第二军医大学学报  2020, Vol. 41 Issue (1): 69-74   PDF    
自主神经干预在心力衰竭治疗中的进展
高渊, 韩林     
海军军医大学(第二军医大学)长海医院心血管外科, 上海 200433
摘要: 心力衰竭是一种复杂的病理生理综合征,平衡自主神经活性及抑制心肌重构是提高心力衰竭患者远期疗效的重要方法。尽管近些年在药物治疗方面取得了一些进展,如使用β-受体阻滞剂抑制交感神经激活对心脏的毒性作用已成为心力衰竭药物治疗的经典方案,但心力衰竭的发病率仍呈上升趋势,并且患者生存能力持续降低。近年来,针对抑制交感神经系统过度激活的外科治疗手段逐渐出现,包括迷走神经电刺激术、压力感受器刺激治疗等,部分治疗方法在动物实验和初步临床研究中观察到明显的获益结果,但在心力衰竭患者中的作用还需进一步的临床试验加以验证。
关键词: 心力衰竭    迷走神经刺激    肾交感神经去除术    心交感神经去除术    
Autonomic nervous intervention in treatment of heart failure: recent progress
GAO Yuan, HAN Lin     
Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University(Second Military Medical University), Shanghai 200433, China
Abstract: Heart failure is a complicated pathophysiological syndrome. Balancing autonomic nervous activity and inhibiting myocardial remodeling are important methods for improving long-term efficacy in patients with heart failure. Pharmacologic management has been greatly developed, for example, the use of β-blockers is intended to inhibit the toxic effect of sympathetic activation on the heart and has become a classic treatment for heart failure. However, the incidence of heart failure is still on the rise and survivability is persistently reduced. In recent years, surgical treatments for inhibiting excessive activation of the sympathetic nervous system have emerged, such as vagus nerve stimulation, baroreceptor activation therapy. Some methods have obtained significant benefits in animal experiments and preliminary clinical study. It is essential to further verify the role of the above treatments in patients with heart failure in clinical trials.
Key words: heart failure    vagus nerve stimulation    renal sympathetic denervation    cardiac sympathetic denervation    

心力衰竭是一组临床上常见的心血管综合征,是大部分器质性心脏病患者几乎不可避免的结局。据统计,世界范围内心力衰竭的患病率为1%~2%,70岁以上患者占10%以上[1]。心力衰竭发生、发展的机制推动了其治疗策略的变革和诊疗理念的更新,人们对心力衰竭病理生理机制的认识经历了从最初的“水钠潴留”模式到“血液动力学异常”模式,再到“神经内分泌异常激活”模式。研究证实神经内分泌系统异常激活导致的心肌重构是引起心力衰竭发生和发展的关键因素[2-3],阻断肾素-血管紧张素-醛固酮系统及交感神经的药物已成为当今心力衰竭治疗的基石,针对抑制交感神经过度激活的外科治疗手段也逐渐出现。本文就自主神经干预在心力衰竭治疗中的研究进展作一综述。

1 交感神经参与心力衰竭的机制

自主神经系统功能紊乱被认为是引发心力衰竭病理生理改变的主要原因之一,尤其是射血分数降低的心力衰竭(heart failure with reduced ejection fraction,HFrEF)患者[4]。心力衰竭发生时交感神经活性增加,肾上腺素、去甲肾上腺素释放增多,促进了心肌重构,增加了心肌损伤,加速了心力衰竭的发展,而后者又进一步激活交感神经,如此形成恶性循环。因此,在心力衰竭的治疗过程中积极降低交感神经-肾上腺素系统的活性有着非常重要的意义。自主神经干预正是通过抑制交感神经兴奋、增强迷走神经活性而产生类似β-受体阻滞剂的临床疗效,并且具有更广泛的临床应用指征,一系列的动物实验和临床研究表明自主神经干预治疗心力衰竭具有很大潜力。

2 迷走神经电刺激术(vagus nerve stimulation,VNS)

