第二军医大学学报  2019, Vol. 40 Issue (9): 1010-1014   PDF    
骨形态发生蛋白2临床应用的不良反应
袁佳滨, 缪雄, 栗景峰, 石志才     
海军军医大学(第二军医大学)长海医院脊柱外科, 上海 200433
摘要: 骨形态发生蛋白2(BMP2)是一种能够诱导骨形成的活性蛋白质,参与并调控诱导间充质干细胞向成骨细胞分化过程,于2002年被美国食品药品管理局批准用于单节段腰椎前路椎体融合术。然而在临床使用BMP2过程中,逐渐发现其可导致异位骨化、骨溶解及移植物下沉、骨囊肿形成、炎症反应相关并发症、神经根炎、逆行性射精和肿瘤形成等不良反应的发生。这些不良反应可能与BMP2的超适应证使用、超生理剂量使用存在一定相关性。本文主要对BMP2临床应用的不良反应进行综述,以为临床更加安全、有效地应用BMP2提供参考。
关键词: 骨形态发生蛋白2    骨生成    信号转导    不良反应    
Clinical application of bone morphogenetic protein 2: adverse reaction
YUAN Jia-bin, MIAO Xiong, LI Jing-feng, SHI Zhi-cai     
Department of Spine Surgery, Changhai Hospital, Naval Medical University(Second Military Medical University), Shanghai 200433, China
Abstract: Bone morphogenetic protein 2 (BMP2) is an active protein inducing bone formation, and it can regulate the proliferation of mesenchymal stem cells into osteoblasts. In 2002 BMP2 was approved by the US Food and Drug Administration for single-segment anterior lumbar intervertebral fusion surgery. However, during the clinical application, BMP2 was found to have the following adverse reactions:heterotopic ossification, osteolysis and graft sinking, formation of bone cysts, inflammation-related complications, radiculitis, retrograde ejaculation and carcinogenesis. These adverse reactions may be due to the off-label use of BMP2 and use of off-physiological dose. This review mainly sums up the adverse reactions in the clinical application of BMP2, hoping to provide reference for safer and more effective clinical medication.
Key words: bone morphogenetic protein 2    osteogenesis    signal transmission    adverse reaction    

1965年,Urist[1]第1次报道脱钙骨基质具有诱导软骨和骨分化的能力,并从中分离出骨形态发生蛋白(bone morphogenetic protein,BMP)。20世纪90年代,利用基因测序及重组技术已能规模化生产多种BMP,其中BMP2在骨组织发育和再生过程中发挥着重要的作用。2002年,重组人骨形态发生蛋白2(recombinant human bone morphogenetic protein 2,rhBMP2)被美国食品药品管理局(Food and Drug Administration,FDA)批准用于腰椎前路椎间融合术(anterior lumbar intervertebral fusion,ALIF)[2]。rhBMP2具有良好的促进骨融合效果,从而无需行自体髂骨摘除术,减少了相关并发症如疼痛、伤口感染及手术时间延长、移植物体积不足等问题[3]。文献报道rhBMP2的应用会导致一系列不良反应的发生,如异位骨化、骨溶解及移植物下沉、骨囊肿形成、神经根炎、逆行性射精和肿瘤形成等,本文主要就rhBMP2应用的不良反应综述如下。

1 BMP2介导骨形成的信号转导机制

从细胞层面分析,破骨细胞表面分布有BMP的受体BMPR(包括1型受体BMPR1和2型受体BMPR2)。经典的BMP信号通路是BMP2首先与细胞膜上的BMPR2结合并激活BMPR1,从而激活受体胞内区域的丝氨酸/苏氨酸激酶,后者可以使受体型Smad蛋白中的Smad1、Smad5和Smad8磷酸化而活化,进而形成同源二聚体,然后与Smad4结合形成三聚体转运至细胞核内,并在相关转录因子的作用下特异结合于靶基因中产生相应的生物学效应。在成骨细胞中,BMP2诱导主要的成骨转录因子——Runt相关转录因子2(Runt-related transcription factor 2,Runx2)的表达从而促进成骨过程[4]

