细菌感染是牙髓病及根尖周病的主要病因,临床上最常分离到的细菌是粪肠球菌,是根管再治疗需清理的重要菌种之一。目前主要通过根管治疗法祛除细菌感染,促进根尖周病的治愈。但由于各种原因,根管治疗的成功率为48%~97%[1-3]。研究发现病原微生物在根管内持续存在及菌群组成的独特性是根管治疗失败的主要原因[4-5]。寻找有效抑制粪肠球菌的根管消毒药物、提高临床上根管治疗成功率成为近年来的研究热点。三重抗生素糊剂常用于控制根管内细菌感染及无髓的年轻恒牙根管消毒,其成分为甲硝唑、环丙沙星、米诺环素[6-7]。本研究选择由奥硝唑、环丙沙星、米诺环素组成的新型三重抗生素糊剂作为根管消毒药物,观察其单独及联合氢氧化钙糊剂对再治疗根管内粪肠球菌的抗菌效果和近期临床疗效,旨在指导临床治疗根管治疗失败病例,以及为难治性根尖周病选择合适的根管消毒药物。
1 材料和方法 1.1 病例选择选取2014年2月至2017年1月在我院口腔科门诊就诊的由于根管治疗失败需要再治疗的149例患者149颗单根管患牙为研究对象,其中男65例、女84例,年龄为18~67岁;前牙67例,双尖牙82例。所有患者均知情同意并签署知情同意书,无全身性或系统性疾病。本研究方案通过我院伦理委员会审批,符合人体试验伦理学标准。病例纳入标准[8-9]:(1)患牙经过根管治疗后历时至少2年;(2)有自发性疼痛、肿胀、咬合痛、叩痛或窦道等自觉症状;(3)X线检查有渐进性根尖周病变或有新的根尖周病变出现。排除标准:(1)牙冠根折;(2)牙齿Ⅱ度松动,或牙槽骨被破坏已吸收至根尖1/3处,牙周袋探诊深度>4 mm,或有进行性牙周病;(3)近1个月内使用过抗生素。
将所有患牙分为樟脑酚组(CP组)、氢氧化钙糊剂组(CH组)、传统三重抗生素糊剂组(TAP组;甲硝唑、环丙沙星和米诺环素等比例混合,加入无菌生理盐水配成浓度为1 000 mg/mL的糊剂)[6]、新型三重抗生素糊剂组(NTAP组;奥硝唑、环丙沙星和米诺环素等比例混合,加入无菌生理盐水配成浓度为1 000 mg/mL的糊剂)、氢氧化钙+新型三重抗生素糊剂组(CH+NTAP组;新型三重抗生素和氢氧化钙等比例混合)。
1.2 根管内细菌标本采集消毒患牙,放置橡皮障,去除牙冠部及根管内充填物,行根管预备及根管封药。分别在根管预备前、根管预备后及封药7 d后行根管内微生物取样。取样方法:先于根管内注入0.1 mL无菌生理盐水,将消毒纸尖插入根管内停留1 min后取出,放入粪肠球菌选择性培养基试管(美国Sigma公司)中,1 h内送至实验室备检。
1.3 根管内粪肠球菌的分离与鉴定将采集细菌样本的试管振荡1 min,45 ℃需氧条件下培养48 h,观察培养基变浑浊,颜色由紫色变为棕黄色,为培养基中有肠菌属(粪肠球菌/屎肠球菌)生长,阳性结果;培养基清亮、颜色无变化,则培养基中无肠菌属生长。取培养阳性的试管均匀震荡后,连续倍比稀释至1×10-4,选择适当稀释度的菌液0.1 mL,接种于粪肠球菌-胆盐七叶苷琼脂平皿,37 ℃需氧条件下培养48 h,观察粪肠球菌培养基由紫色变为棕黄色,证明培养基中细菌为粪肠球菌,阳性结果;培养基颜色无变化,证明培养基中细菌为非粪肠球菌。采用PCR进一步鉴定确定为粪肠球菌的菌株。无菌条件下挑取阳性粪肠球菌琼脂培养基中的单个菌落,接种于粪肠球菌培养基试管中,45 ℃需氧条件下培养48 h,提取细菌基因组DNA,参照产品说明书测定PCR产物序列。引物序列为:正义引物5'-GTT TAT GCC GCA TGG CAT AAG AG-3',反义引物5'-CCG TCA GGG GAC GTT CAG-3',基因片段为16S rRNA,产物长度为310 bp。将各个粪肠球菌分离株连续倍比稀释后涂布于BHI琼脂培养基上,37 ℃需氧条件下培养48 h,记录细菌菌落数(用CFU/mL的对数值表示)。
1.4 根管治疗失败病例根管再治疗的近期临床疗效评定分别于封药后第7天进行近期临床疗效评定。显效:根管封药7 d后患牙无自觉疼痛,无咬合痛和叩痛,根尖区牙龈无红肿,窦道愈合,根管内无渗出液。有效:根管封药7 d后患牙无明显咬合痛,仅有轻微叩痛,根尖区牙龈红肿明显减轻,窦道趋于愈合,根管内渗出液减少。无效:根管封药7 d后患牙有明显咬合痛或叩痛,根尖区牙龈红肿,窦道未愈合,根管内渗出液多。显效和有效均评定为有效。
1.5 统计学处理采用SPSS 22.0软件进行统计学分析。呈正态分布的计量资料以x±s表示,计数资料和等级资料以例数和百分数表示。菌落计数(对数值)比较采用单因素方差分析,两两比较采用LSD-t检验;疗效比较采用χ2检验,两两比较采用χ2分割检验。检验水准(α)为0.05。
2 结果 2.1 根管预备前后及封药后根管内粪肠球菌数量的变化根管预备后及根管封药7 d后各组根管内粪肠球菌数量均较同组根管预备前下降(P均<0.05),根管封药7 d后各组根管内粪肠球菌数量均较根管预备后下降(P均<0.05)。见表 1。