VNS治疗难治性癫痫和持续性、复发性抑郁疗效显著[5],随着对心力衰竭病理生理机制认识的不断深入,VNS已被广泛应用到心力衰竭治疗的研究中。已有研究表明,迷走神经系统与心房颤动的发生、发展关系密切,低强度VNS可延长心房各部位有效不应期、降低不应期离散度和心房颤动诱发率,而高强度VNS则可促进心房的电重构、缩短有效不应期、增加心房颤动发生率[6]。Li等[7]研究发现,经过VNS处理的大鼠与对照组相比心率降低了20~30/min,左心室舒张末期压力(left ventricular end-diastolic pressure,LVEDP)显著改善,生存率明显提高。Olshansky等[8]经冠状动脉内注射自体微血栓建立了犬心力衰竭模型,给予VNS处理后观察到处理组动物左心室功能改善,且与单纯使用β-受体阻滞剂的动物相比,接受VNS和β-受体阻滞剂联合治疗的动物左心室收缩功能明显提高。以上研究证明刺激心力衰竭模型动物的迷走神经可改善心肌重构和提高长期生存率,此外,这些研究也提示VNS抗心力衰竭的内在机制可能并不是简单的心率下降所能解释的[9]

Schwartz等[10]在2008年进行了VNS首次临床试验,结果显示,经过VNS治疗的患者其NYHA心功能等级、生活质量(明尼苏达生活心力衰竭问卷调查表测得)、6 min步行测试距离、左心室舒张末期容积(left ventricular end-diastolic volume,LVEDV)及左心室收缩末期容积(left ventricular end-systolic volume,LVESV)等的改善具有统计学意义,但该项研究纳入的病例数较少。随后,ANTHEM-HF试验首次开展随机试验评估VNS在心力衰竭治疗中的应用效果,然而这项研究并未显示出与Schwartz等[10]一致的研究结果,患者LVEDV和LVESV无明显改善,但在左心室射血分数(left ventricular ejection fraction,LVEF)、左心室收缩末期内径(left ventricular end-systolic dimension,LVESD)、生活质量和NYHA心功能分级上同样观察到了具有统计学意义的变化[11]。此后类似的研究如NECTAR-HF随机对照试验、INOVATE-HF试验亦观察到近乎同样的结果[12-13]

VNS应用于心力衰竭治疗前还面临着许多问题,如刺激迷走神经的选择问题,是单侧还是双侧?是持续刺激还是脉冲同步刺激?刺激脉冲频率、刺激强度和最大电流等相关系数参考范围也都需要进一步评估。直接刺激迷走神经有可能过度刺激,引起缓慢心律失常甚至心脏停搏死亡,不适当的迷走神经刺激也会加重血流动力学紊乱,如何做到精确的电极刺激是外科医师面临的一项挑战[14]

3 肾去交感神经术(renal sympathetic denervation,RDN)

RDN曾被用于治疗难治性高血压,但结果并不理想。近些年有学者开始尝试用RDN治疗HFrEF。Schiller等[15]对起搏诱导兔心力衰竭模型进行研究,发现RDN组压力感受器的敏感性和心率变异性均明显降低,双肾皮质及血浆中去甲肾上腺素均减少,提示RDN可有效调整心力衰竭后的局部及整体自主神经功能紊乱。另一项研究发现猪麻醉后去除肾脏交感神经,室性心律失常的发生率明显降低,说明肾脏传入神经可能与心力衰竭后心律失常存在联系[16]。分子水平研究提示,心力衰竭过程中肾脏参与的自主神经功能紊乱还具有神经内分泌作用,导致体内去甲肾上腺素、肾素和血管紧张素Ⅱ等升高[17]

尽管以上动物实验预示RDN在治疗心力衰竭方面有着良好的应用前景,但在临床上患者血压和肾功能是否受到影响仍不明确。研究显示RDN不仅明显改善了患者的心力衰竭症状,而且可增加LVEF、减小左心室舒张末期直径、降低B型钠尿肽水平[18],并且RDN不会加重患者的肾功能不全[19],实施RDN前后血压的差异也没有统计学意义[20]。谢赟等[21]在进行猪心力衰竭模型RDN实验时观察到肌酐有改善趋势。以上结果均提示,RDN可阻断肾交感神经的兴奋性,抑制肾素-血管紧张素-醛固酮系统的激活,阻断心肾综合征的恶性循环。

4 脊髓电刺激术(spinal cord stimulation,SCS)

