第二军医大学学报  2019, Vol. 40 Issue (7): 782-787   PDF    
非编码RNA在钙化性主动脉瓣疾病发生、发展中的作用
张煜, 李宁, 刘晓红, 徐志云     
海军军医大学(第二军医大学)长海医院心血管外科, 上海 200433
摘要: 钙化性主动脉瓣疾病是一个涉及内皮损伤、慢性炎症、细胞外基质重塑、细胞表型分化及细胞凋亡等复杂病理变化的过程。主动脉瓣主要由内部的瓣膜间质细胞及其表面覆盖的瓣膜内皮细胞构成,此两类细胞均参与了钙化性主动脉瓣疾病的病理进程。非编码RNA主要通过转录后调控机制参与心血管疾病病理生理过程,可能在钙化性主动脉瓣疾病的发生、发展中起着重要作用。
关键词: 钙化性主动脉瓣疾病    瓣膜间质细胞    瓣膜内皮细胞    非编码RNA    
Research progress on non-coding RNA in calcific aortic valve disease
ZHANG Yu, LI Ning, LIU Xiao-hong, XU Zhi-yun     
Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University(Second Military Medical University), Shanghai 200433, China
Abstract: Calcific aortic valve disease is a process involving complex pathological changes such as endothelial injury, chronic inflammation, extracellular matrix remodeling, cell phenotype differentiation and apoptosis. The aortic valve is mainly composed of internal valve interstitial cells and external valve endothelial cells, and they are all involved in the pathological process of calcific aortic valve disease. Non-coding RNA participates in the pathophysiological process of cardiovascular disease mainly through post-transcriptional regulation mechanism, and may play an important role in the development and progression of calcific aortic valve disease.
Key words: calcific aortic valve disease    valve interstitial cells    valve endothelial cells    non-coding RNA    

钙化性主动瓣疾病(calcific aortic valve disease,CAVD)是一组多种因素参与的、以主动脉瓣钙化纤维化为主要病理改变的疾病。正常的主动脉瓣从解剖学上分为3片瓣叶,各瓣叶在组织学上均可分为3层:主动脉侧的纤维层、中间的松质层及心室侧的心室肌层,3层组织均由成分不同的细胞外基质及种植于其中的瓣膜间质细胞(valve interstitial cell,VIC)组成,而瓣膜最外层则由单层瓣膜内皮细胞(valve endothelial cell,VEC)覆盖。

既往CAVD一直被认为是一种被动的退行性改变,是钙盐伴随年龄增长的沉积使瓣膜退化、硬化的过程;然而近年来的基础研究表明,CAVD涉及内皮损伤、慢性炎症、细胞外基质重塑、细胞表型分化及细胞凋亡等复杂病理变化为一主动过程[1-3]。CAVD的早期病理改变与动脉粥样硬化相似,可能与内皮细胞损伤及慢性炎症有关,而病变晚期则与骨形成过程相近。目前,主动脉瓣疾病的治疗方式主要是外科手术治疗,费用较高,且瓣膜置换术后长期抗凝治疗对患者的依从性也提出了较大的挑战。因此,探究CAVD的发病机制、从病因学上根治CAVD已成为研究热点。VIC及VEC作为构成瓣膜组织的两类细胞,均可能参与了CAVD的发展。非编码RNA如微RNA(microRNA,miRNA)和长链非编码RNA(long non-coding RNA,lncRNA)主要参与mRNA转录后翻译水平的调节,近年来大量研究表明非编码RNA在CAVD的发生及预后方面起着重要作用,现就非编码RNA在CAVD发生、发展中的作用展开讨论。

