并不是评估CTRCD的可靠指标[33]。三维超声心动图、应变和斑点追踪等技术可更早地检测到心脏功能的细微变化[34]。对于CMD的评估目前以非侵入性方法为主,超声心动图可以通过定量冠状动脉前降支在基线和最大扩张时的血流速度测量冠状动脉血流储备[35],其可行性和安全性高,是一种很有前途的诊断方法。此外,在放射性核素技术中,PET-CT为冠状动脉微循环的非侵入性评估提供了更高的灵敏度和特异度[36]。然而,PET-CT由于其昂贵和耗时的特点,只能在高度专业化的医疗中心开展。另外,心脏MRI能够提供包括心肌水肿、炎症和纤维化等组织学特征变化,在肿瘤患者CTRCD的早期评估中也有重要价值[37]

4.2 CTRCD与CMD的治疗

由于CTRCD和CMD有许多共同的病理生理机制,拮抗神经内分泌失衡、改善心肌能量代谢等常见治疗方法在这2种临床条件下都显示出积极作用。因此,在进一步明确CTRCD发病机制的同时,使用CMD治疗措施预防CTRCD是合理的。

4.2.1 β受体阻滞剂

β受体阻滞剂可通过降低心肌耗氧和改善冠状动脉灌注,对CMD和稳定型MVA患者有益。越来越多的证据表明,β受体阻滞剂在预防放射治疗诱导的心脏毒性中有保护作用,尤其卡维地洛,还具有抗氧化特性和螯合铁的能力,据报道其可以改善阿霉素引起的心脏病理学损伤[38]。然而,没有明确的证据表明这类药物在心脏保护方面的作用是一致的。美托洛尔的作用是中性的[39],而非选择性β受体阻滞剂如普萘洛尔还可能增强心脏毒性[40]

4.2.2 RAAS抑制剂

ACE抑制剂因其降低血清和组织AngⅡ水平而被作为MVA的治疗药物。研究发现,依那普利可通过增加NO利用率和抑制氧化应激改善CMD[41]。在肿瘤心脏病学领域,研究表明依那普利和其他ACE抑制剂(如卡托普利、培哚普利等)可通过改善线粒体功能和降低ROS生成,对蒽环类药物引起的心血管毒性发挥保护作用[42]。血管紧张素受体阻滞剂也可通过减少ROS形成等类似机制,减缓放射治疗患者心功能障碍的发展[43]

4.2.3 他汀类药物

他汀类药物可能通过抗炎、抗氧化、降胆固醇等多种作用改善内皮功能,从而对CMD有益。在心脏毒性方面,研究表明他汀类药物能减少蒽环类药物介导的心肌细胞凋亡[44]。然而,目前为止还没有前瞻性试验涉及他汀类药物在预防CTRCD方面的作用。

4.2.4 其他药物

非二氢吡啶类钙拮抗剂、硝酸盐、腺苷、尼可地尔、雷诺嗪、伊伐布雷定和α受体拮抗剂等均可用于治疗MVA[45],然而,它们在CTRCD心脏保护中的作用仍有待阐明。值得一提的是,钠-葡萄糖协同转运蛋白2抑制剂(sodium-glucose cotransporter 2 inhibitor,SGLT2-I)虽作为一类新型降糖药物问世,却已成为心力衰竭治疗领域冉冉升起的明星药物[46],同时在改善微循环方面也表现出了应用前景。研究报道,SGLT2-I代表药物恩格列净能够通过激活腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)-动力蛋白相关蛋白1(dynamin-related protein 1,Drp1)信号通路,抑制线粒体分裂与氧化应激,从而减轻糖尿病心脏微血管内皮细胞损伤[47]。在肿瘤心脏病学领域,有研究提示恩格列净能够改善多柔比星诱导心力衰竭小鼠的心脏功能和减少心肌纤维化[48]。但目前尚无SGLT2-I在CTRCD预防方面的临床研究。