SCS是一种重要的神经调节方法,其应用基于Melzack和Wall[22]的闸门控制理论。研究显示SCS可以降低机体总交感神经的兴奋性[23]。对于难治性心绞痛也是如此,在脊髓T1和T2水平植入SCS刺激器,可通过迷走神经刺激引起副交感神经活动增强,减少心律失常的发生,抑制心肌细胞凋亡,有助于保持心肌收缩功能[7, 24]。心力衰竭动物模型实验研究结果提示,SCS可减少室性心律失常的发生、提高左心功能,降低心肌梗死后心力衰竭的发生率[7]。有研究发现,SCS干预可明显延长心房肌有效不应期、使心房颤动易感性下降[24]。Qiu等[25]对缺血损伤再灌注大鼠进行SCS治疗后,心肌凋亡蛋白Bax和Caspase-3表达水平降低,抗凋亡蛋白Bcl-2表达水平升高,Bcl-2/Bax比值升高,揭示SCS抑制心肌电重构和结构重构可能是发挥心脏保护作用的另一机制。

Tse等[26]首先开展了SCS临床试验研究(SCS HEART研究),结果显示SCS干预可改善患者NYHA心功能分级,提高生存质量、氧分压峰值、LVEF及LVESV。Zipes等[27]开展了DEFEAT-HF试验,遗憾的是经过6个月的SCS干预,在控制患者心率、改善心功能、提高生活质量、增加活动耐力及控制心室颤动发生方面试验组和对照组差异均无统计学意义。上述2项临床试验结果不同的原因可能包括刺激设备植入解剖位置不同(SCS HEART研究为T1~T3节段、DEFEAT-HF试验为T2~T4节段)、刺激电极数量及刺激时间不同,但确切原因有待进一步探究。Naar等[28]使用123I-间碘苄基胍闪烁扫描仪评估SCS干预后的心肌交感神经元功能,结果提示在心力衰竭患者中SCS(每天12 h,靶向脊髓的T2~T4节段)对心脏交感神经元活动或功能没有明显影响。

5 心交感神经切除术(cardiac sympathetic denervation,CSD)

CSD是指通过手术操作切除星状神经节下半部及T1~T3交感神经节,在心室水平抑制去甲肾上腺素释放而起到抗心律失常作用[29]。Schwartz等[30]率先采用CSD治疗顽固性心绞痛和室性快速性心律失常,另有多项研究提示CSD对多种原因导致的室性心律失常有良好的治疗效果[31-32],CSD还能通过自主调节降低心源性猝死风险、延缓心力衰竭进展、改善患者生活质量[33]。恶性快速性心律失常与心力衰竭病理生理有着密切联系,鉴于此,临床上开始尝试将CSD作为治疗HFrEF的一种辅助手段。

Conceição-Souza等[34]首次进行了关于CSD治疗心力衰竭的临床试验, 共纳入10例心肌病患者(LVEF≤40%), 结果提示试验组在NYHA心功能分级和LVEF方面显著改善。另外一项临床研究也得到近似的结果[35]。Chin等[36]拟开展一项临床试验(SymBlock, ClinicalTrials.gov Identifier:NCT01224899),用于评估CSD治疗HFrEF的有效性及安全性,该试验是一项随机对照试验,目前已完成患者的招募环节。

6 颈动脉体切除术(carotid body removal,CRB)

颈动脉体位于颈总动脉分叉处后方,是机体内一种化学感受器,刺激颈动脉体可以通过延髓中枢引发机体过度通气和交感神经活性增强[37]。早在20世纪50年代,以Nakayama为代表的研究者们尝试对重症哮喘、慢性阻塞性肺疾病患者实施CRB,治疗效果理想[38-39]