1 VIC与非编码RNA

VIC是瓣膜组织中最主要的细胞类型,其调控过程主要包括特异性成骨信号通路被激活后介导VIC向成骨细胞分化和细胞凋亡途径激活介导的营养不良性钙化2个方面。

1.1 细胞表型转化

VIC是一类间质细胞,其形态学及功能均介于成纤维细胞及平滑肌细胞之间,具有一定的收缩能力及分泌能力。大量体外实验从组织、细胞和分子水平验证了VIC向成骨样细胞分化的假说。CAVD相关的信号转导通路十分复杂,包括Notch1信号通路、Runx2信号通路、骨形态发生蛋白(bone morphogenetic protein,BMP)/Smad信号通路、Wnt/β-连环蛋白(β-catenin)信号通路以及转化生长因子β(transforming growth factor β,TGF-β)信号通路。其中,Notch1可调节其下游基因Runx2BMP2 的表达,从而调控瓣膜钙化过程[4-5]。BMP类似于细胞“命运”决定因子,当VIC开始表达BMP时Smad1、5、8信号通路活化,成骨转录因子Msx2和Runx2的表达上调,促进VIC形成骨组织[6-7]

非编码RNA与VIC的激活有关。多种非编码RNA参与了心血管的病理生理过程,但其在CAVD发生、发展过程中的作用研究仍在起步阶段。Wang等[8]通过基因芯片检测4对CAVD患者瓣膜标本及取自器官捐献供体的正常瓣膜标本,结果提示有92个miRNA出现差异表达。在主动脉瓣狭窄患者标本中,miRNA-204、miRNA-214表达下调,而miRNA-486、miRNA-92a、miRNA-181b、miRNA-125b等表达上调[9]。其中miRNA-204可能是CAVD的一个保护因子,其能通过抑制Smad4及Runx2的表达抑制VIC向成骨细胞分化[10-12]。而miR-29b则能激活Wnt/β-catenin信号通路促进瓣膜钙化[13]

相比miRNA,目前有关lncRNA在CAVD中的研究相对较少。Wang等[14]通过转录组分析对比钙化主动脉瓣及32种其他人体组织,发现了725种主动脉瓣特异lncRNA。LncRNA-H19是一种印记基因,主要在胚胎发生过程中高度表达,出生后大多数组织中几乎无法检测到其表达。目前已经证实lncRNA-H19异常表达与肿瘤发生、动脉粥样硬化、心力衰竭及心肌肥厚有关[15-16]。Hadji等[17]发现CAVD患者瓣膜中lncRNA-H19表达上调,与之相反的是钙化瓣膜中启动子区甲基化程度较低。lncRNA-H19通过阻止Notch1 基因启动子区P53蛋白的募集沉默Notch1的表达,从而促进瓣膜钙化;敲除VIC中lncRNA-H19后,Notch1表达上调,继而导致Runx2及BMP2表达下调[18]。Carrion等[19]发现,主动脉瓣二叶畸形(bicuspid aortic valve,BAV)瓣膜标本中lncRNA-HOTAIR表达下调,因BAV瓣膜承受的压力较三叶式主动脉瓣大,Wnt/β-catenin作为一种张力反应信号通路随即被激活并抑制lncRNA-HOTAIR的表达,从而介导瓣膜钙化。钙化瓣膜中lncRNA-TUG1、lncRNA-MALAT1表达水平上调,其可通过直接结合miRNA-204而抑制其功能,促进其下游Runx2及Smad4的表达,从而促进VIC钙化[12, 20]

非编码RNA除了参与不同心血管疾病的病理生理过程,还可能作为生物标志物或靶点用于不同疾病的诊断、预后预测及治疗[21-23]。研究发现,miRNA-92a可能是主动脉瓣钙化的一个潜在生物标志物[24]。人工合成的miRNA类似物或抑制剂一直被用于miRNA的基础研究,其也可能被用于某些特殊疾病的基因治疗。长期应用miRNA-33抑制剂可减轻低密度脂蛋白受体敲除小鼠动脉粥样硬化的病变程度[25],而miRNA-21拮抗剂被用于治疗Alport综合征已经进入Ⅰ期临床试验[26]

1.2 细胞凋亡

细胞凋亡是机体调控发育、维护内环境稳定并由基因控制的一种细胞主动死亡过程,又称为程序性细胞死亡。TGF-β1作为一种经典的促进血管平滑肌细胞钙化的细胞因子,其在钙化瓣膜中表达上调,并能通过激活凋亡信号通路促进瓣膜钙化[27]。TGF-β1在细胞凋亡期间可以释放基质小泡和微粒,例如凋亡小体,其能富集钙盐并使磷酸钙晶体成核导致营养不良性钙化[28-30]。Jan等[31]报道,miRNA-214可能通过调控线粒体凋亡相关蛋白参与瓣膜性心脏病,但具体机制尚不清楚。Zhang等[32]则发现,miRNA-30b可能通过抑制caspase-3的表达从而抑制VIC钙化。

