2. 解放军95247部队医院, 惠州 516259
2. Hospital of PLA No. 95247 Troop, Huizhou 516259, Guangdong, China
多柔比星(doxorubicin,DOX)是临床上应用最广泛的抗肿瘤药物之一,可用于治疗乳腺癌[1]、卵巢癌[2]、淋巴瘤[3]等,但其具有剂量相关心脏毒性,可导致心肌病和充血性心力衰竭[4],因而其临床应用明显受限。心肌细胞凋亡是DOX心肌毒性的主要机制[5],抑制心肌细胞凋亡可能是缓解DOX心肌毒性的关键策略。
微RNA(microRNA,miRNA)是一类高度保守的长度约为18~25个核苷酸的单链非编码RNA,通过多种机制(如mRNA切割和翻译抑制)在转录后水平负向调控基因表达[6-7]。miRNA参与调节多种细胞功能,包括细胞增殖、分化、凋亡、自噬、代谢和细胞衰老等[8-10]。其中,miRNA-21(miR-21)是最早发现的哺乳动物miRNA之一。最新研究发现,miR-21在缓解心肌梗死[11]、放射性心肌损伤[12]、心肌缺血再灌注[13]等多种心血管疾病中发挥积极作用。此外,miR-21还可通过抑制心肌细胞凋亡抵抗DOX心肌毒性[14],但是其具体分子机制尚未完全阐明。沉默信息调控因子1(silent information regulator 1,SIRT1)是机体内最先发现的一种具有去乙酰化酶活性的转录调节因子,激活SIRT1信号通路可有效缓解DOX引起的心肌毒性[15]。已有文献报道,miR-21可通过激活SIRT1信号通路抑制肿瘤坏死因子α(tumor necrosis factor α,TNF-α)诱导的肾内髓质集合管细胞CD40表达[16]。然而,miR-21是否通过激活SIRT1信号通路缓解DOX心肌毒性尚未见报道。本研究拟采用DOX处理大鼠原代心肌细胞构建DOX心肌毒性模型,观察miR-21能否减轻DOX心肌毒性并阐明SIRT1是否介导其作用。
1 材料和方法 1.1 主要试剂DOX(货号:D1515)、Sirtinol(SIRT1抑制剂;货号:S7942)和四甲基偶氮唑盐(methyl thiazolyl tetrazolium,MTT;货号:M5655)购自美国Sigma-Aldrich公司;miR-21 mimics、miR-21抑制剂和miR-21错义链购自上海吉玛制药技术有限公司;抗SIRT1抗体购自英国Abcam公司;抗乙酰化叉头框蛋白O1(acetylated forkhead box protein O1, Ac-FOXO1)抗体购自美国Santa Cruz公司;抗Bcl-2、Bax、cleaved Caspase-3和β-actin抗体购自美国Cell Signaling Technology公司;羊抗兔、羊抗鼠抗体购自北京中杉金桥生物技术有限公司;原位末端转移酶标记(terminal dexynucleotidyl transferase-mediated dUTP nick end labeling,TUNEL)凋亡检测试剂盒购自瑞士Roche公司;Lipofectamine 2000购自美国Invitrogen公司;miRNeasy Mini试剂盒、miScript反转录试剂盒和miScript SYBR Green PCR试剂盒购自美国Qiagen公司;7500快速实时荧光定量PCR系统购自美国Applied Biosystems公司。
1.2 心肌毒性细胞模型的建立从新生大鼠心脏中分离提取原代心肌细胞(neonatal rat cardiac myocyte,NRCM)并进行培养[17]。细胞用含10%胎牛血清的DMEM培养液培养于含5% CO2的37 ℃恒温孵箱中。参照国际通用的DOX心肌毒性细胞模型的建立方法[18],采用DOX(1 μmol/L)处理原代心肌细胞构建DOX心肌毒性模型。
1.3 实验分组及处理将原代心肌细胞分为8组:(1)对照组,转染50 nmol/L的miR-21错义链;(2)miR-21组,转染50 nmol/L的miR-21 mimics;(3)miR-21抑制剂组,转染50 nmol/L的miR-21抑制剂;(4)DOX组,先向心肌细胞转染50 nmol/L的miR-21错义链,再用DOX处理24 h;(5)miR-21+DOX组,先向心肌细胞转染50 nmol/L的miR-21 mimics,再用DOX处理24 h;(6)miR-21抑制剂+DOX组,先向心肌细胞转染50 nmol/L的miR-21抑制剂,再用DOX处理24 h;(7)Sirtinol+miR-21+DOX组,先向心肌细胞转染50 nmol/L的miR-21 mimics并同时给予Sirtinol(20 μmol/L)处理,然后再用DOX处理24 h;(8)Sirtinol+DOX组:先向心肌细胞转染50 nmol/L的miR-21错义链并同时给予Sirtinol(20 μmol/L)处理,然后再用DOX处理24 h。
