钙化性主动瓣疾病(calcific aortic valve disease,CAVD)是一组多种因素参与的、以主动脉瓣钙化纤维化为主要病理改变的疾病。正常的主动脉瓣从解剖学上分为3片瓣叶,各瓣叶在组织学上均可分为3层:主动脉侧的纤维层、中间的松质层及心室侧的心室肌层,3层组织均由成分不同的细胞外基质及种植于其中的瓣膜间质细胞(valve interstitial cell,VIC)组成,而瓣膜最外层则由单层瓣膜内皮细胞(valve endothelial cell,VEC)覆盖。
既往CAVD一直被认为是一种被动的退行性改变,是钙盐伴随年龄增长的沉积使瓣膜退化、硬化的过程;然而近年来的基础研究表明,CAVD涉及内皮损伤、慢性炎症、细胞外基质重塑、细胞表型分化及细胞凋亡等复杂病理变化为一主动过程[1-3]。CAVD的早期病理改变与动脉粥样硬化相似,可能与内皮细胞损伤及慢性炎症有关,而病变晚期则与骨形成过程相近。目前,主动脉瓣疾病的治疗方式主要是外科手术治疗,费用较高,且瓣膜置换术后长期抗凝治疗对患者的依从性也提出了较大的挑战。因此,探究CAVD的发病机制、从病因学上根治CAVD已成为研究热点。VIC及VEC作为构成瓣膜组织的两类细胞,均可能参与了CAVD的发展。非编码RNA如微RNA(microRNA,miRNA)和长链非编码RNA(long non-coding RNA,lncRNA)主要参与mRNA转录后翻译水平的调节,近年来大量研究表明非编码RNA在CAVD的发生及预后方面起着重要作用,现就非编码RNA在CAVD发生、发展中的作用展开讨论。
1 VIC与非编码RNAVIC是瓣膜组织中最主要的细胞类型,其调控过程主要包括特异性成骨信号通路被激活后介导VIC向成骨细胞分化和细胞凋亡途径激活介导的营养不良性钙化2个方面。
1.1 细胞表型转化VIC是一类间质细胞,其形态学及功能均介于成纤维细胞及平滑肌细胞之间,具有一定的收缩能力及分泌能力。大量体外实验从组织、细胞和分子水平验证了VIC向成骨样细胞分化的假说。CAVD相关的信号转导通路十分复杂,包括Notch1信号通路、Runx2信号通路、骨形态发生蛋白(bone morphogenetic protein,BMP)/Smad信号通路、Wnt/β-连环蛋白(β-catenin)信号通路以及转化生长因子β(transforming growth factor β,TGF-β)信号通路。其中,Notch1可调节其下游基因Runx2 及BMP2 的表达,从而调控瓣膜钙化过程[4-5]。BMP类似于细胞“命运”决定因子,当VIC开始表达BMP时Smad1、5、8信号通路活化,成骨转录因子Msx2和Runx2的表达上调,促进VIC形成骨组织[6-7]。
非编码RNA与VIC的激活有关。多种非编码RNA参与了心血管的病理生理过程,但其在CAVD发生、发展过程中的作用研究仍在起步阶段。Wang等[8]通过基因芯片检测4对CAVD患者瓣膜标本及取自器官捐献供体的正常瓣膜标本,结果提示有92个miRNA出现差异表达。在主动脉瓣狭窄患者标本中,miRNA-204、miRNA-214表达下调,而miRNA-486、miRNA-92a、miRNA-181b、miRNA-125b等表达上调[9]。其中miRNA-204可能是CAVD的一个保护因子,其能通过抑制Smad4及Runx2的表达抑制VIC向成骨细胞分化[10-12]。而miR-29b则能激活Wnt/β-catenin信号通路促进瓣膜钙化[13]。
相比miRNA,目前有关lncRNA在CAVD中的研究相对较少。Wang等[14]通过转录组分析对比钙化主动脉瓣及32种其他人体组织,发现了725种主动脉瓣特异lncRNA。LncRNA-H19是一种印记基因,主要在胚胎发生过程中高度表达,出生后大多数组织中几乎无法检测到其表达。目前已经证实lncRNA-H19异常表达与肿瘤发生、动脉粥样硬化、心力衰竭及心肌肥厚有关[15-16]。Hadji等[17]发现CAVD患者瓣膜中lncRNA-H19表达上调,与之相反的是钙化瓣膜中启动子区甲基化程度较低。lncRNA-H19通过阻止Notch1 基因启动子区P53蛋白的募集沉默Notch1的表达,从而促进瓣膜钙化;敲除VIC中lncRNA-H19后,Notch1表达上调,继而导致Runx2及BMP2表达下调[18]。Carrion等[19]发现,主动脉瓣二叶畸形(bicuspid aortic valve,BAV)瓣膜标本中lncRNA-HOTAIR表达下调,因BAV瓣膜承受的压力较三叶式主动脉瓣大,Wnt/β-catenin作为一种张力反应信号通路随即被激活并抑制lncRNA-HOTAIR的表达,从而介导瓣膜钙化。钙化瓣膜中lncRNA-TUG1、lncRNA-MALAT1表达水平上调,其可通过直接结合miRNA-204而抑制其功能,促进其下游Runx2及Smad4的表达,从而促进VIC钙化[12, 20]。
非编码RNA除了参与不同心血管疾病的病理生理过程,还可能作为生物标志物或靶点用于不同疾病的诊断、预后预测及治疗[21-23]。研究发现,miRNA-92a可能是主动脉瓣钙化的一个潜在生物标志物[24]。人工合成的miRNA类似物或抑制剂一直被用于miRNA的基础研究,其也可能被用于某些特殊疾病的基因治疗。长期应用miRNA-33抑制剂可减轻低密度脂蛋白受体敲除小鼠动脉粥样硬化的病变程度[25],而miRNA-21拮抗剂被用于治疗Alport综合征已经进入Ⅰ期临床试验[26]。