2 BMP2不良反应的发现及来源

细胞内的BMP2不仅可以诱导成骨,还可以激活过氧化物酶体增殖物激活受体γ(peroxisome proliferative activated receptor γ,PPARγ),从而导致成脂分化和脂肪形成增加[5]。另外,BMP2还能诱导许多炎性因子和趋化因子的表达,例如白细胞介素和肿瘤坏死因子α,并且可激活破骨细胞[6],因此认为BMP2的应用可能导致相关的不良反应。

研究发现,成骨过程中rhBMP2的浓度要求具有明显的物种特异性,非人类灵长类动物诱导骨形成所需的BMP2浓度显著高于啮齿类动物。目前美国FDA推荐人类使用1.5 mg/mL BMP2浓度是通过非人类灵长类动物药效试验确定的[7-9]。BMP2超剂量使用可能是大多数不良事件的最重要诱因之一,而增加BMP2剂量不一定会获得脊柱手术中更高的融合率。

3 BMP2的临床主要不良反应 3.1 异位骨化

异位骨化现象是BMP2使用最常见的不良反应,通常是由术中对骨骼或肌肉组织的损伤导致血肿形成而引起。当rhBMP2生物制剂从载体渗漏到椎间盘间隙外时,可诱导未分化间充质细胞进入成骨细胞分化,从而发生异位骨化[10]。Haid等[11]在术后计算机断层扫描的队列研究中发现,当椎间融合器放置于椎体后缘2 mm内,32例接受单节段腰椎后路椎间植骨融合术(posterior lumbar intervertebral fusion,PLIF)合并应用rhBMP2的患者中有75%出现椎间盘间隙外异位骨形成,说明椎间融合器的位置与异位骨化相关。Joseph和Rampersaud[12]报道23例在PLIF和腰椎经椎间孔入路椎间融合术(translaminar lumbar interbody fusion,TLIF)手术中应用rhBMP2的患者,术后异位骨形成率达21%,其中4例发生在神经根孔、1例发生在椎管内。Bannwarth等[13]报道1例经椎间孔行L5/S1椎间融合的患者,术中局部应用rhBMP2后关节突关节形成异位骨赘,加重了下肢放射痛症状,最终通过翻修手术减轻症状。

BMP2还可诱导脊柱韧带骨化,其特点是通过软骨内骨化形成异位骨。Tanaka等[14]报道,外源性BMP2刺激脊柱韧带细胞向成骨细胞分化。Yonemori等[15]报道骨化的后纵韧带中BMPR呈异常高表达,我们推断BMP2在脊柱韧带中的表达一定程度上决定了异位骨化的发生、发展。

3.2 骨溶解、移植物下沉

Kanatani等[16]认为BMP2与白细胞介素间存在协同作用,可诱导破骨细胞的发育。Helgeson等[17]报道,应用rhBMP2的患者术后手术区域发现较大面积的囊性骨、移植物位移或移植物下沉等现象,从而导致椎间隙高度塌陷、腰椎稳定性丢失,长期随访过程中发现椎间融合器下沉而没有得到有效解决的患者腰椎前凸消失,间接加速了邻近节段退化。Bae等[18]利用绵羊的腰椎椎间融合模型,在可吸收的胶原海绵上填充2种不同剂量的rhBMP2(0.13 mg或0.90 mg),术后发现0.90 mg组出现中度至显著骨吸收,而0.13 mg组则出现较低程度的骨吸收。因此,我们认为破骨细胞的活性及相应的移植体周围骨吸收与剂量有关,rhBMP2的剂量应与体内所需骨形成的体积相匹配,这样可以有效限制暂时性骨吸收的发生。

3.3 骨囊肿形成

James等[19]认为骨髓间充质干细胞(mesenchymal stem cell,MSC)的最终命运是由Runx2和PPARγ的平衡控制的。PPARγ被激活后促进脂肪生成,通过下调Runx2表达抑制成骨,在BMP2植入间隙附近骨小梁间距增大并伴有脂质沉积,导致囊性骨形成。因此,BMP2对MSC的促脂肪作用降低了骨形成的整体质量。然而,BMP2导致的破骨细胞失调控机制及其自限性的机制还值得进一步研究。