1.4 MTT比色法测定细胞活力将DOX与原代心肌细胞在37 ℃孵箱中温育24 h后,在培养液中加入20 μL MTT(5 mg/mL)处理4 h,随后加入二甲基亚砜(dimethyl sulfoxide,DMSO)。充分震荡后,在550 nm波长下检测光密度,以光密度值间接反映细胞活力。以对照组细胞活力为100%,其他组细胞活力为对照组的相对值。
1.5 TUNEL染色检测细胞凋亡情况采用TUNEL试剂盒检测细胞凋亡情况[19],荧光显微镜下观察并拍照。细胞凋亡率(%)=TUNEL染色阳性细胞核数量/全部细胞核数量×100%。
1.6 蛋白质印迹法检测相关蛋白的表达通过12%十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分离细胞蛋白,用湿转法转移至聚偏二氟乙烯膜;将聚偏二氟乙烯膜用5%牛奶在室温下封闭1 h,分别加入Bcl-2、Bax、cleaved Caspase-3、Ac-FOXO1、SIRT1和β-actin抗体(稀释比例均为1:1 000)在4 ℃下孵育过夜;用TBST彻底洗涤3次,每次10 min;然后,将聚偏二氟乙烯膜与辣根过氧化物酶偶联的二抗(稀释比例为1:5 000)在室温下孵育1 h;用TBST彻底洗涤3次,每次10 min;通过化学发光法检测目的蛋白的表达。使用ImageJ软件进行蛋白表达半定量分析。
1.7 实时荧光定量PCR法检测miR-21的表达用miRNeasy Mini试剂盒从心肌细胞中提取总RNA。使用miScript反转录试剂盒、miScript SYBR Green PCR试剂盒和7500快速实时荧光定量PCR系统检测miR-21的表达水平,以RNU6B作为内参。通过2-ΔΔCt法计算基因相对表达量。
1.8 统计学处理采用GraphPad Prism 5软件进行统计学分析。数据以x±s表示,多组间差异的比较采用单因素方差分析,两两比较采用LSD-t检验。检验水准(α)为0.05。
2 结果 2.1 miR-21提高DOX处理后心肌细胞活力实时荧光定量PCR结果(图 1A)显示,与对照组相比,miR-21组和DOX组心肌细胞miR-21的表达量升高(P<0.05)。MTT结果(图 1B)显示,与对照组相比,DOX组心肌细胞活力降低(P<0.05),而miR-21可以提高DOX处理后心肌细胞活力(P<0.05);miR-21组与对照组相比心肌细胞活力差异无统计学意义(P>0.05)。
![]() |
图 1 miR-21对DOX处理后新生大鼠心肌细胞活力的影响 Fig 1 Effect of miR-21 on cell viability of DOX-treated neonatal rat cardiomyocytes A: miR-21 expression level; B: Cell viability. miR-21: microRNA-21; DOX: Doxorubicin. *P < 0.05 vs control group; ∆P < 0.05 vs DOX group. n=4, x±s |
2.2 miR-21抑制DOX处理后心肌细胞凋亡水平
TUNEL染色结果(图 2A、2B)显示,与对照组相比,DOX组心肌细胞凋亡率增高,而miR-21可降低DOX处理后心肌细胞凋亡率(P<0.05);miR-21组与对照组相比心肌细胞凋亡率差异无统计学意义(P>0.05)。进一步通过蛋白质印迹法检测凋亡相关蛋白Bax、Bcl-2和cleaved Caspase-3的表达量,结果(图 2C~2E)显示,与对照组相比,DOX增加了心肌细胞Bax和cleaved Caspase-3的表达量并降低了Bcl-2的表达量(P<0.05);miR-21可降低DOX处理后心肌细胞内Bax和cleaved Caspase-3表达量,提高Bcl-2表达量(P<0.05);miR-21组与对照组相比,心肌细胞Bax、Bcl-2和cleaved Caspase-3的表达量差异均无统计学意义(P>0.05)。
![]() |
图 2 miR-21对DOX处理后新生大鼠心肌细胞凋亡的影响 Fig 2 Effects of miR-21 on apoptosis of DOX-treated neonatal rat cardiomyocytes A: TUNEL images; B: The apoptotic rate; C: Bax expression detected by Western blotting; D: Bcl-2 expression detected by Western blotting; E: Cleaved Caspase-3 expression detected by Western blotting. miR-21: microRNA-21; DOX: Doxorubicin; TUNEL: Terminal dexynucleotidyl transferase-mediated dUTP nick end labeling; DAPI: 4' 6, -Diamidino-2-phenylindole. *P < 0.05 vs control group; ∆P < 0.05 vs DOX group. n=4, x±s |