2 VEC与非编码RNA

VEC覆盖于瓣膜的外表面,直接接触血流。血流动力学及炎症改变能够直接作用于VEC,其作为一个探测器可感受外界的变化,然后通过调节基底膜的渗透性、炎症细胞黏附能力转导外界的信号变化,维持瓣膜内环境的稳定。因此,VEC在CAVD的发生过程中可能扮演着始动角色[33]。VEC参与CAVD的分子机制可能包括2个方面:VEC发生内皮间质转化(endothelial-mesenchymal transition,EndMT)成为具有增殖能力的VIC;VEC旁分泌机制发生变化,影响VIC的形态学或者功能。

2.1 EndMT机制

EndMT是涉及多种发育和病理事件的关键生物学过程,其特征在于细胞与细胞的接触逐渐丧失、细胞极性改变、肌动蛋白细胞骨架重排产生的基底层切割和侵入,导致丝状伪足形成,并最终导致间质基因表达进行性上调。心脏在胚胎发育过程中需要经历2次EndMT形成原始心脏,此后,在房室交界处和心室流出道的位置又通过EndMT形成原始瓣膜并逐渐发育为成熟瓣膜[34-35]。VEC在TGF-β、机械应力、炎症介质等刺激下可发生EndMT,使VEC失去原有的内皮细胞表型并获得间质表型,表达α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)。Mahler等[36]通过体外流体冲刷模拟血流剪切力发现,在稳定的血流剪切力下,即使该力较大,其EndMT相关基因和炎症相关基因表达仍较低;当VEC暴露于不稳定的剪切力下,EndMT相关基因和炎性相关基因表达上调,伴VEC侵袭力增强。非编码RNA可参与EndMT过程。Geng和Guan[37]发现miRNA-18a-5p可通过抑制Notch2途径抑制EndMT。LncRNA-MALAT1首先于肿瘤中被报道,后来发现其能通过miRNA-145调节TGF-β1诱导的EndMT过程[38]

血流剪切力作用于VEC,使其形态、基因表达发生相应变化,BAV的瓣叶承受的机械应力更高,内皮细胞更容易受损。既往研究表明BAV是导致主动脉瓣钙化狭窄的重要危险因素之一,BAV人群行主动脉瓣置换治疗的终身风险约为50%,其发生CAVD的发病率也高于正常人群,BAV比正常主动脉瓣早10~20年发生钙化[39-40]。BAV钙化瓣膜中,miRNA-26a、miRNA-30b和miRNA-195的表达分别降低了65%、62%、59%,其改变可能与瓣膜钙化有关[41]。部分对血流敏感的miRNA如miRNA-10a、miRNA-19a、miRNA-23b等可能参与了内皮失调及动脉粥样硬化的发展过程[42]。LncRNA-MALAT1可能通过调节内皮功能参与心血管疾病的病理生理过程[38]

概括地说,VEC通过EndMT补充受损的VIC,一旦EndMT发生,VEC即参与到瓣膜的病理性纤维化和钙化。VEC的EndMT通过纤维化促进细胞外基质重塑,促进成骨活动参与CAVD的发生、发展[43-44]。但同时有学者通过共培养VIC和VEC发现VIC可以抑制VEC的钙化。上述结果提示VIC与VEC互相作用,共同维持瓣叶的稳定性[45]

2.2 旁分泌机制

目前研究认为,VEC调控VIC旁分泌的因子主要为一氧化氮(nitric oxide,NO)和C型钠尿肽(C-type natriuretic peptide,CNP),两者均通过诱导环磷酸鸟苷的产生发挥作用。Lee等[46]研究发现,一氧化氮合酶敲除小鼠BAV患病率明显增加,伴随着CAVD的发病率上升。Richards等[47]通过将VEC与VIC共培养证实,VEC可抑制VIC活化及其向成骨细胞分化,而在培养液中添加NO阻断剂后作用却相反,即促进钙化。由于NO仅能在VEC中合成,上述研究结果提示VEC通过合成NO成为瓣膜钙化早期阶段天然的抑制剂。血流剪切力会使VEC中一氧化氮合酶的表达水平升高,而在体外NO可以抑制VIC介导的钙化结节形成[48-49]。研究发现,miRNA-195和miRNA-582能抑制内皮型一氧化氮合酶的表达,从而抑制NO的释放[50]