1.2 细胞凋亡细胞凋亡是机体调控发育、维护内环境稳定并由基因控制的一种细胞主动死亡过程,又称为程序性细胞死亡。TGF-β1作为一种经典的促进血管平滑肌细胞钙化的细胞因子,其在钙化瓣膜中表达上调,并能通过激活凋亡信号通路促进瓣膜钙化[27]。TGF-β1在细胞凋亡期间可以释放基质小泡和微粒,例如凋亡小体,其能富集钙盐并使磷酸钙晶体成核导致营养不良性钙化[28-30]。Jan等[31]报道,miRNA-214可能通过调控线粒体凋亡相关蛋白参与瓣膜性心脏病,但具体机制尚不清楚。Zhang等[32]则发现,miRNA-30b可能通过抑制caspase-3的表达从而抑制VIC钙化。
2 VEC与非编码RNAVEC覆盖于瓣膜的外表面,直接接触血流。血流动力学及炎症改变能够直接作用于VEC,其作为一个探测器可感受外界的变化,然后通过调节基底膜的渗透性、炎症细胞黏附能力转导外界的信号变化,维持瓣膜内环境的稳定。因此,VEC在CAVD的发生过程中可能扮演着始动角色[33]。VEC参与CAVD的分子机制可能包括2个方面:VEC发生内皮间质转化(endothelial-mesenchymal transition,EndMT)成为具有增殖能力的VIC;VEC旁分泌机制发生变化,影响VIC的形态学或者功能。
2.1 EndMT机制EndMT是涉及多种发育和病理事件的关键生物学过程,其特征在于细胞与细胞的接触逐渐丧失、细胞极性改变、肌动蛋白细胞骨架重排产生的基底层切割和侵入,导致丝状伪足形成,并最终导致间质基因表达进行性上调。心脏在胚胎发育过程中需要经历2次EndMT形成原始心脏,此后,在房室交界处和心室流出道的位置又通过EndMT形成原始瓣膜并逐渐发育为成熟瓣膜[34-35]。VEC在TGF-β、机械应力、炎症介质等刺激下可发生EndMT,使VEC失去原有的内皮细胞表型并获得间质表型,表达α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)。Mahler等[36]通过体外流体冲刷模拟血流剪切力发现,在稳定的血流剪切力下,即使该力较大,其EndMT相关基因和炎症相关基因表达仍较低;当VEC暴露于不稳定的剪切力下,EndMT相关基因和炎性相关基因表达上调,伴VEC侵袭力增强。非编码RNA可参与EndMT过程。Geng和Guan[37]发现miRNA-18a-5p可通过抑制Notch2途径抑制EndMT。LncRNA-MALAT1首先于肿瘤中被报道,后来发现其能通过miRNA-145调节TGF-β1诱导的EndMT过程[38]。
血流剪切力作用于VEC,使其形态、基因表达发生相应变化,BAV的瓣叶承受的机械应力更高,内皮细胞更容易受损。既往研究表明BAV是导致主动脉瓣钙化狭窄的重要危险因素之一,BAV人群行主动脉瓣置换治疗的终身风险约为50%,其发生CAVD的发病率也高于正常人群,BAV比正常主动脉瓣早10~20年发生钙化[39-40]。BAV钙化瓣膜中,miRNA-26a、miRNA-30b和miRNA-195的表达分别降低了65%、62%、59%,其改变可能与瓣膜钙化有关[41]。部分对血流敏感的miRNA如miRNA-10a、miRNA-19a、miRNA-23b等可能参与了内皮失调及动脉粥样硬化的发展过程[42]。LncRNA-MALAT1可能通过调节内皮功能参与心血管疾病的病理生理过程[38]。
概括地说,VEC通过EndMT补充受损的VIC,一旦EndMT发生,VEC即参与到瓣膜的病理性纤维化和钙化。VEC的EndMT通过纤维化促进细胞外基质重塑,促进成骨活动参与CAVD的发生、发展[43-44]。但同时有学者通过共培养VIC和VEC发现VIC可以抑制VEC的钙化。上述结果提示VIC与VEC互相作用,共同维持瓣叶的稳定性[45]。
2.2 旁分泌机制目前研究认为,VEC调控VIC旁分泌的因子主要为一氧化氮(nitric oxide,NO)和C型钠尿肽(C-type natriuretic peptide,CNP),两者均通过诱导环磷酸鸟苷的产生发挥作用。Lee等[46]研究发现,一氧化氮合酶敲除小鼠BAV患病率明显增加,伴随着CAVD的发病率上升。Richards等[47]通过将VEC与VIC共培养证实,VEC可抑制VIC活化及其向成骨细胞分化,而在培养液中添加NO阻断剂后作用却相反,即促进钙化。由于NO仅能在VEC中合成,上述研究结果提示VEC通过合成NO成为瓣膜钙化早期阶段天然的抑制剂。血流剪切力会使VEC中一氧化氮合酶的表达水平升高,而在体外NO可以抑制VIC介导的钙化结节形成[48-49]。研究发现,miRNA-195和miRNA-582能抑制内皮型一氧化氮合酶的表达,从而抑制NO的释放[50]。
CNP可于正常主动脉瓣组织中表达,尤其是在心室侧的内皮细胞中高表达,而在狭窄的主动脉瓣中其表达会降低[51]。CNP能够抑制VIC活化以及向成骨细胞分化,利用基因敲除技术证实,利钠肽受体2缺失的小鼠BAV、主动脉瓣疾病及升主动脉扩张发病率升高[52]。上述研究表明CNP在维持主动脉瓣正常功能中具有重要作用。