2.3 miR-21激活DOX处理后心肌细胞SIRT1信号通路
蛋白质印迹分析结果(图 3)显示,与对照组相比,DOX组心肌细胞SIRT1表达量降低、Ac-FOXO1表达量增高(P<0.05),而miR-21可以提高DOX处理后心肌细胞SIRT1表达量、降低Ac-FOXO1表达量(P<0.05)。采用Sirtinol特异性地抑制SIRT1信号通路后,与miR-21+DOX组相比,Sirtinol+miR-21+DOX组心肌细胞内SIRT1的表达量降低,而Ac-FOXO1的表达量增高(P<0.05)。观察miR-21抑制剂对于SIRT1表达的影响,结果显示,与DOX组相比,miR-21抑制剂+DOX组心肌细胞内SIRT1的表达量进一步降低,而Ac-FOXO1的表达量进一步增高(P<0.05)。
![]() |
图 3 miR-21、Sirtinol和miR-21抑制剂对DOX处理后新生大鼠心肌细胞SIRT1信号通路的影响 Fig 3 Effect of miR-21, Sirtinol and miR-21 inhibitors on SIRT1 signaling pathway of DOX-treated neonatal rat cardiomyocytes A: Effect of miR-21 and Sirtinol on SIRT1 expression detected by Western blotting; B: Effect of miR-21 and Sirtinol on Ac-FOXO1 expression detected by Western blotting; C: Effect of miR-21 inhibitor on SIRT1 expression detected by Western blotting; D: Effect of miR-21 inhibitor on Ac-FOXO1 expression detected by Western blotting. miR-21: microRNA-21; DOX: Doxorubicin; SIRT1: Silent information regulator 1; Ac-FOXO1: Acetylated forkhead box protein O1. *P < 0.05 vs control group; ∆P < 0.05 vs DOX group; ▲P < 0.05 vs miR-21+DOX group. n=4, x±s |
2.4 阻断SIRT1信号通路削弱miR-21抗DOX心肌毒性作用
如图 4所示,与miR-21+DOX组相比,Sirtinol+miR-21+DOX组心肌细胞的细胞活力降低(P<0.05),提示阻断SIRT1信号通路削弱了miR-21抗DOX心肌毒性作用。
![]() |
图 4 miR-21和Sirtinol对DOX处理后新生大鼠心肌细胞活力的影响 Fig 4 Effect of miR-21 and Sirtinol on cell viability of DOX-treated neonatal rat cardiomyocytes miR-21: microRNA-21; DOX: Doxorubicin. *P < 0.05 vs DOX group; ∆P < 0.05 vs miR-21+DOX group. n=4, x±s |
2.5 阻断SIRT1信号通路削弱miR-21抗心肌细胞凋亡作用
TUNEL染色结果(图 5A、5B)显示,与miR-21+DOX组相比,Sirtinol+miR-21+DOX组心肌细胞凋亡率增高(P<0.05);Sirtinol+DOX组与DOX组相比,心肌细胞凋亡率差异无统计学意义(P>0.05)。蛋白质印迹分析结果(图 5C~5E)显示,与miR-21+DOX组相比,Sirtinol+miR-21+DOX组心肌细胞Bax和cleaved Caspase-3的表达量增高、Bcl-2表达量降低(P<0.05);Sirtinol+DOX组与DOX组相比,心肌细胞Bax、Bcl-2和cleaved Caspase-3的表达量差异无统计学意义(P>0.05)。
![]() |
图 5 miR-21和Sirtinol对DOX处理后新生大鼠心肌细胞凋亡的影响 Fig 5 Effects of miR-21 and Sirtinol on apoptosis of DOX-treated neonatal rat cardiomyocytes A: Representative TUNEL images; B: The apoptotic rate; C: Bax expression detected by Western blotting; D: Bcl-2 expression detected by Western blotting; E: Cleaved Caspase-3 expression detected by Western blotting. miR-21: microRNA-21; DOX: Doxorubicin; TUNEL: Terminal dexynucleotidyl transferase-mediated dUTP nick end labeling; DAPI: 4' 6, -Diamidino-2- phenylindole. *P < 0.05 vs DOX group; ∆P < 0.05 vs miR-21+DOX group. n=4, x±s |