降低或彻底抑制颈动脉体的活动性可以改善左心功能、抑制心肌重构、提高心力衰竭患者生存率,提示CRB可能成为一种很有潜力的新型治疗手段[40-41]。对高血压小鼠和心肌缺血诱导心力衰竭小鼠分别进行双侧CRB处理,前一组小鼠血压降低,后一组小鼠存活率提高[40]。随着研究的深入,人们发现颈动脉体在心力衰竭患者中敏感性增加,进而导致交感神经活动性增强、血管紧张素Ⅱ合成增多,影响心力衰竭病理生理进程。具体的分子机制可能包括颈动脉体敏感性提高可下调血红素加氧酶、神经元型和内皮型一氧化氮合酶,提高钾离子通道敏感性,减少颈动脉体血供[40-44]。Niewinski等[45-46]开展了2项关于颈动脉体治疗心力衰竭的临床试验,结果显示,试验组肌肉交感神经活性及外周化学敏感性明显降低, 在运动耐力方面也有所改善,但两组之间心率变化差异无统计学意义,值得注意的是双侧颈动脉体切除可能增加夜间血氧饱和度降低的风险。

目前,有2项关于CRB治疗HFrEF的可行性临床试验正在进行,一项是Surgical Removal of Carotid Body in Patients with Systolic Heart Failure,该试验纳入对象为心功能Ⅱ~Ⅲ(NYHA心功能分级)、LVEF≤45%、有外周化学感受器敏感性增加史的HFrEF患者,主要终点为外周化学感受器敏感值、低氧呼吸驱动值。另一项试验是Bilateral Surgical Resection of Carotid Bodies in Patients with Systolic Heart Failure,招募对象标准同前项试验相近,主要终点为外周化学感受器敏感性、肌肉交感神经活性,次要终点包括活动耐力、生活质量、氨基末端B型钠尿肽前体水平、心功能及经食管心脏超声检查等。这2项试验皆已完成,相应结果还在分析、统计。

7 压力感受器刺激治疗(baroreceptor activation therapy,BAT)

生理情况下,颈动脉窦压力感受器参与的减压反射是调节机体血压的重要机制。射血分数降低的心力衰竭导致心输出量减少、收缩压降低,从而引起外周血管每搏压降低,对颈动脉窦压力感受器的牵张性刺激减弱,传入神经冲动发出减少,并通过与髓质孤束核的相互作用产生一种慢性、持续性交感神经紧张增强、迷走神经紧张减弱等自主神经失衡的改变,进而影响心力衰竭患者病理生理进程[24, 47]。BAT是一种抑制这种恶性循环的新疗法。早先普遍认为VNS和BAT具有同等的临床效果,但这种假设缺乏严谨的思考[48]:VNS作用的不仅是支配心脏的神经,还包括整个内脏系统的支配神经,这必然会增加并发症的发生风险;而BAT是基于产生中枢介导的交感传出神经活性减弱反射性提高副交感神经活动,因此可以通过特定的传导通路更精确地调节自主神经系统。

临床前试验证实了BAT在HFrEF治疗中的有效性。Sabbah等[49]研究发现,通过冠状动脉微血管栓塞诱导的HFrEF狗模型经过BAT治疗后LVEF明显升高,LVEDP降低,血浆去甲肾上腺素减少,心脏间质纤维化及心肌细胞肥大程度降低。Zucker等[50]通过植入起搏器诱发慢性心动过速构建犬心力衰竭模型,结果同Sabbah等[49]研究结果相符,BAT治疗组血浆去甲肾上腺素明显减少,血管紧张素Ⅱ水平降低,生存率提高,但是在控制心率方面实验组及对照组间并未观察到明显的差异。另一项动物实验结果显示,BAT在降低心率、降低收缩压方面亦具有良好的治疗效果[51]

Gronda等[52]随后进行了首次BAT临床试验,这项研究通过持续测量患者肌肉交感神经活性、心功能相应指标及生活质量水平来评估试验结果,与对照组相比BAT在改善心力衰竭患者交感神经过度激活、增加射血分数及运动耐量、降低NYHA心功能分级、改善生活质量方面差异具有统计学意义。Abraham等[48]开展了一项随机对照试验,共纳入140例NYHA心功能分级Ⅲ级的HFrEF患者,试验结果基本一致,预示BAT用于心力衰竭治疗有着良好的前景。Borisenko等[53]评估了在欧洲使用Barostim neoTM设备(CVRx Inc.,Minneapolis,MN,USA)进行BAT的成本效用,并与晚期慢性心力衰竭(NYHA心功能分级Ⅲ级)患者的常规医疗管理成本效用进行比较,结果提示BAT在欧洲医疗环境下更具有成本效益。