3 小结CAVD是一个涉及内皮损伤、慢性炎症、细胞外基质重塑、细胞表型分化等复杂病理变化的过程。CAVD启动阶段以瓣膜损伤、炎症为诱发因素,而在进展阶段钙化和促成骨因素成为促使疾病进展的主要因素。VIC和VEC均可能以多种形式参与CAVD的发生、发展,而非编码RNA则主要通过转录后调控机制参与其进程。正常状态下VIC与VEC互相作用,共同维持瓣叶的稳定性,而这种稳态一旦被打破,主动脉瓣则逐步向CAVD发展。因此,研究VIC和VEC在CAVD进程中的作用及机制可能为CAVD的防治提供新的治疗策略。此外,非编码RNA还可能作为潜在的生物标志物用于评估CAVD的发生、发展与预后。
尽管已经有大量有关CAVD细胞及分子水平的文献报道,但人们对VIC和VEC参与CAVD具体机制的了解仍然有限,非手术手段治疗CAVD仍面临较大的挑战。
[1] |
HULIN A, HEGO A, LANCELLOTTI P, QURY C. Advances in pathophysiology of calcific aortic valve disease propose novel molecular therapeutic targets[J]. Front Cardiovasc Med, 2018, 5: 21. DOI:10.3389/fcvm.2018.00021 |
[2] |
贺钰斌, 朱丹. 钙化性主动脉瓣疾病发病机制的研究进展[J]. 中国胸心血管外科临床杂志, 2018, 25: 171-176. |
[3] |
高佳斌, 徐志云. 主动脉瓣钙化发病机制的研究进展[J]. 国际心血管病杂志, 2016, 43: 210-212, 216. DOI:10.3969/j.issn.1673-6583.2016.04.006 |
[4] |
GARG V, MUTH A N, RANSOM J F, SCHLUTERMAN M K, BARNES R, KING I N, et al. Mutations in NOTCH1 cause aortic valve disease[J]. Nature, 2005, 437: 270-274. DOI:10.1038/nature03940 |
[5] |
凌秋洋. Notch蛋白通过调节JAK-STAT通路促进心脏瓣膜间质细胞分泌BMPs加速瓣膜钙化[D].合肥: 安徽医科大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10366-1016139358.htm
|
[6] |
CHEN G, DENG C, LI Y P. TGF-β and BMP signaling in osteoblast differentiation and bone formation[J]. Int J Biol Sci, 2012, 8: 272-288. DOI:10.7150/ijbs.2929 |
[7] |
SONG R, FULLERTON D A, AO L, ZHENG D, ZHAO K S, MENG X. BMP-2 and TGF-β1 mediate biglycan-induced pro-osteogenic reprogramming in aortic valve interstitial cells[J]. J Mole Med, 2015, 93: 403-412. DOI:10.1007/s00109-014-1229-z |
[8] |
WANG H, SHI J, LI B, ZHOU Q, KONG X, BEI Y. MicroRNA expression signature in human calcific aortic valve disease[J]. Biomed Res Int, 2017, 2017: 4820275. DOI:10.1155/2017/4820275 |
[9] |
SONG R, FULLERTON D A, AO L, ZHAO K S, REECE T B, CLEVELAND J C Jr, et al. Altered microRNA expression is responsible for the pro-osteogenic phenotype of interstitial cells in calcified human aortic valves[J]. J Am Heart Assoc, 2017, 6. DOI:10.1161/JAHA.116.005364 |
[10] |
SONG R, FULLERTON D A, AO L, ZHAO K S, MENG X. An epigenetic regulatory loop controls pro-osteogenic activation by TGF-β1 or bone morphogenetic protein 2 in human aortic valve interstitial cells[J]. J Biol Chem, 2017, 292: 8657-8666. DOI:10.1074/jbc.M117.783308 |
[11] |