CNP可于正常主动脉瓣组织中表达,尤其是在心室侧的内皮细胞中高表达,而在狭窄的主动脉瓣中其表达会降低[51]。CNP能够抑制VIC活化以及向成骨细胞分化,利用基因敲除技术证实,利钠肽受体2缺失的小鼠BAV、主动脉瓣疾病及升主动脉扩张发病率升高[52]。上述研究表明CNP在维持主动脉瓣正常功能中具有重要作用。

3 小结

CAVD是一个涉及内皮损伤、慢性炎症、细胞外基质重塑、细胞表型分化等复杂病理变化的过程。CAVD启动阶段以瓣膜损伤、炎症为诱发因素,而在进展阶段钙化和促成骨因素成为促使疾病进展的主要因素。VIC和VEC均可能以多种形式参与CAVD的发生、发展,而非编码RNA则主要通过转录后调控机制参与其进程。正常状态下VIC与VEC互相作用,共同维持瓣叶的稳定性,而这种稳态一旦被打破,主动脉瓣则逐步向CAVD发展。因此,研究VIC和VEC在CAVD进程中的作用及机制可能为CAVD的防治提供新的治疗策略。此外,非编码RNA还可能作为潜在的生物标志物用于评估CAVD的发生、发展与预后。

尽管已经有大量有关CAVD细胞及分子水平的文献报道,但人们对VIC和VEC参与CAVD具体机制的了解仍然有限,非手术手段治疗CAVD仍面临较大的挑战。

参考文献
[1]
HULIN A, HEGO A, LANCELLOTTI P, QURY C. Advances in pathophysiology of calcific aortic valve disease propose novel molecular therapeutic targets[J]. Front Cardiovasc Med, 2018, 5: 21. DOI:10.3389/fcvm.2018.00021
[2]
贺钰斌, 朱丹. 钙化性主动脉瓣疾病发病机制的研究进展[J]. 中国胸心血管外科临床杂志, 2018, 25: 171-176.
[3]
高佳斌, 徐志云. 主动脉瓣钙化发病机制的研究进展[J]. 国际心血管病杂志, 2016, 43: 210-212, 216. DOI:10.3969/j.issn.1673-6583.2016.04.006
[4]
GARG V, MUTH A N, RANSOM J F, SCHLUTERMAN M K, BARNES R, KING I N, et al. Mutations in NOTCH1 cause aortic valve disease[J]. Nature, 2005, 437: 270-274. DOI:10.1038/nature03940
[5]
凌秋洋. Notch蛋白通过调节JAK-STAT通路促进心脏瓣膜间质细胞分泌BMPs加速瓣膜钙化[D].合肥: 安徽医科大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10366-1016139358.htm
[6]
CHEN G, DENG C, LI Y P. TGF-β and BMP signaling in osteoblast differentiation and bone formation[J]. Int J Biol Sci, 2012, 8: 272-288. DOI:10.7150/ijbs.2929
[7]
SONG R, FULLERTON D A, AO L, ZHENG D, ZHAO K S, MENG X. BMP-2 and TGF-β1 mediate biglycan-induced pro-osteogenic reprogramming in aortic valve interstitial cells[J]. J Mole Med, 2015, 93: 403-412. DOI:10.1007/s00109-014-1229-z
[8]
WANG H, SHI J, LI B, ZHOU Q, KONG X, BEI Y. MicroRNA expression signature in human calcific aortic valve disease[J]. Biomed Res Int, 2017, 2017: 4820275. DOI:10.1155/2017/4820275
[9]
SONG R, FULLERTON D A, AO L, ZHAO K S, REECE T B, CLEVELAND J C Jr, et al. Altered microRNA expression is responsible for the pro-osteogenic phenotype of interstitial cells in calcified human aortic valves[J]. J Am Heart Assoc, 2017, 6. DOI:10.1161/JAHA.116.005364
[10]
SONG R, FULLERTON D A, AO L, ZHAO K S, MENG X. An epigenetic regulatory loop controls pro-osteogenic activation by TGF-β1 or bone morphogenetic protein 2 in human aortic valve interstitial cells[J]. J Biol Chem, 2017, 292: 8657-8666. DOI:10.1074/jbc.M117.783308
[11]
WANG Y, CHEN S, DENG C, LI F, WANG Y, HU X, et al. MicroRNA-204 targets Runx2 to attenuate BMP-2-induced osteoblast differentiation of human aortic valve interstitial cells[J]. J Cardiovasc Pharmacol, 2015, 66: 63-71. DOI:10.1097/FJC.0000000000000244
[12]
XIAO X, ZHOU T, GUO S, GUO C, ZHANG Q, DONG N, et al. LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4[J]. Int J Cardiol, 2017, 243: 404-412. DOI:10.1016/j.ijcard.2017.05.037
[13]