8 小结

交感神经系统异常激活在心力衰竭的病理生理进程中发挥关键作用,β-受体阻滞剂等降低交感神经系统兴奋性药物在治疗HFrEF中具有不可替代的独特优势,但是其使用又受到脏器功能的限制[54]。自主神经干预治疗基于扎实的理论基础及良好的动物实验结果,已成为极具潜力的心力衰竭治疗替代或辅助治疗手段。目前尚没有一种治疗方式成熟地应用于临床,有些临床试验结果也存在明显矛盾的地方,还有待进一步研究。

参考文献
[1]
KUSCHYK J, RUDIC B, LIEBE V, TÜLÜMEN E, BORGGREFE M, AKIN I. Cardiac contractility modulation for treatment of chronic heart failure[J]. Herzschrittmacherther Elektrophysiol, 2018, 29: 369-376. DOI:10.1007/s00399-018-0600-0
[2]
SCHWARTZ P J, DE FERRARI G M. Sympathetic-parasympathetic interaction in health and disease:abnormalities and relevance in heart failure[J]. Heart Fail Rev, 2011, 16: 101-107. DOI:10.1007/s10741-010-9179-1
[3]
TSIOUFIS C, ILIAKIS P, KASIAKOGIAS A, KONSTANTINIDIS D, LOVIC D, PETRAS D, et al. Non-pharmacological modulation of the autonomic nervous system for heart failure treatment:where do we stand?[J]. Curr Vasc Pharmacol, 2017, 16: 30-43.
[4]
FLORAS J S. Sympathetic nervous system activation in human heart failure:clinical implications of an updated model[J]. J Am Coll Cardiol, 2009, 54: 375-385. DOI:10.1016/j.jacc.2009.03.061
[5]
魏天祺, 冯珍. 迷走神经电刺激临床应用及机制研究进展[J]. 中国康复医学杂志, 2015, 30: 185-188. DOI:10.3969/j.issn.1001-1242.2015.02.021
[6]
ZHAO Q, ZHANG S, ZHAO H, ZHANG S, DAI Z, QIAN Y, et al. Median nerve stimulation prevents atrial electrical remodelling and inflammation in a canine model with rapid atrial pacing[J]. Europace, 2018, 20: 712-718. DOI:10.1093/europace/eux003
[7]
LI M, ZHENG C, SATO T, KAWADA T, SUGIMACHI M, SUNAGAWA K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats[J]. Circulation, 2004, 109: 120-124. DOI:10.1161/01.CIR.0000105721.71640.DA
[8]
OLSHANSKY B, SABBAH H N, HAUPTMAN P J, COLUCCI W S. Parasympathetic nervous system and heart failure:pathophysiology and potential implications for therapy[J]. Circulation, 2008, 118: 863-871. DOI:10.1161/CIRCULATIONAHA.107.760405
[9]
ARDELL J L, NIER H, HAMMER M, SOUTHERLAND E M, ARDELL C L, BEAUMONT E, et al. Defining the neural fulcrum for chronic vagus nerve stimulation:implications for integrated cardiac control[J]. J Physiol, 2017, 595: 6887-6903. DOI:10.1113/JP274678
[10]
SCHWARTZ P J, DE FERRARI G M, SANZO A, LANDOLINA M, RORDORF R, RAINERI C, et al. Long term vagal stimulation in patients with advanced heart failure:first experience in man[J]. Eur J Heart Fail, 2008, 10: 884-891. DOI:10.1016/j.ejheart.2008.07.016
[11]
PREMCHAND R K, SHARMA K, MITTAL S, MONTEIRO R, DIXIT S, LIBBUS I, et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure:results of the ANTHEM-HF trial[J]. J Card Fail, 2014, 20: 808-816. DOI:10.1016/j.cardfail.2014.08.009
[12]
ZANNAD F, DE FERRARI G M, TUINENBURG A E, WRIGHT D, BRUGADA J, BUTTER C, et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure:results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial[J]. Eur Heart J, 2015, 36: 425-433. DOI:10.1093/eurheartj/ehu345
[13]
GOLD M R, VAN VELDHUISEN D J, HAUPTMAN P J, BORGGREFE M, KUBO S H, LIEBERMAN R A, et al. Vagus nerve stimulation for the treatment of heart failure:the INOVATE-HF trial[J]. J Am Coll Cardiol, 2016, 68: 149-158. DOI:10.1016/j.jacc.2016.03.525
[14]