WANG Y, CHEN S, DENG C, LI F, WANG Y, HU X, et al. MicroRNA-204 targets Runx2 to attenuate BMP-2-induced osteoblast differentiation of human aortic valve interstitial cells[J]. J Cardiovasc Pharmacol, 2015, 66: 63-71. DOI:10.1097/FJC.0000000000000244 |
[12] |
XIAO X, ZHOU T, GUO S, GUO C, ZHANG Q, DONG N, et al. LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4[J]. Int J Cardiol, 2017, 243: 404-412. DOI:10.1016/j.ijcard.2017.05.037 |
[13] |
FANG M, WANG C G, ZHENG C, LUO J, HOU S, LIU K, et al. Mir-29b promotes human aortic valve interstitial cell calcification via inhibiting TGF-β3 through activation of wnt3/β-catenin/Smad3 signaling[J]. J Cell Biochem, 2018, 119: 5175-5185. DOI:10.1002/jcb.26545 |
[14] |
WANG J, WANG Y, GU W, NI B, SUN H, YU T, et al. Comparative transcriptome analysis reveals substantial tissue specificity in human aortic valve[J]. Evol Bioinform Online, 2016, 12: 175-184. |
[15] |
LIU L, AN X, LI Z, SONG Y, LI L, ZUO S, et al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy[J]. Cardiovasc Res, 2016, 111: 56-65. DOI:10.1093/cvr/cvw078 |
[16] |
GRECO S, ZACCAGNINI G, PERFETTI A, FUSCHI P, VALAPERTA R, VOELLENKLE C, et al. Long noncoding RNA dysregulation in ischemic heart failure[J]. J Transl Med, 2016, 14: 183. DOI:10.1186/s12967-016-0926-5 |
[17] |
HADJI F, BOULANGER M C, GUAY S P, GAUDREAULT N, AMELLAH S, MKANNEZ G. Altered DNA methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1[J]. Circulation, 2016, 134: 1848-1862. DOI:10.1161/CIRCULATIONAHA.116.023116 |
[18] |
MERRYMAN W D, CLARK C R. Lnc-ing NOTCH1 to idiopathic calcific aortic valve disease[J]. Circulation, 2016, 134: 1863-1865. DOI:10.1161/CIRCULATIONAHA.116.025601 |
[19] |
CARRION K, DYO J, PATEL V, SASIK R, MOHAMED S A, HARDIMAN G, et al. The long non-coding HOTAIR is modulated by cyclic stretch and WNT/β-CATENIN in human aortic valve cells and is a novel repressor of calcification genes[J]. PLoS One, 2014, 9: e96577. DOI:10.1371/journal.pone.0096577 |
[20] |
YU C, LI L, XIE F, GUO S, LIU F, DONG N, et al. LncRNA TUG1 sponges miR-204-5p to promote osteoblast differentiation through upregulating Runx2 in aortic valve calcification[J]. Cardiovasc Res, 2018, 114: 168-179. DOI:10.1093/cvr/cvx180 |
[21] |
ELIA L, QUINTAVALLE M. Epigenetics and vascular diseases: influence of non-coding RNAs and their clinical implications[J]. Front Cardiovasc Med, 2017, 4: 26. DOI:10.3389/fcvm.2017.00026 |