3 讨论
研究发现,miRNA是一类短链非编码RNA,可通过结合mRNA引起mRNA降解或翻译抑制进而调节基因表达,是调节细胞增殖、分化、凋亡、应激反应和肿瘤发生的重要调节因子[20]。近年来,miRNA在心血管系统中的作用越来越受到重视。miRNA可作为冠状动脉粥样硬化性心脏病、心肌梗死和心力衰竭等多种心血管疾病的生物诊断标志物[21]。此外,基于miRNA的新型治疗策略在心血管疾病方面的应用也已取得重大进展[22]。
研究表明miR-21在心血管系统中高度表达,是缓解心肌肥厚、放射性心肌损伤、心力衰竭以及缺血性心脏病等心血管疾病的重要干预靶点,并在调节心肌细胞生长和死亡以及心脏成纤维细胞功能中发挥重要作用[11-13, 23-26]。过表达miR-21可减轻缺血引起的细胞凋亡、减少心肌梗死面积[11]。miR-21能够通过调控PTEN/Akt信号通路抵抗缺血/再灌注和缺氧/复氧诱导的心肌细胞凋亡[13]。Dai等[25]证实,miR-21能有效缓解糖尿病小鼠早期心脏舒张功能障碍,降低活性氧的产量,减轻心肌细胞肥大。此外,过表达miR-21可减弱DOX诱导的心肌细胞凋亡,而抑制其表达会增加DOX诱导的细胞凋亡[14]。本研究发现,DOX处理心肌细胞后,miR-21的表达量增高,提示miR-21表达的增高可能是细胞受到DOX刺激后引发的一种内源性保护机制。通过外源性上调miR-21表达,我们发现miR-21能够有效改善DOX处理后心肌细胞活力,减少细胞凋亡。
SIRT1在动脉粥样硬化、心肌肥厚、心肌缺血再灌注损伤、心肌梗死、心力衰竭等多种心血管疾病中发挥保护作用[27]。激活SIRT1信号通路是缓解DOX心肌毒性的有效策略。Ruan等[15]证实,SIRT1过表达可通过抑制p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38MAPK)磷酸化和Caspase-3激活减少DOX诱导的心肌细胞凋亡,减少活性氧的产量。Cui等[28]发现,红细胞生成素可通过激活SIRT1增强线粒体功能并预防DOX诱导的心肌毒性。Yuan等[29]证实,心脏特异性过表达C1q/肿瘤坏死因子相关蛋白3(C1q/tumour necrosis factor-related protein 3,CTRP3)可通过激活SIRT1信号通路改善DOX引起的心脏功能障碍,减轻DOX诱导的心脏炎症反应和细胞凋亡。本研究证实,DOX处理的原代心肌细胞中SIRT1的表达量较正常心肌细胞降低,而SIRT1下游靶蛋白FOXO1的乙酰化水平增高,提示DOX可使SIRT1去乙酰化酶活性受损,这与既往研究结果[15]一致。SIRT1信号通路的受损还伴随心肌细胞凋亡率增高,Bax和cleaved Caspase-3的表达量增高,Bcl-2的表达量降低。本研究发现miR-21可以明显上调DOX处理后心肌细胞内SIRT1的表达量,降低Ac-FOXO1的表达水平,改善心肌细胞活力并且抑制心肌细胞凋亡。而阻断SIRT1信号通路后,miR-21的上述保护作用明显减弱。以上结果提示,miR-21可通过激活SIRT1信号通路改善DOX心肌毒性。此外,本研究还发现通过miR-21抑制剂下调miR-21的表达可降低心肌细胞内SIRT1的表达。近年来研究发现,miR-21主要通过负向调控PDCD4、FASL、PTEN、SPRY1等基因发挥心血管保护作用[30]。鉴于miR-21主要是通过降解mRNA或抑制翻译过程发挥负向调控作用,我们推测miR-21并非直接作用于SIRT1基因,而可能通过抑制SIRT1基因的负向调控分子间接提高SIRT1的表达水平。但miR-21具体通过负向调控哪种分子影响SIRT1的表达仍需进一步研究。
综上所述,本研究证实miR-21是缓解DOX心肌毒性的有效干预靶点,miR-21主要通过激活SIRT1信号通路抑制心肌细胞凋亡途径发挥其保护作用。值得注意的是,miR-21也是参与多种癌症发生发展的重要miRNA之一,其在许多实体肿瘤中高度表达,并且与肿瘤生长、侵袭和转移密切相关[31]。例如,miR-21能够刺激非小细胞肺癌细胞生长和增殖、肿瘤血管生成、肿瘤侵袭和转移,增加肿瘤化学治疗和放射治疗抵抗[32];上调miR-21表达能够促进人舌鳞癌细胞的增殖,抑制细胞凋亡[33];联合使用DOX和miR-21抑制剂可减少成胶质细胞瘤肿瘤细胞增殖、侵袭和迁移[34]。因此,miR-21的临床应用必须同时关注其对心肌细胞和肿瘤细胞的双重作用。如何选择性地提高心肌组织miR-21表达并降低肿瘤组织miR-21表达,可能成为缓解化学治疗药物心肌毒性、增强肿瘤杀伤能力的新研究方向。