5 小结和展望

随着人们对CTRCD这一领域认识和兴趣的增加,肿瘤心脏病学表现出迅猛的发展势头。对心脏毒性研究的证据表明,放射、化学治疗等抗肿瘤手段引起心血管损伤的早期主要涉及血管毒性,而不是直接的心肌毒性。因此,我们提出将心肌缺血作为肿瘤心脏病学领域新的治疗靶点。从这个角度出发,在接受抗肿瘤治疗的患者中,尤其是在合并缺血性心脏病高风险的情况下,使用PET-CT、心脏MRI或三维斑点追踪超声心动图等技术对心肌缺血进行评估,可以无创地鉴别出CMD患者,并可以使用目前证据支持的抗缺血性药物进行早期干预。此外,开展针对CTRCD和CMD共同病理生理学机制的分子通路研究,有望为未来CTRCD患者心血管保护提供新的策略和干预靶点。

参考文献
[1]
HERRMANN J. Adverse cardiac effects of cancer therapies:cardiotoxicity and arrhythmia[J]. Nat Rev Cardiol, 2020, 17: 474-502. DOI:10.1038/s41569-020-0348-1
[2]
ZAMORANO J L, LANCELLOTTI P, RODRIGUEZ MUÑOZ D, ABOYANS V, ASTEGGIANO R, GALDERISI M, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines:the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC)[J]. Eur Heart J, 2016, 37: 2768-2801. DOI:10.1093/eurheartj/ehw211
[3]
BERRY C, DUNCKER D, GUZIK T. Coronary microvascular dysfunction in cardiovascular research:time to turn on the spotlight![J]. Eur Heart J, 2020, 41: 612-613. DOI:10.1093/eurheartj/ehaa040
[4]
SHAH S J, LAM C S P, SVEDLUND S, SARASTE A, HAGE C, TAN R S, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction:PROMIS-HFpEF[J]. Eur Heart J, 2018, 39: 3439-3450. DOI:10.1093/eurheartj/ehy531
[5]
WEI J, CHENG S, MERZ C N B. Coronary microvascular dysfunction causing cardiac ischemia in women[J/OL]. JAMA, 2019 Nov 18: 10.1001/jama.2019.15736. doi: 10.1001/jama.2019.15736.
[6]
SUZUKI S, YOSHIHISA A, YOKOKAWA T, MISAKA T, SAKAMOTO N, SUGIMOTO K, et al. Association between levels of anti-angiogenic isoform of vascular endothelial growth factor A and pulmonary hypertension[J]. Int J Cardiol, 2016, 222: 416-420. DOI:10.1016/j.ijcard.2016.07.277
[7]
GODO S, CORBAN M T, TOYA T, GULATI R, LERMAN L O, LERMAN A. Association of coronary microvascular endothelial dysfunction with vulnerable plaque characteristics in early coronary atherosclerosis[J]. EuroIntervention, 2020, 16: 387-394. DOI:10.4244/EIJ-D-19-00265
[8]
WOLF M B, BAYNES J W. The anti-cancer drug, doxorubicin, causes oxidant stress-induced endothelial dysfunction[J]. Biochim Biophys Acta, 2006, 1760: 267-271. DOI:10.1016/j.bbagen.2005.10.012
[9]
KINHULT S, ALBERTSSON M, ESKILSSON J, CWIKIEL M. Effects of probucol on endothelial damage by 5-fluorouracil[J]. Acta Oncol, 2003, 42: 304-308. DOI:10.1080/02841860310004409
[10]
SAMUELS B L, VOGELZANG N J, KENNEDY B J. Severe vascular toxicity associated with vinblastine, bleomycin, and cisplatin chemotherapy[J]. Cancer Chemother Pharmacol, 1987, 19: 253-256.
[11]
DENG T, ZHANG L, LIU X J, XU J M, BAI Y X, WANG Y, et al. Bevacizumab plus irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI) as the second-line therapy for patients with metastatic colorectal cancer, a multicenter study[J/OL]. Med Oncol, 2013, 30: 752. doi: 10.1007/s12032-013-0752-z.
[12]
SOROP O, HEINONEN I, VAN KRANENBURG M, VAN DE WOUW J, DE BEER V J, NGUYEN I T N, et al. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening[J]. Cardiovasc Res, 2018, 114: 954-964. DOI:10.1093/cvr/cvy038