[22] |
STĘPIEŃ E, COSTA M C, KURC S, DROŻDŻ A, CORTEZ-DIAS N, ENGUITA F J. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases[J]. Acta Pharmacol Sin, 2018, 39: 1085-1099. DOI:10.1038/aps.2018.35 |
[23] |
GANGWAR R S, RAJAGOPALAN S, NATARAJAN R, DEIULIIS J A. Noncoding RNAs in cardiovascular disease: pathological relevance and emerging role as biomarkers and therapeutics[J]. Am J Hypertens, 2018, 31: 150-165. DOI:10.1093/ajh/hpx197 |
[24] |
NADER J, METZINGER-LE M V, MAITRIAS P, HUMBERT J R, BRIGANT B, TRIBOUILLOY C, et al. miR-92a: a novel potential biomarker of rapid aortic valve calcification[J]. J Heart Valve Dis, 2017, 26: 327-333. |
[25] |
ROTLLAN N, RAMIREZ C M, ARYAL B, ESAU C C, FERNANDEZHERNANDO C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice[J]. Arterioscler Thromb Vasc Biol, 2013, 33: 1973-1977. DOI:10.1161/ATVBAHA.113.301732 |
[26] |
GOMEZ I G, MACKENNA D A, JOHNSON B G, KAIMAL V, ROACH A M, REN S, et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways[J]. J Clin Invest, 2015, 125: 141-156. DOI:10.1172/JCI75852 |
[27] |
JIAN B, NARULA N, LI Q Y, MOHLER E R 3rd, LEVY R J. Progression of aortic valve stenosis: TGF-β1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis[J]. Ann Thorac Surg, 2003, 75: 457-465. DOI:10.1016/S0003-4975(02)04312-6 |
[28] |
PROUDFOOT D, SKEPPER J N, HEGYI L, BENNETT M R, SHANAHAN C M, WEISSBERG P L. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies[J]. Circ Res, 2000, 87: 1055-1062. DOI:10.1161/01.RES.87.11.1055 |
[29] |
VAN ENGELAND N C A, BERTAZZO S, SARATHCHANDRA P, MCCORMACK A, BOUTEN C V C, YACOUB M H, et al. Aortic calcified particles modulate valvular endothelial and interstitial cells[J]. Cardiovasc Pathol, 2017, 28: 36-45. DOI:10.1016/j.carpath.2017.02.006 |
[30] |
张伯尧, 徐志云. 凋亡微环境促瓣膜间质细胞钙化的机制[J]. 国际心血管病杂志, 2013, 40: 41-43. DOI:10.3969/j.issn.1673-6583.2013.01.014 |
[31] |
JAN M I, KHAN R A, MALIK A, ALI T, BILAL M, BO L, et al. Data of expression status of miR-29a and its putative target mitochondrial apoptosis regulatory gene DRP1 upon miR-15a and miR-214 inhibition[J]. Data Brief, 2017, 16: 1000-1004. |
[32] |
ZHANG M, LIU X, ZHANG X, SONG Z, HAN L, HE Y, et al. MicroRNA-30b is a multifunctional regulator of aortic valve interstitial cells[J]. J Thorac Cardiovasc Surg, 2014, 147: 1073-1080. DOI:10.1016/j.jtcvs.2013.05.011 |