[1] |
KATSUTA E, YAN L, NAGAHASHI M, RAZA A, STURGILL J L, LYON D E, et al. Doxorubicin effect is enhanced by sphingosine-1-phosphate signaling antagonist in breast cancer[J]. J Surg Res, 2017, 219: 202-213. DOI:10.1016/j.jss.2017.05.101 |
[2] |
TEMPFER C B, GIGER-PABST U, SEEBACHER V, PETERSEN M, DOGAN A, REZNICZEK G A. A phase Ⅰ, single-arm, open-label, dose escalation study of intraperitoneal cisplatin and doxorubicin in patients with recurrent ovarian cancer and peritoneal carcinomatosis[J]. Gynecol Oncol, 2018, 150: 23-30. DOI:10.1016/j.ygyno.2018.05.001 |
[3] |
ZHAI Q, CHEN Y, XU J, HUANG Y, SUN J, LIU Y, et al. Lymphoma immunochemotherapy: targeted delivery of doxorubicin via a dual functional nanocarrier[J]. Mol Pharm, 2017, 14: 3888-3895. DOI:10.1021/acs.molpharmaceut.7b00606 |
[4] |
MINOTTI G, MENNA P, SALVATORELLI E, CAIRA G, GIANNI L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity[J]. Pharmacol Rev, 2004, 56: 185-229. DOI:10.1124/pr.56.2.6 |
[5] |
ZHANG YW, SHI J, LI Y J, WEI L. Cardiomyocyte death in doxorubicin-induced cardiotoxicity[J]. Arch Immunol Ther Exp (Warsz), 2009, 57: 435-445. DOI:10.1007/s00005-009-0051-8 |
[6] |
LI J, XU J, CHENG Y, WANG F, SONG Y, XIAO J. Circulating microRNAs as mirrors of acute coronary syndromes: miRacle or quagMire?[J]. J Cell Mol Med, 2013, 17: 1363-1370. DOI:10.1111/jcmm.2013.17.issue-11 |
[7] |
LIU X, XIAO J, ZHU H, WEI X, PLATT C, DAMILANO F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling[J]. Cell Metab, 2015, 21: 584-595. DOI:10.1016/j.cmet.2015.02.014 |
[8] |
CHEN J, HUANG Z P, SEOK H Y, DING J, KATAOKA M, ZHANG Z, et al. miR-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts[J]. Circ Res, 2013, 112: 1557-1566. DOI:10.1161/CIRCRESAHA.112.300658 |
[9] |
MELMAN Y F, SHAH R, DANIELSON K, XIAO J, SIMONSON B, BARTH A, et al. Circulating microRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: a translational pilot study[J]. Circulation, 2015, 131: 2202-2216. DOI:10.1161/CIRCULATIONAHA.114.013220 |
[10] |