3.4 炎症反应相关并发症

应用BMP2后可能诱发局部炎症反应,主要包括血清肿和颈部肿胀。其中,术后颈部肿胀是最严重的不良反应,甚至危及患者的生命。2006年Smucker等[20]首次报道颈部肿胀,并报道了6例死亡病例,其中rhBMP2组颈部肿胀发生率是对照组的5.5倍(19.8% vs 3.6%,P<0.01)。一项关于BMP2应用于颈前路融合手术的meta分析指出,尽管rhBMP2提高了融合率,但同时也增加了发生颈部肿胀等危及生命的不良反应的风险,因此不建议在颈前路融合手术中应用BMP2[21]。通常血清肿形成最初为无症状,直至引起疼痛或感觉异常才被发现。Wanderman等[22]报道2例颈椎后路融合术后应用rhBMP2引起血清肿形成的病例,磁共振成像检查示高信号液体压迫颈髓从而产生上肢症状,因此我们认为rhBMP2用于接受颈椎后路融合术的患者需要持续观察术后引流情况。Khan等[23]也发现腰椎融合术中应用rhBMP2的患者血清肿的发生率为2.4%,而对照组则未见发生,其中大多数炎症相关的标志物(如中性粒细胞及巨噬细胞计数)在术后7 d时下降到与对照组相似的水平。

3.5 神经根炎

术后神经根炎指下肢疼痛加重,其分布区域不一定与神经压迫有关,是相对少见的并发症,症状主要是疼痛和感觉异常。对应用rhBMP2的单节段TLIF患者资料进行研究显示,术后神经根炎的发生率为0.7%~14%[24-26]。Khan等[23]对191例TLIF患者的资料进行了回顾性分析,其中术中应用rhBMP2的患者总计83例,rhBMP2组和非rhBMP2组的融合率分别为92.7%和92.3%;然而,rhBMP2组和非rhBMP2组术后神经根炎的发生率分别为8.4%和1.9%。直接接触神经根和背根神经节时,BMP2可导致神经根发生严重的炎症反应。外源性BMP2蛋白的抑制能力较弱,加之神经根的机械屏障被破坏,可导致BMP2蛋白直接暴露于神经从而出现严重的疼痛症状[27]。关于神经根炎的病理机制还需进一步研究。

3.6 逆行性射精(retrograde ejaculation,RE)

RE是ALIF手术中少见但严重的并发症。文献报道在ALIF过程中RE的发生率为0.5%~10%[28-29]。Carragee等[30]回顾分析了243例接受单节段ALIF治疗的患者资料,发现BMP2组与对照组相比RE发生率增加且差异有统计学意义;随访2年时,RE症状的缓解率高达50%;BMP2组术后尿潴留(以是否需要再插管和是否需要导尿管至少4 d作为判断依据)发生率也较高,提示RE等泌尿系统并发症可能存在共同的病理-生理途径。因此,考虑其他因素(如手术入路、融合程度、软组织清创等)也可能与RE相关[31]。所以,无论是否使用rhBMP2,医师在术前均应告知计划接受ALIF的患者关于RE的相关风险。

3.7 肿瘤形成

目前关于rhBMP2的致癌性仍存在较大争议。BMP在胚胎发育和控制多种细胞类型的分化中发挥着重要作用。BMP通路扮演着肿瘤抑制因子的角色,并通过基因突变的表观遗传失调在癌症发生过程中产生影响。Tian等[32]研究表明,BMP2通常在乳腺癌、卵巢癌、胃癌、肺癌、恶性纤维组织细胞瘤、前列腺癌、口腔黏膜肿瘤及各种骨肿瘤中表达增加。Kelly等[33]分析了2005至2010年接受脊柱关节融合术的467 916例老年医保患者的癌症发生率,BMP组和对照组的癌症发生率相似(分别为5.9%和6.5%),结论是在平均2.9年的时间窗内应用BMP与癌症风险的增加无关。所以,关于rhBMP2的致癌性仍然需要更多临床研究进一步证明。