[33] |
GOULD S T, SRIGUNAPALAN S, SIMMONS C A, ANSETH K S. Hemodynamic and cellular response feedback in calcific aortic valve disease[J]. Circ Res, 2013, 113: 186-197. DOI:10.1161/CIRCRESAHA.112.300154 |
[34] |
MONAGHAN M G, LINNEWEH M, LIEBSCHER S, VAN HANDEL B, LAYLAND S L, SCHENKE-LAYLAND K. Endocardial-to-mesenchymal transformation and mesenchymal cell colonization at the onset of human cardiac valve development[J]. Development, 2016, 143: 473-482. DOI:10.1242/dev.133843 |
[35] |
GONG H, LYU X, WANG Q, HU M, ZHANG X. Endothelial to mesenchymal transition in the cardiovascular system[J]. Life Sci, 2017, 184: 95-102. DOI:10.1016/j.lfs.2017.07.014 |
[36] |
MAHLER G J, FRENDL C M, CAO Q, BUTCHER J T. Effects of shear stress pattern and magnitude on mesenchymal transformation and invasion of aortic valve endothelial cells[J]. Biotechnol Bioeng, 2014, 111: 2326-2337. DOI:10.1002/bit.25291 |
[37] |
GENG H, GUAN J. MiR-18a-5p inhibits endothelial-mesenchymal transition and cardiac fibrosis through the Notch2 pathway[J]. Biochem Biophys Res Commun, 2017, 491: 329-336. DOI:10.1016/j.bbrc.2017.07.101 |
[38] |
XIANG Y, ZHANG Y, TANG Y, LI Q. MALAT1 modulates TGF-β1-induced endothelial-to-mesenchymal transition through downregulation of miR-145[J]. Cell Physiol Biochem, 2017, 42: 357-372. DOI:10.1159/000477479 |
[39] |
MICHELENA H I, PRAKASH S K, DELLA CORTE A, BISSELL M M, ANAVEKAR N, MATHIEU P, et al. Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the international bicuspid aortic valve consortium (BAVCon)[J]. Circulation, 2014, 129: 2691-2704. DOI:10.1161/CIRCULATIONAHA.113.007851 |
[40] |
LINDMAN B R, CLAVEL M A, MATHIEU P, IUNG B, LANCELLOTTI P, OTTO C M, et al. Calcific aortic stenosis[J]. Nat Rev Dis Primers, 2016, 2: 16006. DOI:10.1038/nrdp.2016.6 |
[41] |
NIGAM V, SIEVERS H H, JENSEN B C, SIER H A, SIMPSON P C, SRIVASTAVA D, et al. Altered microRNAs in bicuspid aortic valve: a comparison between stenotic and insufficient valves[J]. J Heart Valve Dis, 2010, 19: 459-465. |
[42] |
KUMAR S, KIM C W, SIMMONS R D, JO H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs[J]. Arterioscler Thromb Vasc Biol, 2014, 34: 2206-2216. DOI:10.1161/ATVBAHA.114.303425 |
[43] |