MUSSELMAN E D, PELOT N A, GRILL W M. Empirically based guidelines for selecting vagus nerve stimulation parameters in epilepsy and heart failure[J]. Cold Spring Harb Perspect Med, 2019, 9(pii): a034264. DOI:10.1101/cshperspect.a034264
[15]
SCHILLER A M, HAACK K K, PELLEGRINO P R, CURRY P L, ZUCKER I H. Unilateral renal denervation improves autonomic balance in conscious rabbits with chronic heart failure[J]. Am J Physiol Regul Integr Comp Physiol, 2013, 305: R886-R892. DOI:10.1152/ajpregu.00269.2013
[16]
LINZ D, WIRTH K, UKENA C, MAHFOUD F, PÖSS J, LINZ B, et al. Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs[J]. Heart Rhythm, 2013, 10: 1525-1530. DOI:10.1016/j.hrthm.2013.07.015
[17]
SCHILLER A M, PELLEGRINO P R, ZUCKER I H. The renal nerves in chronic heart failure:efferent and afferent mechanisms[J]. Front Physiol, 2015, 6: 224. DOI:10.3389/fphys.2015.00224
[18]
FUKUTA H, GOTO T, WAKAMI K, OHTE N. Effects of catheter-based renal denervation on heart failure with reduced ejection fraction:a systematic review and meta-analysis[J]. Heart Fail Rev, 2017, 22: 657-664. DOI:10.1007/s10741-017-9629-0
[19]
Symplicity HTN-2 Investigators; ESLER M D, KRUM H, SOBOTKA P A, SCHLAICH M P, SCHMIEDER R E, BÖHM M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial):a randomised controlled trial[J]. Lancet, 2010, 376: 1903-1909. DOI:10.1016/S0140-6736(10)62039-9
[20]
DAVIES J E, MANISTY C H, PETRACO R, BARRON A J, UNSWORTH B, MAYET J, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure:primary outcome from REACH-Pilot study[J]. Int J Cardiol, 2013, 162: 189-192. DOI:10.1016/j.ijcard.2012.09.019
[21]
谢赟, 刘奇良, 徐佑龙, 郜俊清, 严鹏勇, 张文全. 肾交感神经射频消融术治疗快速起搏致猪心力衰竭的疗效[J]. 中华心血管病杂志, 2014, 42: 48-52. DOI:10.3760/cma.j.issn.0253-3758.2014.01.011
[22]
MELZACK R, WALL P D. Painmechanisms:a new theory[J]. Science, 1965, 150: 971-979. DOI:10.1126/science.150.3699.971
[23]
NORRSELL H, ELIASSON T, MANNHEIMER C, AUGUSTINSSON L E, BERGH C H, ANDERSSON B, et al. Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover[J]. Eur Heart J, 1997, 18: 1890-1896. DOI:10.1093/oxfordjournals.eurheartj.a015197
[24]
HALBACH M, FRITZ T, MADERSHAHIAN N, PFISTER R, REUTER H. Baroreflex activation therapy in heart failure with reduced ejection fraction:available data and future perspective[J]. Curr Heart Fail Rep, 2016, 13: 71-76. DOI:10.1007/s11897-016-0286-8
[25]
QIU Y, LI T, LI H, ZUO Y. Continuous spinal cord stimulation reduced cardiac ischaemia/reperfusion injury in a rat model[J]. Heart Lung Circ, 2012, 21: 564-571. DOI:10.1016/j.hlc.2012.05.007
[26]
TSE H F, TURNER S, SANDERS P, OKUYAMA Y, FUJIU K, CHEUNG C W, et al. Thoracic spinal cord stimulation for heart failure as a restorative treatment (SCS HEART study):first-in-man experience[J]. Heart Rhythm, 2015, 12: 588-595. DOI:10.1016/j.hrthm.2014.12.014
[27]
ZIPES D P, NEUZIL P, THERES H, CARAWAY D, MANN D L, MANNHEIMER C, et al. Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure:the DEFEAT-HF Study[J]. JACC Heart Fail, 2016, 4: 129-136. DOI:10.1016/j.jchf.2015.10.006
[28]