2.2 根管封药7 d后各组根管内粪肠球菌细菌数量的比较
根管封药7 d后,5组间根管内粪肠球菌数量差异有统计学意义(P<0.05)。与CP组比较,根管封药7 d后CH组、TAP组、NTAP组、CH+NTAP组根管内粪肠球菌数量均降低(P 均<0.05);与CH组比较,根管封药7 d后TAP组、NTAP组、CH+NTAP组根管内粪肠球菌数量均降低(P 均<0.05);与TAP组比较,根管封药7 d后NTAP组、CH+NTAP组根管内粪肠球菌数量均降低(P 均<0.05);而NTAP组与CH+NTAP组根管内粪肠球菌数量差异无统计学意义(P=0.941)。见表 1。
2.3 根管治疗失败病例根管再治疗的近期临床疗效5组患牙根管再治疗的近期临床疗效差异有统计学意义(χ2=37.233,P<0.01)。χ2分割检验结果显示,根管封药7 d后CH组、TAP组、NTAP组、CH+NTAP组患牙根管再治疗的疗效均优于CP组,差异均有统计学意义(P 均<0.05);TAP组、NTAP组和CH+NTAP组的疗效均优于CH组,差异均有统计学意义(P 均<0.05);而TAP组、NTAP组与CH+NTAP组3组间差异无统计学意义(P>0.05)。见表 2。
3 讨论
牙髓根尖周病是细菌感染性疾病,细菌通过牙体感染牙髓,继而波及根尖组织,造成根尖组织破坏,是导致失牙的主要原因之一。并且这些患牙可成为慢性感染源,引起远隔器官的感染性疾病,危害机体健康。根管治疗是治疗牙髓病及根尖周病的最佳方法。但由于根管解剖结构复杂多样以及根管治疗条件及技术操作、根管消毒药物等的局限性,仍有一定比例的病例在根管治疗术后再次发生病变。研究发现导致根管治疗失败的主要原因是根管内残余微生物的持续感染[4, 10-11]。这些残存的微生物能耐受治疗后根管系统内苛刻的生存环境而长期生存,一旦条件适宜便大量繁殖,引起根管再感染和根尖周组织破坏,从而导致根管治疗失败。
粪肠球菌是健康人体上呼吸道、口腔及肠道的常驻菌,为革兰阳性、兼性厌氧菌,也是重要的条件致病菌。粪肠球菌在再感染根管内的检出率为24%~77%[12-14],是导致根管治疗失败的主要致病菌之一。粪肠球菌有很强的渗透能力,能在根管治疗完成的根管内存活。该菌可侵入牙本质小管内,并黏附于牙本质胶原上,不仅可以单独引起根管内感染,还可以与其他细菌混合形成生物膜,难以清除,因此再感染根管中粪肠球菌的检测和清除有助于提高根管再治疗的成功率。由于在根管治疗失败病例中最常分离到的细菌是粪肠球菌,因此本研究通过PCR对粪肠球菌进行检测。
根管治疗是通过根管预备、根管消毒和根管充填清除分布于根管内的各类细菌,从而有效抑菌防止再感染。虽然通过机械和化学方法能有效降低根管内细菌数量,但由于根管系统的复杂性,常规的根管预备不能彻底清除根管内的所有细菌。本研究发现,根管预备后粪肠球菌数量较根管预备前下降,但仍有较高的细菌量。因此根管消毒在根管治疗过程中至关重要。
根管消毒是根管治疗的重要步骤和治疗成功的重要措施之一。在机械和化学预备的基础上辅以根管内封药以进一步减少和祛除牙本质小管深层和侧支根管等细微结构内的残存细菌及毒素。目前的根管消毒药物对控制根管内粪肠球菌生长尚存在一定的局限性。氢氧化钙是临床上常用的根管消毒药物,其强碱性(pH 9~12)可改变细菌细胞壁脂多糖的生物学特性,阻碍膜转运机制,从而破坏细菌细胞膜,从而抑制细菌生长[15]。氢氧化钙的pH值对其抗菌作用有直接影响。氢氧化钙封入根管内,其pH值可被牙本质降低,因此在牙本质小管、根尖分叉部和根管峡部等部位,氢氧化钙的抗菌作用明显受限,特别是对根管治疗失败密切相关的粪肠球菌的杀灭作用有限[16-17]。
根管再治疗是根管治疗失败病例的首选治疗方法。有研究表明,三重抗生素较氢氧化钙能更有效地杀灭粪肠球菌[18]。三重抗生素中的米诺环素属四环素类抗生素衍生物,具有抗菌活性强、抗菌谱广等特点[19]。研究发现,三重抗生素中米诺环素的抗菌作用最强[18]。环丙沙星对厌氧菌或兼性厌氧菌均有较好的杀灭作用。通过抑制细菌的DNA回旋酶可影响DNA的正常形态和功能达到杀菌效果;此外,环丙沙星能促进根尖周组织中成纤维细胞的生长,从而有助于根尖周组织的修复[20]。甲硝唑是传统的抗厌氧菌药物,在临床上广泛应用,但其具有耐药性不断增强、不良反应多等缺点。奥硝唑是第3代硝基咪唑类药物,不良反应少,具有良好的抗厌氧菌和抗滴虫作用,其抗菌效果优于同剂量的甲硝唑[21]。
本研究采用奥硝唑、环丙沙星和米诺环素组成的新型根管消毒药物单独或与氢氧化钙联合,用于根管治疗失败病例根管再治疗的根管消毒。结果显示,封药7 d后各组根管内粪肠球菌数量均较根管预备前及根管预备后下降,其中CH组、TAP组、NTAP组和CH+NTAP组根管内粪肠球菌数量均低于CP组,TAP组、NTAP组和CH+NTAP组均低于CH组,NTAP组和CH+NTAP组均低于TAP组。由此可见新型三重抗生素单独及联合氢氧化钙对粪肠球菌均有较好的杀灭作用,且优于传统三重抗生素和氢氧化钙。观察其临床疗效发现,封药7 d后CH组、TAP组、NTAP组及CH+NTAP组患牙根管再治疗的疗效均优于CP组,TAP组、NTAP组及CH+NTAP组均优于CH组,表明三重抗生素糊剂单独及联合氢氧化钙的近期临床疗效均优于单独使用氢氧化钙。