RATTAZZI M, PAULETTO P. Valvular endothelial cells: guardians or destroyers of aortic valve integrity?[J]. Atherosclerosis, 2015, 242: 396-398. DOI:10.1016/j.atherosclerosis.2015.07.034 |
[44] |
DAHAL S, HUANG P, MURRAY B T, MAHLER G J. Endothelial to mesenchymal transformation is induced by altered extracellular matrix in aortic valve endothelial cells[J]. J Biomed Mater Res A, 2017, 105: 2729-2741. DOI:10.1002/jbm.a.36133 |
[45] |
HJORTNAES J, SHAPERO K, GOETTSCH C, HUTCHESON J D, KEEGAN J, KLUIN J, et al. Valvular interstitial cells suppress calcification of valvular endothelial cells[J]. Atherosclerosis, 2015, 242: 251-260. DOI:10.1016/j.atherosclerosis.2015.07.008 |
[46] |
LEE T C, ZHAO Y D, COURTMAN D W, STEWART D J. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase[J]. Circulation, 2000, 101: 2345-2348. DOI:10.1161/01.CIR.101.20.2345 |
[47] |
RICHARDS J, EL-HAMAMSY I, CHEN S, SARANG Z, SARATHCHANDRA P, YACOUB M H, et al. Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling[J]. Am J Pathol, 2013, 182: 1922-1931. DOI:10.1016/j.ajpath.2013.01.037 |
[48] |
KENNEDY J A, HUA X, MISHRA K, MURPHY G A, ROSENKRANZ A C, HOROWITZ J D. Inhibition of calcifying nodule formation in cultured porcine aortic valve cells by nitric oxide donors[J]. Eur J Pharmacol, 2009, 602: 28-35. DOI:10.1016/j.ejphar.2008.11.029 |
[49] |
EL ACCAOUI R N, GOULD S T, HAJJ G P, CHU Y, DAVIS M K, KRAFT D C, et al. Aortic valve sclerosis in mice deficient in endothelial nitric oxide synthase[J]. Am J Physiol Heart Circ Physiol, 2014, 306: H1302-H1313. DOI:10.1152/ajpheart.00392.2013 |
[50] |
QIN J Z, WANG S J, XIA C. microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3[J]. J Thromb Thrombolysis, 2018, 146: 275-282. |
[51] |
PELTONEN T O, TASKINEN P, SOINI Y, RYSÄ J, RONKAINEN J, OHTONEN P, et al. Distinct downregulation of C-type natriuretic peptide system in human aortic valve stenosis[J]. Circulation, 2007, 116: 1283-1289. DOI:10.1161/CIRCULATIONAHA.106.685743 |
[52] |
BLASER M C, WEI K, ADAMS R L E, ZHOU Y Q, CARUSO L L, MIRZAEI Z, et al. Deficiency of natriuretic peptide receptor 2 promotes bicuspid aortic valve, aortic valve disease, left ventricular dysfunction, and ascending aortic dilatations in mice[J]. Circ Res, 2018, 122: 405-416. DOI:10.1161/CIRCRESAHA.117.311194 |