NAAR J, JAYE D, LINDE C, NEUŽIL P, DOŠKÁŘ P, MÁLEK F, et al. Effects of spinal cord stimulation on cardiac sympathetic nerve activity in patients with heart failure[J]. Pacing Clin Electrophysiol, 2017, 40: 504-513. DOI:10.1111/pace.13050
[29]
ODERO A, BOZZANI A, DE FERRARI G M, SCHWARTZ P J. Left cardiac sympathetic denervation for the prevention of life-threatening arrhythmias:the surgical supraclavicular approach to cervicothoracic sympathectomy[J]. Heart Rhythm, 2010, 7: 1161-1165. DOI:10.1016/j.hrthm.2010.03.046
[30]
SCHWARTZ P J, DE FERRARI G M, PUGLIESE L. Cardiac sympathetic denervation 100 years later:Jonnesco would have never believed it[J]. Int J Cardiol, 2017, 237: 25-28. DOI:10.1016/j.ijcard.2017.03.020
[31]
KUMAR S, TEDROW U B, STEVENSON W G. Adjunctive interventional techniques when percutaneous catheter ablation for drug refractory ventricular arrhythmias fail:a contemporary review[J]. Circ Arrhythm Electrophysiol, 2017, 10: e003676. DOI:10.1161/CIRCEP.116.003676
[32]
OKADA D R, ASSIS F R, GILOTRA N A, HA J S, BERGER R D, CALKINS H, et al. Cardiac sympathectomy for refractory ventricular arrhythmias in cardiac sarcoidosis[J]. Heart Rhythm, 2019, 16: 1408-1413. DOI:10.1016/j.hrthm.2019.02.025
[33]
ANTIEL R M, BOS J M, JOYCE D D, OWEN H J, ROSKOS P L, MOIR C, et al. Quality of life after videoscopic left cardiac sympathetic denervation in patients with potentially life-threatening cardiac channelopathies/cardiomyopathies[J]. Heart Rhythm, 2016, 13: 62-69. DOI:10.1016/j.hrthm.2015.09.001
[34]
CONCEIÇÃO-SOUZA G E, PÊGO-FERNANDES P M, CRUZ Fd, GUIMARÃES G V, BACAL F, VIEIRA M L, et al. Left cardiac sympathetic denervation for treatment of symptomatic systolic heart failure patients:a pilot study[J]. Eur J Heart Fail, 2012, 14: 1366-1373. DOI:10.1093/eurjhf/hfs132
[35]
GUO W, LIU F, FU L, QU R, WANG G, ZHANG C. Effects of high thoracic epidural sympathetic blockade for the treatment of severe chronic heart failure due to dilated cardiomyopathy[J]. Acta Cardiol, 2012, 67: 533-539. DOI:10.1080/AC.67.5.2174127
[36]
CHIN A, NTSEKHE M, VILJOEN C, ROSSOUW J, PENNEL T, SCHWARTZ P J. Rationale and design of a prospective study to assess the effect of left cardiac sympathetic denervation in chronic heart failure[J]. Int J Cardiol, 2017, 248: 227-231. DOI:10.1016/j.ijcard.2017.08.012
[37]
MARSHALL J M. Peripheral chemoreceptors and cardiovascular regulation[J]. Physiol Rev, 1994, 74: 543-594. DOI:10.1152/physrev.1994.74.3.543
[38]
WINTER B. Carotid body resection. Controversy-confusion-conflict[J]. Ann Thorac Surg, 1973, 16: 648-659. DOI:10.1016/S0003-4975(10)65048-5
[39]
FITZGERALD R S. Carotid body:a new target for rescuing neural control of cardiorespiratory balance in disease[J]. Front Physiol, 2014, 5: 304. DOI:10.3389/fphys.2014.00304
[40]
DEL RIO R, MARCUS N J, SCHULTZ H D. Carotid chemoreceptor ablation improves survival in heart failure:rescuing autonomic control of cardiorespiratory function[J]. J Am Coll Cardiol, 2013, 62: 2422-2430. DOI:10.1016/j.jacc.2013.07.079
[41]
TAYLOR J. Focused update of the ESC guidelines on device therapy in heart failure[J]. Eur Heart J, 2010, 31: 2559-2560. DOI:10.1093/eurheartj/ehq358