[13]
SUNDARARAJAN S, KUMAR A, POONGKUNRAN M, KANNAN A, VOGELZANG N J. Cardiovascular adverse effects of targeted antiangiogenic drugs:mechanisms and management[J]. Future Oncol, 2016, 12: 1067-1080. DOI:10.2217/fon.16.4
[14]
CORBAN M T, LERMAN L O, LERMAN A. Endothelin-1 in coronary microvascular dysfunction: a potential new therapeutic target once again[J/OL]. Eur Heart J, 2020 Feb 7: ehz954. doi: 10.1093/eurheartj/ehz954.
[15]
KIM B J, KANG H G, LEE S W, JUNG J, LEE M H, KANG D W, et al. Changes in the common carotid artery after radiotherapy:wall thickness, calcification, and atherosclerosis[J]. J Clin Neurol, 2018, 14: 35-42. DOI:10.3988/jcn.2018.14.1.35
[16]
HUSAIN K, HERNANDEZ W, ANSARI R A, FERDER L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis[J]. World J Biol Chem, 2015, 6: 209-217. DOI:10.4331/wjbc.v6.i3.209
[17]
KOJIMA C, INO J, ISHⅡ H, NITTA K, YOSHIDA M. MMP-9 inhibition by ACE inhibitor reduces oxidized LDL-mediated foam-cell formation[J]. J Atheroscler Thromb, 2010, 17: 97-105. DOI:10.5551/jat.1685
[18]
SU Y Y, LI H M, YAN Z X, LI M C, WEI J P, ZHENG W X, et al. Renin-angiotensin system activation and imbalance of matrix metalloproteinase-9/tissue inhibitor of matrix metalloproteinase-1 in cold-induced stroke[J/OL]. Life Sci, 2019, 231: 116563. doi: 10.1016/j.lfs.2019.116563.
[19]
OPPELT P, BETBADAL A, NAYAK L. Approach to chemotherapy-associated thrombosis[J]. Vasc Med, 2015, 20: 153-161. DOI:10.1177/1358863X14568705
[20]
MOORE R A, ADEL N, RIEDEL E, BHUTANI M, FELDMAN D R, TABBARA N E, et al. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy:a large retrospective analysis[J]. J Clin Oncol, 2011, 29: 3466-3473. DOI:10.1200/JCO.2011.35.5669
[21]
BELL R, BROWN J, PARMAR M, TOI M, SUTER T, STEGER G G, et al. Final efficacy and updated safety results of the randomized phase Ⅲ BEATRICE trial evaluating adjuvant bevacizumab-containing therapy in triple-negative early breast cancer[J]. Ann Oncol, 2017, 28: 754-760. DOI:10.1093/annonc/mdw665
[22]
SCAPPATICCI F A, SKILLINGS J R, HOLDEN S N, GERBER H P, MILLER K, KABBINAVAR F, et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab[J]. J Natl Cancer Inst, 2007, 99: 1232-1239. DOI:10.1093/jnci/djm086
[23]
HEUSCH G. Coronary microvascular obstruction: the new frontier in cardioprotection[J/OL]. Basic Res Cardiol, 2019, 114: 45. doi: 10.1007/s00395-019-0756-8.
[24]
YASUI T, SHIOYAMA W, OBOSHI M, NISHIKAWA T, KAMADA R, OKA T, et al. Coronary spastic angina in a multiple myeloma patient treated with bortezomib, lenalidomide, and dexamethasone[J]. J Cardiol Cases, 2020, 21: 197-199. DOI:10.1016/j.jccase.2020.02.002
[25]
MOSSERI M, FINGERT H J, VARTICOVSKI L, CHOKSHI S, ISNER J M. In vitro evidence that myocardial ischemia resulting from 5-fluorouracil chemotherapy is due to protein kinase C-mediated vasoconstriction of vascular smooth muscle[J]. Cancer Res, 1993, 53: 3028-3033.