FANG M, WANG C G, ZHENG C, LUO J, HOU S, LIU K, et al. Mir-29b promotes human aortic valve interstitial cell calcification via inhibiting TGF-β3 through activation of wnt3/β-catenin/Smad3 signaling[J]. J Cell Biochem, 2018, 119: 5175-5185. DOI:10.1002/jcb.26545
[14]
WANG J, WANG Y, GU W, NI B, SUN H, YU T, et al. Comparative transcriptome analysis reveals substantial tissue specificity in human aortic valve[J]. Evol Bioinform Online, 2016, 12: 175-184.
[15]
LIU L, AN X, LI Z, SONG Y, LI L, ZUO S, et al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy[J]. Cardiovasc Res, 2016, 111: 56-65. DOI:10.1093/cvr/cvw078
[16]
GRECO S, ZACCAGNINI G, PERFETTI A, FUSCHI P, VALAPERTA R, VOELLENKLE C, et al. Long noncoding RNA dysregulation in ischemic heart failure[J]. J Transl Med, 2016, 14: 183. DOI:10.1186/s12967-016-0926-5
[17]
HADJI F, BOULANGER M C, GUAY S P, GAUDREAULT N, AMELLAH S, MKANNEZ G. Altered DNA methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1[J]. Circulation, 2016, 134: 1848-1862. DOI:10.1161/CIRCULATIONAHA.116.023116
[18]
MERRYMAN W D, CLARK C R. Lnc-ing NOTCH1 to idiopathic calcific aortic valve disease[J]. Circulation, 2016, 134: 1863-1865. DOI:10.1161/CIRCULATIONAHA.116.025601
[19]
CARRION K, DYO J, PATEL V, SASIK R, MOHAMED S A, HARDIMAN G, et al. The long non-coding HOTAIR is modulated by cyclic stretch and WNT/β-CATENIN in human aortic valve cells and is a novel repressor of calcification genes[J]. PLoS One, 2014, 9: e96577. DOI:10.1371/journal.pone.0096577
[20]
YU C, LI L, XIE F, GUO S, LIU F, DONG N, et al. LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification[J]. Cardiovasc Res, 2018, 114: 168-179. DOI:10.1093/cvr/cvx180
[21]
ELIA L, QUINTAVALLE M. Epigenetics and vascular diseases: influence of non-coding RNAs and their clinical implications[J]. Front Cardiovasc Med, 2017, 4: 26. DOI:10.3389/fcvm.2017.00026
[22]
STĘPIEŃ E, COSTA M C, KURC S, DROŻDŻ A, CORTEZ-DIAS N, ENGUITA F J. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases[J]. Acta Pharmacol Sin, 2018, 39: 1085-1099. DOI:10.1038/aps.2018.35
[23]
GANGWAR R S, RAJAGOPALAN S, NATARAJAN R, DEIULIIS J A. Noncoding RNAs in cardiovascular disease: pathological relevance and emerging role as biomarkers and therapeutics[J]. Am J Hypertens, 2018, 31: 150-165. DOI:10.1093/ajh/hpx197
[24]
NADER J, METZINGER-LE M V, MAITRIAS P, HUMBERT J R, BRIGANT B, TRIBOUILLOY C, et al. miR-92a: a novel potential biomarker of rapid aortic valve calcification[J]. J Heart Valve Dis, 2017, 26: 327-333.
[25]
ROTLLAN N, RAMIREZ C M, ARYAL B, ESAU C C, FERNANDEZHERNANDO C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice[J]. Arterioscler Thromb Vasc Biol, 2013, 33: 1973-1977. DOI:10.1161/ATVBAHA.113.301732
[26]
GOMEZ I G, MACKENNA D A, JOHNSON B G, KAIMAL V, ROACH A M, REN S, et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways[J]. J Clin Invest, 2015, 125: 141-156. DOI:10.1172/JCI75852