WANG N, YANG J, ZHANG H, LU X, WANG J, CAO Y, et al. MicroRNA-9a-5p alleviates ischemia injury after focal cerebral ischemia of the rat by targeting ATG5-mediated autophagy[J]. Cell Physiol Biochem, 2018, 45: 78-87. DOI:10.1159/000486224 |
[11] |
DONG S, CHENG Y, YANG J, LI J, LIU X, WANG X, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction[J]. J Biol Chem, 2009, 284: 29514-29525. DOI:10.1074/jbc.M109.027896 |
[12] |
VICZENCZOVA C, SZEIFFOVA BACOVA B, EGAN BENOVA T, KURA B, YIN C, WEISMANN P, et al. Myocardial connexin-43 and PKC signalling are involved in adaptation of the heart to irradiation-induced injury: implication of miR-1 and miR-21[J]. Gen Physiol Biophys, 2016, 35: 215-222. DOI:10.4149/gpb_2015038 |
[13] |
YANG Q, YANG K, LI A. microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism[J]. Mol Med Rep, 2014, 9: 2213-2220. DOI:10.3892/mmr.2014.2068 |
[14] |
TONG Z, JIANG B, WU Y, LIU Y, LI Y, GAO M, et al. MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2[J]. Int J Mol Sci, 2015, 16: 14511-14525. DOI:10.3390/ijms160714511 |
[15] |
RUAN Y, DONG C, PATEL J, DUAN C, WANG X, WU X, et al. SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways[J]. Cell Physiol Biochem, 2015, 35: 1116-1124. DOI:10.1159/000373937 |
[16] |
LIN Q, GENG Y, ZHAO M, LIN S, ZHU Q, TIAN Z. MiR-21 regulates TNF-α-induced CD40 expression via the SIRT1-NF-κB pathway in renal inner medullary collecting duct cells[J]. Cell Physiol Biochem, 2017, 41: 124-136. DOI:10.1159/000455981 |
[17] |
ZHAI M, LIU Z, ZHANG B, JING L, LI B, LI K, et al. Melatonin protects against the pathological cardiac hypertrophy induced by transverse aortic constriction through activating PGC-1β: in vivo and in vitro studies[J/OL]. J Pineal Res, 2017, 63: e12433. doi: 10.1111/jpi.12433.
|
[18] |
ZHU S G, KUKREJA R C, DAS A, CHEN Q, LESNEFSKY E J, XI J. Dietary nitrate supplementation protects against doxorubicin-induced cardiomyopathy by improving mitochondrial function[J]. J Am Coll Cardiol, 2011, 57: 2181-2189. DOI:10.1016/j.jacc.2011.01.024 |
[19] |
ZHAI M, LI B, DUAN W, JING L, ZHANG B, ZHANG M, et al. Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis[J/OL]. J Pineal Res, 2017, 63: e12419. doi: 10.1111/jpi.12419.