3.8 其他并发症

其他与应用rhBMP2相关的并发症包括假关节、败血症、吞咽困难、尿潴留、尿路感染及伤口并发症[34-37]。Esmail等[38]分析了2005至2011年接受PLIF的患者资料,发现术中应用rhBMP2的患者总体并发症发生率更高;与未应用rhBMP2男性相比,应用rhBMP2男性有更高的伤口并发症、假关节和再手术发生率(P<0.05);而与未应用rhBMP2女性相比,应用rhBMP2女性有更高的假关节、尿路感染和尿潴留发生率(P<0.05)。因此,我们考虑rhBMP2的相关并发症可能具有一定的性别特异性。

4 小结

BMP2的临床应用有许多成功之处和不足之处,下一步应当优化BMP2的使用剂量、使用时间、使用的载体类型等。目前,rhBMP2仍然被推荐使用,但不建议超适应证或超剂量使用,仍需进一步的研究来评估BMP2的远期疗效及安全性。

参考文献
[1]
URIST M R. Bone:formation by autoinduction[J]. Science, 1965, 150: 893-899. DOI:10.1126/science.150.3698.893
[2]
SINGH K, NANDYALA S V, MARQUEZ-LARA A, FINEBERG S J. Epidemiological trends in the utilization of bone morphogenetic protein in spinal fusions from 2002 to 2011[J]. Spine (Phila Pa 1976), 2014, 39: 491-496. DOI:10.1097/BRS.0000000000000167
[3]
SILBER J S, ANDERSON D G, DAFFNER S D, BRISLIN B T, LELAND J M, HILIBRAND A S, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion[J]. Spine (Phila Pa 1976), 2003, 28: 134-139. DOI:10.1097/00007632-200301150-00008
[4]
SALAZAR V S, GAMER L W, ROSEN V. BMP signalling in skeletal development, disease and repair[J]. Nat Rev Endocrinol, 2016, 12: 203-221. DOI:10.1038/nrendo.2016.12
[5]
JEON M J, KIM J A, KWON S H, KIM S W, PARK K S, PARK S W, et al. Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts[J]. J Biol Chem, 2003, 278: 23270-23277. DOI:10.1074/jbc.M211610200
[6]
SUDA T, TAKAHASHI N, UDAGAWA N, JIMI E, GILLESPIE M T, MARTIN T J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families[J]. Endocr Rev, 1999, 20: 345-357. DOI:10.1210/edrv.20.3.0367
[7]
MCKAY W. Product development process for a bone morphogenetic protein combination product[M]//SCARBOROUGH B A. Science-based assessment: accelerating product development of combination medical devices. Washington: National Academies Press, 2003: 15-17.
[8]
BAGARIA V, PRASADA V. Bone morphogenic protein: current state of field and the road ahead[J/OL]. J Orthopaedics, 2005, 2: e3. (2015-01). https://www.researchgate.net/publication/26425376_Bone_Morphogenic_Protein_Current_State_of_Field_and_the_Road_Ahead.
[9]
BURKUS J K, HEIM S E, GORNET M F, ZDEBLICK T A. Is INFUSE bone graft superior to autograft bone? An integrated analysis of clinical trials using the LT-CAGE lumbar tapered fusion device[J]. J Spinal Disord Tech, 2003, 16: 113-122. DOI:10.1097/00024720-200304000-00001
[10]
EKELUND A, BROSJÖ O, NILSSON O S. Experimental induction of heterotopic bone[J]. Clin Orthop Relat Res, 1991(263): 102-112.
[11]
HAID R W Jr, BRANCH C L Jr, ALEXANDER J T, BURKUS J K. Posterior lumbar interbody fusion using recombinant human bone morphogenetic protein type 2 with cylindrical interbody cages[J]. Spine J, 2004, 4: 527-538. DOI:10.1016/j.spinee.2004.03.025
[12]
JOSEPH V, RAMPERSAUD Y R. Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion:a CT analysis[J]. Spine (Phila Pa 1976), 2007, 32: 2885-2890. DOI:10.1097/BRS.0b013e31815b7596
[13]
BANNWARTH M, KLEIBER J C, MARLIER B, EAP C, DUNTZE J, LITRE C F. Ectopic bone formation with joint impingement after posterior lumbar fusion with rhBMP-2[J]. Orthop Traumatol Surg Res, 2016, 102: 255-256. DOI:10.1016/j.otsr.2015.11.013
[14]