[27]
JIAN B, NARULA N, LI Q Y, MOHLER E R 3rd, LEVY R J. Progression of aortic valve stenosis: TGF-β1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis[J]. Ann Thorac Surg, 2003, 75: 457-465. DOI:10.1016/S0003-4975(02)04312-6
[28]
PROUDFOOT D, SKEPPER J N, HEGYI L, BENNETT M R, SHANAHAN C M, WEISSBERG P L. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies[J]. Circ Res, 2000, 87: 1055-1062. DOI:10.1161/01.RES.87.11.1055
[29]
VAN ENGELAND N C A, BERTAZZO S, SARATHCHANDRA P, MCCORMACK A, BOUTEN C V C, YACOUB M H, et al. Aortic calcified particles modulate valvular endothelial and interstitial cells[J]. Cardiovasc Pathol, 2017, 28: 36-45. DOI:10.1016/j.carpath.2017.02.006
[30]
张伯尧, 徐志云. 凋亡微环境促瓣膜间质细胞钙化的机制[J]. 国际心血管病杂志, 2013, 40: 41-43. DOI:10.3969/j.issn.1673-6583.2013.01.014
[31]
JAN M I, KHAN R A, MALIK A, ALI T, BILAL M, BO L, et al. Data of expression status of miR-29a and its putative target mitochondrial apoptosis regulatory gene DRP1 upon miR-15a and miR-214 inhibition[J]. Data Brief, 2017, 16: 1000-1004.
[32]
ZHANG M, LIU X, ZHANG X, SONG Z, HAN L, HE Y, et al. MicroRNA-30b is a multifunctional regulator of aortic valve interstitial cells[J]. J Thorac Cardiovasc Surg, 2014, 147: 1073-1080. DOI:10.1016/j.jtcvs.2013.05.011
[33]
GOULD S T, SRIGUNAPALAN S, SIMMONS C A, ANSETH K S. Hemodynamic and cellular response feedback in calcific aortic valve disease[J]. Circ Res, 2013, 113: 186-197. DOI:10.1161/CIRCRESAHA.112.300154
[34]
MONAGHAN M G, LINNEWEH M, LIEBSCHER S, VAN HANDEL B, LAYLAND S L, SCHENKE-LAYLAND K. Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development[J]. Development, 2016, 143: 473-482. DOI:10.1242/dev.133843
[35]
GONG H, LYU X, WANG Q, HU M, ZHANG X. Endothelial to mesenchymal transition in the cardiovascular system[J]. Life Sci, 2017, 184: 95-102. DOI:10.1016/j.lfs.2017.07.014
[36]
MAHLER G J, FRENDL C M, CAO Q, BUTCHER J T. Effects of shear stress pattern and magnitude on mesenchymal transformation and invasion of aortic valve endothelial cells[J]. Biotechnol Bioeng, 2014, 111: 2326-2337. DOI:10.1002/bit.25291
[37]
GENG H, GUAN J. MiR-18a-5p inhibits endothelial-mesenchymal transition and cardiac fibrosis through the Notch2 pathway[J]. Biochem Biophys Res Commun, 2017, 491: 329-336. DOI:10.1016/j.bbrc.2017.07.101
[38]
XIANG Y, ZHANG Y, TANG Y, LI Q. MALAT1 modulates TGF-β1-induced endothelial-to-mesenchymal transition through downregulation of miR-145[J]. Cell Physiol Biochem, 2017, 42: 357-372. DOI:10.1159/000477479
[39]
MICHELENA H I, PRAKASH S K, DELLA CORTE A, BISSELL M M, ANAVEKAR N, MATHIEU P, et al. Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the international bicuspid aortic valve consortium (BAVCon)[J]. Circulation, 2014, 129: 2691-2704. DOI:10.1161/CIRCULATIONAHA.113.007851
[40]