本研究中仅对根管治疗失败病例中最常分离到的粪肠球菌进行了检测。由于根管治疗失败病例根管内细菌复杂多样,对于根管治疗失败病例根管内其他细菌尚需在后续实验中进一步研究。
[1] |
CHEUNG G S, CHAN T K. Long-term survival of primary root canal treatment carried out in a dental teaching hospital[J]. Int Endod J, 2003, 36: 117-128. DOI:10.1046/j.1365-2591.2003.00639.x |
[2] |
BLICHER B, BAKER D, LIN J. Endosseous implants versus nonsurgical root canal therapy:a systematic review of the literature[J]. Gen Dent, 2008, 56: 576-580; quiz 581-582, 591-592. |
[3] |
KOJIMA K, INAMOTO K, NAGAMATSU K, HARA A, NAKATA K, MORITA I, et al. Success rate of endodontic treatment of teeth with vital and nonvital pulps. A meta-analysis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2004, 97: 95-99. DOI:10.1016/j.tripleo.2003.07.006 |
[4] |
KARYGIANNI L, ANDERSON A C, TENNERT C, KOLLMAR K, ALTENBURGER M J, HELLWIG E, et al. Supplementary sampling of obturation materials enhances microbial analysis of endodontic treatment failures:a proof of principle study[J]. Clin Oral Invest, 2015, 19: 319-327. DOI:10.1007/s00784-014-1231-4 |
[5] |
PEREIRA R S, RODRIGUES V A A, FURTADO W T, GUEIROS S, PEREIRA G S, AVILA-CAMPOS M J. Microbial analysis of root canal and periradicular lesion associated to teeth with endodontic failure[J]. Anaerobe, 2017, 48: 12-18. DOI:10.1016/j.anaerobe.2017.06.016 |
[6] |
FROUGH REYHANI M, RAHIMI S, FATHI Z, SHAKOUIE S, SALEM MILANI A, SOROUSH BARHAGHI M H, et al. Evaluation of antimicrobial effects of different concentrations of triple antibiotic paste on mature biofilm of Enterococcus faecalis[J]. J Dent Res Dent Clin Dent Prospects, 2015, 9: 138-143. DOI:10.15171/joddd.2015.027 |
[7] |
TROPE M. Treatment of the immature tooth with a non-vital pulp and apical periodontitis[J]. Dent Clin North Am, 2010, 54: 313-324. DOI:10.1016/j.cden.2009.12.006 |
[8] |
FRIEDMAN S. Treatment outcome and prognosis of endodontic therapy[M]//OSTAVIK D, PITT FORD T R. Essential endodontology. London: Blackwell, 1998: 369-384.