TANAKA H, NAGAI E, MURATA H, TSUBONE T, SHIRAKURA Y, SUGIYAMA T, et al. Involvement of bone morphogenic protein-2(BMP-2) in the pathological ossification process of the spinal ligament[J]. Rheumatology (Oxford), 2001, 40: 1163-1168. DOI:10.1093/rheumatology/40.10.1163
[15]
YONEMORI K, IMAMURA T, ISHIDOU Y, OKANO T, MATSUNAGA S, YOSHIDA H, et al. Bone morphogenetic protein receptors and activin receptors are highly expressed in ossified ligament tissues of patients with ossification of the posterior longitudinal ligament[J]. Am J Pathol, 1997, 150: 1335-1347.
[16]
KANATANI M, SUGIMOTO T, KAJI H, KOBAYASHI T, NISHIYAMA K, FUKASE M, et al. Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity[J]. J Bone Miner Res, 1995, 10: 1681-1690. DOI:10.1002/jbmr.5650101110
[17]
HELGESON M D, LEHMAN R A Jr, PATZKOWSKI J C, DMITRIEV A E, ROSNER M K, MACK A W. Adjacent vertebral body osteolysis with bone morphogenetic protein use in transforaminal lumbar interbody fusion[J]. Spine J, 2011, 11: 507-510. DOI:10.1016/j.spinee.2011.01.017
[18]
BAE H W, PATEL V V, SARDAR Z M, BADURA J M, PRADHAN B B, SEIM H B 3rd, et al. Transient local bone remodeling effects of rhBMP-2 in an ovine interbody spine fusion model[J]. J Bone Joint Surg Am, 2016, 98: 2061-2070. DOI:10.2106/JBJS.16.00345
[19]
JAMES A W, ZARA J N, ZHANG X, ASKARINAM A, GOYAL R, CHIANG M, et al. Perivascular stem cells:a prospectively purified mesenchymal stem cell population for bone tissue engineering[J]. Stem Cells Transl Med, 2012, 1: 510-519. DOI:10.5966/sctm.2012-0002
[20]
SMUCKER J D, RHEE J M, SINGH K, YOON S T, HELLER J G. Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine[J]. Spine (Phila Pa 1976), 2006, 31: 2813-2819. DOI:10.1097/01.brs.0000245863.52371.c2
[21]
ZADEGAN S A, ABEDI A, JAZAYERI S B, NASIRI BONAKI H, JAZAYERI S B, VACCARO A R, et al. Bone morphogenetic proteins in anterior cervical fusion:a systematic review and meta-analysis[J]. World Neurosurg, 2017, 104: 752-787. DOI:10.1016/j.wneu.2017.02.098
[22]
WANDERMAN N R, DRAYER N J, TOMOV M, REIFSNYDER J W, CARLSON B, ROBINSON W, et al. Postoperative seroma formation after posterior cervical fusion with use of rhBMP-2[J/OL]. JBJS Case Connect, 2018, 8: e74. doi: 10.2106/JBJS.CC.18.00089.
[23]
KHAN T R, PEARCE K R, MCANANY S J, PETERS C M, GUPTA M C, ZEBALA L P. Comparison of transforaminal lumbar interbody fusion outcomes in patients receiving rhBMP-2 versus autograft[J]. Spine J, 2018, 18: 439-446. DOI:10.1016/j.spinee.2017.08.230
[24]
POTTER B K, FREEDMAN B A, VERWIEBE E G, HALL J M, POLLY D W Jr, KUKLO T R. Transforaminal lumbar interbody fusion:clinical and radiographic results and complications in 100 consecutive patients[J]. J Spinal Disord Tech, 2005, 18: 337-346. DOI:10.1097/01.bsd.0000166642.69189.45
[25]
VILLAVICENCIO A T, BURNEIKIENE S, NELSON E L, BULSARA K R, FAVORS M, THRAMANN J. Safety of transforaminal lumbar interbody fusion and intervertebral recombinant human bone morphogenetic protein-2[J]. J Neurosurg Spine, 2005, 3: 436-443. DOI:10.3171/spi.2005.3.6.0436
[26]
VILLAVICENCIO A T, BURNEIKIENE S. RhBMP-2-induced radiculitis in patients undergoing transforaminal lumbar interbody fusion:relationship to dose[J]. Spine J, 2016, 16: 1208-1213. DOI:10.1016/j.spinee.2016.06.007