[26]
SUDASENA D, BALANESCU D V, DONISAN T, HASSAN S, PALASKAS N, KIM P, et al. Fulminant vascular and cardiac toxicity associated with tyrosine kinase inhibitor sorafenib[J]. Cardiovasc Toxicol, 2019, 19: 382-387. DOI:10.1007/s12012-018-9499-2
[27]
MCCALLINHART P E, CHO Y, SUN Z, GHADIALI S, MEININGER G A, TRASK A J. Reduced stiffness and augmented traction force in type 2 diabetic coronary microvascular smooth muscle[J]. Am J Physiol Heart Circ Physiol, 2020, 318: H1410-H1419. DOI:10.1152/ajpheart.00542.2019
[28]
HARVEY P A, LEINWAND L A. Oestrogen enhances cardiotoxicity induced by sunitinib by regulation of drug transport and metabolism[J]. Cardiovasc Res, 2015, 107: 66-77. DOI:10.1093/cvr/cvv152
[29]
MYGIND N D, MICHELSEN M M, PENA A, FRESTAD D, DOSE N, AZIZ A, et al. Coronary microvascular function and cardiovascular risk factors in women with angina pectoris and no obstructive coronary artery disease: the iPOWER study[J/OL]. J Am Heart Assoc, 2016, 5: e003064. doi: 10.1161/JAHA.115.003064.
[30]
WULSIN L R, HORN P S, PERRY J L, MASSARO J M, D'AGOSTINO R B. Autonomic imbalance as a predictor of metabolic risks, cardiovascular disease, diabetes, and mortality[J]. J Clin Endocrinol Metab, 2015, 100: 2443-2448. DOI:10.1210/jc.2015-1748
[31]
ADAMS S C, SCHONDORF R, BENOIT J, KILGOUR R D. Impact of cancer and chemotherapy on autonomic nervous system function and cardiovascular reactivity in young adults with cancer: a case-controlled feasibility study[J/OL]. BMC Cancer, 2015, 15: 414. doi: 10.1186/s12885-015-1418-3.
[32]
TAMAGAWA K, SAITO T, OIKAWA Y, MAEHARA K, YAOITA H, MARUYAMA Y. Alterations of α-adrenergic modulations of coronary microvascular tone in dogs with heart failure[J]. J Card Fail, 2005, 11: 388-395. DOI:10.1016/j.cardfail.2005.01.003
[33]
HAMO C E, BLOOM M W, CARDINALE D, KY B, NOHRIA A, BAER L, et al. Cancer therapy-related cardiac dysfunction and heart failure: part 2: prevention, treatment, guidelines, and future directions[J/OL]. Circ Heart Fail, 2016, 9: e002843. doi: 10.1161/CIRCHEARTFAILURE.115.002843.
[34]
LAMBERT J, LAMACIE M, THAMPINATHAN B, ALTAHA M A, ESMAEILZADEH M, NOLAN M, et al. Variability in echocardiography and MRI for detection of cancer therapy cardiotoxicity[J]. Heart, 2020, 106: 817-823. DOI:10.1136/heartjnl-2019-316297
[35]
STEGEHUIS V E, WIJNTJENS G W, PIEK J J, VAN DE HOEF T P. Fractional flow reserve or coronary flow reserve for the assessment of myocardial perfusion: implications of FFR as an imperfect reference standard for myocardial ischemia[J/OL]. Curr Cardiol Rep, 2018, 20: 77. doi: 10.1007/s11886-018-1017-4.
[36]
MAYALA H A, BAKARI K H, MKANGALA A, MAGESA M, MGHANGA F P, ZHAOHUI W. The association of 18F-FDG PET/CT and biomarkers in confirming coronary microvascular dysfunction[J/OL]. BMC Res Notes, 2018, 11: 796. doi: 10.1186/s13104-018-3892-6.