|
[9] |
FRIEDMAN S, MOR C. The success of endodontic therapy-healing and functionality[J]. J Calif Dent Assoc, 2004, 32: 493-503. |
[10] |
SOUSA B C, GOMES F A, FERREIRA C M, ROCHA M M N P, BARROS E B, ALBUQUERQUE D S. Persistent extra-radicular bacterial biofilm in endodontically treated human teeth:scanning electron microscopy analysis after apical surgery[J]. Microsc Res Tech, 2017, 80: 662-667. DOI:10.1002/jemt.22847 |
[11] |
PINHEIRO E T, GOMES B P, FERRAZ C C, TEIXEIRA F B, ZAIA A A, SOUZA FILHO F J. Evaluation of root canal microorganisms isolated from teeth with endodontic failure and their antimicrobial susceptibility[J]. Oral Microbiol Immunol, 2003, 18: 100-103. DOI:10.1034/j.1399-302X.2003.00058.x |
[12] |
STUART C H, SCHWARTZ S A, BEESON T J, OWATZ C B. Enterococcus faecalis:its role in root canal treatment failure and current concepts in retreatment[J]. J Endod, 2006, 32: 93-98. |
[13] |
GANESH A, NAGENDRABABU V, JOHN A, DEIVANAYAGAM K. The effect of addition of an EPS degrading enzyme with and without detergent to 2% chlorhexidine on disruption of Enterococcus faecalis biofilm:a confocal laser scanning microscopic study[J]. J Clin Diagn Res, 2015, 9: ZC61-ZC65. |
[14] |
OZBEK S M, OZBEK A, ERDORGAN A S. Analysis of Enterococcus faecalis in samples from Turkish patients with primary endodontic infections and failed endodontic treatment by real-time PCR SYBR green method[J]. J Appl Oral Sci, 2009, 17: 370-374. DOI:10.1590/S1678-77572009000500004 |
[15] |
ATILA-PEKTAŞ B, YURDAKUL P, GULMEZ D, GORDUYSUS O. Antimicrobial effects of root canal medicaments against Enterococcus faecalis and Streptococcus mutans[J]. Int Endod J, 2013, 46: 413-418. DOI:10.1111/iej.12004 |
[16] |
MEHTA S, VERMA P, TIKKU AP, CHANDRA A, BAINS R, BANERJEE G. Comparative evaluation of antimicrobial efficacy of triple antibiotic paste, calcium hydroxide, and a proton pump inhibitor against resistant root canal pathogens[J]. Eur J Dent, 2017, 11: 53-57. DOI:10.4103/ejd.ejd_159_16 |
[17] |
GEORGE S, KISHEN A, SONG K P. The role of environmental changes on monospecies biofilm formation on root canal wall by Enterococcus faecalis[J]. J Endod, 2005, 31: 867-872. DOI:10.1097/01.don.0000164855.98346.fc |
[18] |
ADL A, HAMEDI S, SEDIGH SHAMS M, MOTAMEDIFAR M, SOBHNAMAYAN F. The ability of triple antibiotic paste and calcium hydroxide in disinfection of dentinal tubules[J]. Iran Endod J, 2014, 9: 123-126. |
[19] |
SOORY M. A role for non-antimicrobial actions of tetracyclines in combating oxidative stress in periodontal and metabolic diseases:a literature review[J]. Open Dent J, 2008, 2: 5-12. DOI:10.2174/1874210600802010005 |
[20] |
GOMES-FILHO J E, DUARTE P C, DE OLIVEIRA C B, WATANABE S, LODI C S, CINTRA L T, et al. Tissue reaction to a triantibiotic paste used for endodontic tissue self-regeneration of nonvital immature permanent teeth[J]. J Endod, 2012, 38: 91-94. |
[21] |
PINKY C, SHASHIBHUSHAN K K, SUBBAREDDY V V. Endodontic treatment of necrosed primary teeth using two different combinations of antibacterial drugs:an in vivo study[J]. J Indian Soc Pedod Prev Dent, 2011, 29: 121-127. DOI:10.4103/0970-4388.84684 |