[27]
SLOSAR P J, JOSEY R, REYNOLDS J. Accelerating lumbar fusions by combining rhBMP-2 with allograft bone:a prospective analysis of interbody fusion rates and clinical outcomes[J]. Spine J, 2007, 7: 301-307. DOI:10.1016/j.spinee.2006.10.015
[28]
COMER G C, SMITH M W, HURWITZ E L, MITSUNAGA K A, KESSLER R, CARRAGEE E J. Retrograde ejaculation after anterior lumbar interbody fusion with and without bone morphogenetic protein-2 augmentation:a 10-year cohort controlled study[J]. Spine J, 2012, 12: 881-890. DOI:10.1016/j.spinee.2012.09.040
[29]
LAURIE A L, CHEN Y, CHOU R, FU R. Meta-analysis of the impact of patient characteristics on estimates of effectiveness and harms of recombinant human bone morphogenetic protein-2 in lumbar spinal fusion[J/OL]. Spine (Phila Pa 1976), 2016, 41: E1115-E1123. doi: 10.1097/BRS.0000000000001580.
[30]
CARRAGEE E J, MITSUNAGA K A, HURWITZ E L, SCUEDERI G J. Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2:a cohort controlled study[J]. Spine J, 2011, 11: 511-516. DOI:10.1016/j.spinee.2011.02.013
[31]
KAISER M G, HAID R W Jr, SUBACH B R, MILLER J S, SMITH C D, RODTS G E Jr. Comparison of the mini-open versus laparoscopic approach for anterior lumbar interbody fusion:a retrospective review[J]. Neurosurgery, 2002, 51: 97-103. DOI:10.1097/00006123-200207000-00015
[32]
TIAN H, ZHAO J, BROCHMANN E J, WANG J C, MURRAY S S. Bone morphogenetic protein-2 and tumor growth:diverse effects and possibilities for therapy[J]. Cytokine Growth Factor Rev, 2017, 34: 73-91. DOI:10.1016/j.cytogfr.2017.01.002
[33]
KELLY M P, SAVAGE J W, BENTZEN S M, HSU W K, ELLISON S A, ANDERSON P A. Cancer risk from bone morphogenetic protein exposure in spinal arthrodesis[J]. J Bone Joint Surg Am, 2014, 96: 1417-1422. DOI:10.2106/JBJS.M.01190
[34]
STIEL N, HISSNAUER T N, RUPPRECHT M, BABIN K, SCHLICKEWEI C W, RUEGER J M, et al. Evaluation of complications associated with off-label use of recombinant human bone morphogenetic protein-2(rhBMP-2) in pediatric orthopaedics[J]. J Mater Sci Mater Med, 2016, 27: 184-188. DOI:10.1007/s10856-016-5800-8
[35]
TAKAHASHI S, BUSER Z, COHEN J R, ROE A, MYHRE S L, MEISEL H J, et al. Complications related to the recombinant human bone morphogenetic protein 2 use in posterior cervical fusion[J/OL]. Clin Spine Surg, 2017, 30: E1269-E1273. doi: 10.1097/BSD.0000000000000443.
[36]
STIEL N, STUECKER R, KUNKEL P, RIDDERBUSCH K, HAGEMANN C, BREYER S, et al. Treatment of pediatric spinal deformity with use of recombinant human bone morphogenetic protein-2[J]. J Mater Sci Mater Med, 2018, 29: 93-98. DOI:10.1007/s10856-018-6104-y
[37]
GREY Z J, HOWIE R N, DURHAM E L, HALL S R, HELKE K L, STEED M B, et al. Sub-clinical dose of bone morphogenetic protein-2 does not precipitate rampant, sustained inflammatory response in bone wound healing[J]. Wound Repair Regen, 2019, 27: 335-344. DOI:10.1111/wrr.12710
[38]
ESMAIL N, BUSER Z, COHEN J R, BRODKE D S, MEISEL H J, PARK J B, et al. Postoperative complications associated with rhBMP2 use in posterior/posterolateral lumbar fusion[J]. Global Spine J, 2018, 8: 142-148. DOI:10.1177/2192568217698141