|
[20] |
DA COSTA MARTINS P A, LEPTIDIS S, SALIC K, DE WINDT L J. MicroRNA regulation in cardiovascular disease[J]. Curr Drug Targets, 2010, 11: 900-906. DOI:10.2174/138945010791591322 |
[21] |
SCHULTE C, KARAKAS M, ZELLER T. microRNAs in cardiovascular disease―clinical application[J]. Clin Chem Lab Med, 2017, 55: 687-704. |
[22] |
VIJAYARATHNA S, OON C E, JOTHY S L, CHEN Y, KANWAR J R, SASIDHARAN S. MicroRNA pathways: an emerging role in identification of therapeutic strategies[J]. Curr Gene Ther, 2014, 14: 112-120. DOI:10.2174/1566523214666140302192953 |
[23] |
CHENG Y, ZHANG C. MicroRNA-21 in cardiovascular disease[J]. J Cardiovasc Transl Res, 2010, 3: 251-255. DOI:10.1007/s12265-010-9169-7 |
[24] |
GUPTA S K, ITAGAKI R, ZHENG X, BATKAI S, THUM S, AHMAD F, et al. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model[J]. Cardiovasc Res, 2016, 110: 215-226. DOI:10.1093/cvr/cvw030 |
[25] |
DAI B, LI H, FAN J, ZHAO Y, YIN Z, MIE X, et al. MiR-21 protected against diabetic cardiomyopathy induced diastolic dysfunction by targeting gelsolin[J/OL]. Cardiovasc Diabetol, 2018, 17: 123. doi: 10.1186/s12933-018-0767-z.
|
[26] |
肖静, 潘宇, 李晓红, 杨翔宇, 姜霖, 冯娟, 等. 心脏干细胞来源的exosomes通过传递miR-21抗心肌细胞凋亡[J]. 中国病理生理杂志, 2016, 32: 1533. DOI:10.3969/j.issn.1000-4718.2016.08.106 |
[27] |
D'ONOFRIO N, SERVILLO L, BALESTRIERI M L. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection[J]. Antioxid Redox Signal, 2018, 28: 711-732. DOI:10.1089/ars.2017.7178 |
[28] |
CUI L, GUO J, ZHANG Q, YIN J, LI J, ZHOU W, et al. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity[J]. Toxicol Lett, 2017, 275: 28-38. DOI:10.1016/j.toxlet.2017.04.018 |
[29] |
YUAN Y P, MA Z G, ZHANG X, XU S C, ZENG X F, YANG Z, et al. CTRP3 protected against doxorubicin-induced cardiac dysfunction, inflammation and cell death via activation of Sirt1[J]. J Mol Cell Cardiol, 2018, 114: 38-47. DOI:10.1016/j.yjmcc.2017.10.008 |
[30] |
OYAMA Y, BARTMAN C M, GILE J, ECKLE T. Circadian microRNAs in cardioprotection[J]. Curr Pharm Des, 2017, 23: 3723-3730. |
[31] |
HUANG Y, YANG Y B, ZHANG X H, YU X L, WANG Z B, CHENG X C. MicroRNA-21 gene and cancer[J/OL].Med Oncol, 2013, 30: 376. doi: 10.1007/s12032-012-0376-8.
|
[32] |
BICA-POP C, COJOCNEANU-PETRIC R, MAGDO L, RADULY L, GULEI D, BERINADAN-NEAGEO L. Overview upon miR-21 in lung cancer: focus on NSCLC[J]. Cell Mol Life Sci, 2018, 75: 3539-3551. DOI:10.1007/s00018-018-2877-x |
[33] |
初旭, 刘永兴, 党新文, 周永红, 赵咪. microRNA-21对人舌鳞癌细胞的增殖和凋亡的影响[J]. 现代生物医学进展, 2018, 18: 1940-1943. |
[34] |
ZHANG S, HAN L, WEI J, SHI Z, PU P, ZHANG J, et al. Combination treatment with doxorubicin and microRNA-21 inhibitor synergistically augments anticancer activity through upregulation of tumor suppressing genes[J]. Int J Oncol, 2015, 46: 1589-1600. DOI:10.3892/ijo.2015.2841 |