LINDMAN B R, CLAVEL M A, MATHIEU P, IUNG B, LANCELLOTTI P, OTTO C M, et al. Calcific aortic stenosis[J]. Nat Rev Dis Primers, 2016, 2: 16006. DOI:10.1038/nrdp.2016.6
[41]
NIGAM V, SIEVERS H H, JENSEN B C, SIER H A, SIMPSON P C, SRIVASTAVA D, et al. Altered microRNAs in bicuspid aortic valve: a comparison between stenotic and insufficient valves[J]. J Heart Valve Dis, 2010, 19: 459-465.
[42]
KUMAR S, KIM C W, SIMMONS R D, JO H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs[J]. Arterioscler Thromb Vasc Biol, 2014, 34: 2206-2216. DOI:10.1161/ATVBAHA.114.303425
[43]
RATTAZZI M, PAULETTO P. Valvular endothelial cells: guardians or destroyers of aortic valve integrity?[J]. Atherosclerosis, 2015, 242: 396-398. DOI:10.1016/j.atherosclerosis.2015.07.034
[44]
DAHAL S, HUANG P, MURRAY B T, MAHLER G J. Endothelial to mesenchymal transformation is induced by altered extracellular matrix in aortic valve endothelial cells[J]. J Biomed Mater Res A, 2017, 105: 2729-2741. DOI:10.1002/jbm.a.36133
[45]
HJORTNAES J, SHAPERO K, GOETTSCH C, HUTCHESON J D, KEEGAN J, KLUIN J, et al. Valvular interstitial cells suppress calcification of valvular endothelial cells[J]. Atherosclerosis, 2015, 242: 251-260. DOI:10.1016/j.atherosclerosis.2015.07.008
[46]
LEE T C, ZHAO Y D, COURTMAN D W, STEWART D J. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase[J]. Circulation, 2000, 101: 2345-2348. DOI:10.1161/01.CIR.101.20.2345
[47]
RICHARDS J, EL-HAMAMSY I, CHEN S, SARANG Z, SARATHCHANDRA P, YACOUB M H, et al. Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling[J]. Am J Pathol, 2013, 182: 1922-1931. DOI:10.1016/j.ajpath.2013.01.037
[48]
KENNEDY J A, HUA X, MISHRA K, MURPHY G A, ROSENKRANZ A C, HOROWITZ J D. Inhibition of calcifying nodule formation in cultured porcine aortic valve cells by nitric oxide donors[J]. Eur J Pharmacol, 2009, 602: 28-35. DOI:10.1016/j.ejphar.2008.11.029
[49]
EL ACCAOUI R N, GOULD S T, HAJJ G P, CHU Y, DAVIS M K, KRAFT D C, et al. Aortic valve sclerosis in mice deficient in endothelial nitric oxide synthase[J]. Am J Physiol Heart Circ Physiol, 2014, 306: H1302-H1313. DOI:10.1152/ajpheart.00392.2013
[50]
QIN J Z, WANG S J, XIA C. microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3[J]. J Thromb Thrombolysis, 2018, 146: 275-282.
[51]
PELTONEN T O, TASKINEN P, SOINI Y, RYSÄ J, RONKAINEN J, OHTONEN P, et al. Distinct downregulation of C-type natriuretic peptide system in human aortic valve stenosis[J]. Circulation, 2007, 116: 1283-1289. DOI:10.1161/CIRCULATIONAHA.106.685743
[52]
BLASER M C, WEI K, ADAMS R L E, ZHOU Y Q, CARUSO L L, MIRZAEI Z, et al. Deficiency of natriuretic peptide receptor 2 promotes bicuspid aortic valve, aortic valve disease, left ventricular dysfunction, and ascending aortic dilatations in mice[J]. Circ Res, 2018, 122: 405-416. DOI:10.1161/CIRCRESAHA.117.311194