[42]
DING Y, LI Y L, SCHULTZ H D. Downregulation of carbon monoxide as well as nitric oxide contributes to peripheral chemoreflex hypersensitivity in heart failure rabbits[J]. J Appl Physiol (1985), 2008, 105: 14-23. DOI:10.1152/japplphysiol.01345.2007
[43]
LI Y L, SCHULTZ H D. Enhanced sensitivity of Kv channels to hypoxia in the rabbit carotid body in heart failure:role of angiotensin Ⅱ[J]. J Physiol, 2006, 575(Pt 1): 215-227.
[44]
DING Y, LI Y L, SCHULTZ H D. Role of blood flow in carotid body chemoreflex function in heart failure[J]. J Physiol, 2011, 589(Pt 1): 245-258.
[45]
NIEWINSKI P, JANCZAK D, RUCINSKI A, TUBEK S, ENGELMAN Z J, JAZWIEC P, et al. Dissociation between blood pressure and heart rate response to hypoxia after bilateral carotid body removal in men with systolic heart failure[J]. Exp Physiol, 2014, 99: 552-561. DOI:10.1113/expphysiol.2013.075580
[46]
NIEWINSKI P, JANCZAK D, RUCINSKI A, TUBEK S, ENGELMAN Z J, PIESIAK P, et al. Carotid body resection for sympathetic modulation in systolic heart failure:results from first-in-man study[J]. Eur J Heart Fail, 2017, 19: 391-400. DOI:10.1002/ejhf.641
[47]
BUCKLEY U, SHIVKUMAR K, ARDELL J L. Autonomic regulation therapy in heart failure[J]. Curr Heart Fail Rep, 2015, 12: 284-293. DOI:10.1007/s11897-015-0263-7
[48]
ABRAHAM W T, ZILE M R, WEAVER F A, BUTTER C, DUCHARME A, HALBACH M, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction[J]. JACC Heart Fail, 2015, 3: 487-496. DOI:10.1016/j.jchf.2015.02.006
[49]
SABBAH H N, GUPTA R C, IMAI M, IRWIN E D, RASTOGI S, ROSSING M A, et al. Chronic electrical stimulation of the carotid sinus baroreflex improves left ventricular function and promotes reversal of ventricular remodeling in dogs with advanced heart failure[J]. Circ Heart Fail, 2011, 4: 65-70. DOI:10.1161/CIRCHEARTFAILURE.110.955013
[50]
ZUCKER I H, HACKLEY J F, CORNISH K G, HISER B A, ANDERSON N R, KIEVAL R, et al. Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure[J]. Hypertension, 2007, 50: 904-910. DOI:10.1161/HYPERTENSIONAHA.107.095216
[51]
GEORGAKOPOULOS D, WAGNER D, CATES A W, IRWIN E, LOVETT E G. Effects of electrical stimulation of the carotid sinus baroreflex using the Rheos device on ventricular-vascular coupling and myocardial efficiency assessed by pressure-volume relations in non-vagotomized anesthetized dogs[J]. Conf Proc IEEE Eng Med Biol Soc, 2009, 2009: 2025-2029.
[52]
GRONDA E, SERAVALLE G, BRAMBILLA G, COSTANTINO G, CASINI A, ALSHERAEI A, et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function, and cardiac haemodynamics in heart failure:a proof-of-concept study[J]. Eur J Heart Fail, 2014, 16: 977-983. DOI:10.1002/ejhf.138
[53]
BORISENKO O, MÜLLER-EHMSEN J, LINDENFELD J, RAFFLENBEUL E, HAMM C. An early analysis of cost-utility of baroreflex activation therapy in advanced chronic heart failure in Germany[J]. BMC Cardiovasc Disord, 2018, 18: 163. DOI:10.1186/s12872-018-0898-x
[54]
HABAL M V, GARAN A R. Long-term management of end-stage heart failure[J]. Best Pract Res Clin Anaesthesiol, 2017, 31: 153-166. DOI:10.1016/j.bpa.2017.07.003