[37]
FERREIRA DE SOUZA T, QUINAGLIA T, NEILAN T G, COELHO-FILHO O R. Assessment of cardiotoxicity of cancer chemotherapy:the value of cardiac MR imaging[J]. Magn Reson Imaging Clin N Am, 2019, 27: 533-544. DOI:10.1016/j.mric.2019.04.001
[38]
HUANG S, ZHAO Q, YANG Z G, DIAO K Y, HE Y, SHI K, et al. Protective role of beta-blockers in chemotherapy-induced cardiotoxicity-a systematic review and meta-analysis of carvedilol[J]. Heart Fail Rev, 2019, 24: 325-333. DOI:10.1007/s10741-018-9755-3
[39]
GEORGAKOPOULOS P, ROUSSOU P, MATSAKAS E, KARAVIDAS A, ANAGNOSTOPOULOS N, MARINAKIS T, et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients:a prospective, parallel-group, randomized, controlled study with 36-month follow-up[J]. Am J Hematol, 2010, 85: 894-896. DOI:10.1002/ajh.21840
[40]
CHOE J Y, COMBS A B, FOLKERS K. Potentiation of the toxicity of adriamycin by propranolol[J]. Res Commun Chem Pathol Pharmacol, 1978, 21: 577-580.
[41]
IRIARTE M M, CASO R, MURGA N, LÓPEZ DE ARGUMEDO M, SAGASTAGOITIA D. Microvascular angina in systemic hypertension:diagnosis and treatment with enalapril[J]. Am J Cardiol, 1995, 76: 31D-34D. DOI:10.1016/S0002-9149(99)80489-5
[42]
HIONA A, LEE A S, NAGENDRAN J, XIE X, CONNOLLY A J, ROBBINS R C, et al. Pretreatment with angiotensin-converting enzyme inhibitor improves doxorubicin-induced cardiomyopathy via preservation of mitochondrial function[J/OL]. J Thorac Cardiovasc Surg, 2011, 142: 396-403.e3. doi: 10.1016/j.jtcvs.2010.07.097.
[43]
CADEDDU C, PIRAS A, MANTOVANI G, DEIDDA M, DESSÌ M, MADEDDU C, et al. Protective effects of the angiotensinⅡreceptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress, and early ventricular impairment[J/OL]. Am Heart J, 2010, 160: 487.e1-487.e7. doi: 10.1016/j.ahj.2010.05.037.
[44]
HUELSENBECK J, HENNINGER C, SCHAD A, LACKNER K J, KAINA B, FRITZ G. Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity[J/OL]. Cell Death Dis, 2011, 2: e190. doi: 10.1038/cddis.2011.65
[45]
YUSUPOVA A O, SHENDRYGINA A A, PRIVALOVA E V, BELENKOV Y N. [Microvascular angina. Modern aspects of pathogenesis, diagnostics and treatment][J]. Klin Med (Mosk), 2016, 94: 726-745.
[46]
LAM C S P, CHANDRAMOULI C, AHOOJA V, VERMA S. SGLT-2 inhibitors in heart failure:current management, unmet needs, and therapeutic prospects[J]. J Am Heart Assoc, 2019, 8: e013389. DOI:10.1161/JAHA.119.013389
[47]
ZHOU H, WANG S, ZHU P, HU S, CHEN Y, REN J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission[J]. Redox Biol, 2018, 15: 335-346. DOI:10.1016/j.redox.2017.12.019
[48]
OH C M, CHO S, JANG J Y, KIM H, CHUN S, CHOI M, et al. Cardioprotective potential of an SGLT2 inhibitor against doxorubicin-induced heart failure[J]. Korean Circ J, 2019, 49: 1183-1195. DOI:10.4070/kcj.2019.0180