第二军医大学学报  2019, Vol. 40 Issue (3): 233-237   PDF    
心脏磁共振成像在急性ST段抬高型心肌梗死中的应用新进展
李东, 任雯     
天津医科大学总医院放射科, 天津 300052
摘要: 再灌注治疗明显降低了急性ST段抬高型心肌梗死(STEMI)患者的死亡率,但是STEMI导致的心力衰竭死亡率仍呈增高趋势,因此探寻改善STEIM患者预后的新的治疗方法仍是重要任务。心脏磁共振(CMR)检查是评估STEMI新治疗方法疗效和患者预后的重要工具。纵向弛豫时间定量成像(T1 mapping)和横向弛豫时间定量成像(T2 mapping)等新技术有助于从更深层次探究STEMI再灌注后心肌水肿、微血管梗阻、心肌内出血、对侧心肌间质间隙等病理生理学改变。本文就近几年CMR在STEMI再灌注后的应用新进展进行探讨。
关键词: 心肌梗死     急性ST段抬高     经皮冠状动脉介入术     磁共振成像     微血管梗阻     心肌内出血    
Application of cardiac magnetic resonance imaging in acute ST-segment elevation myocardial infarction: recent advances
LI Dong, REN Wen     
Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
Supported by Young Science Fund of National Natural Science Foundation of China (81301217), "13th Five-Year" National Key Research and Development Plan of Ministry of Science and Technology of China (2016YFC1300402), and Tianjin Applied Foundation and Frontier Technology Research Program (14JCZDJC57000, 18JCYBJC25100).
Abstract: Reperfusion therapy has significantly reduced the mortality of patients with acute ST-segment elevation myocardial infarction (STEMI), but the associated heart failure mortality is on a rise. It is important to seek novel cardioprotective therapies to improve clinical outcomes. Cardiac magnetic resonance (CMR) is an important imaging modality for assessing the efficacy of the novel therapies and the prognosis of the patients. T1 mapping and T2 mapping have provided new insights into the pathophysiology underlying myocardial edema, microvascular obstruction, intramyocardial hemorrhage, and the remote myocardial interstitial space after reperfused STEMI. This review sums up the recent advances on the application of the CMR in reperfused STEMI.
Key words: myocardial infarction     acute ST-segment elevation     percutaneous coronary intervention     magnetic resonance imaging     microvascular obstruction     intramyocardial hemorrhage    

再灌注治疗明显降低了急性ST段抬高型心肌梗死(ST-segment elevation myocardial infarction,STEMI)患者的死亡率[1],然而,再灌注治疗可导致进一步的心肌损伤和心肌细胞死亡,即再灌注损伤。此外,STEMI后心力衰竭导致患者死亡率呈明显增高趋势[2]。因此,找到有效减小心肌梗死灶和预防梗死后心力衰竭的治疗方法是当前研究的热点[3]。心脏磁共振(cardiac magnetic resonance,CMR)是评价STEMI治疗方法能否减小梗死灶、能否预防左心室负性重构的重要工具[4]

近年来,纵向弛豫时间定量成像(T1 mapping)和横向弛豫时间定量成像(T2 mapping)等CMR新技术发展迅速[5],这些新技术有助于从更深层面探究STEMI再灌注后病理生理学变化[如STEMI后第1周心肌水肿、微血管梗阻(microvascular obstruction,MO)和心肌内出血(intramyocardial hemorrhage,IMH)]的演变及其对患者预后的价值[6-8],以及梗死后对侧心肌(remote myocardium)间质间隙的变化及其对左心室负性重构的影响等[9]。本文综述了CMR在STEMI再灌注后的应用新进展。

1 STEMI再灌注后病理生理学变化及其CMR表现 1.1 心肌梗死灶大小

心肌梗死灶大小可通过CMR钆造影剂延迟增强(late gadolinium enhancement,LGE)序列定量评估,通常用梗死灶占左心室心肌总体积或总质量的百分比表示。钆造影剂不能通过完整的细胞膜,急性心肌坏死后细胞膜破裂后造影剂可进入这些细胞;陈旧性心肌梗死细胞外间隙扩大导致胶原沉积,残余的完整心肌细胞数量相对较少,造影剂从血管内进入细胞外间隙。因此,急性和陈旧性心肌梗死灶内的造影剂分布浓度均高于正常心肌而表现为延迟强化。

1.2 MO与IMH

MO是指虽然心外冠状动脉再通,但是梗死区心肌微循环仍未能得到有效再灌注[10]。钆造影剂早期增强(early gadolinium enhancement,EGE)和LGE序列图像均可显示MO,表现为强化区内的低信号核心。如果发生STEMI后心肌微循环损伤非常严重,血管完整性被严重破坏,红细胞则会进入心肌内而出现IMH[7]。心肌内的血红蛋白降解产物在T2*加权像或T2* mapping图像上表现为低信号核心[11],其原理与脑出血的磁共振成像原理相似。T2加权成像和T2 mapping也可检出IMH,但其灵敏度低于T2*加权成像和T2* mapping[12]

1.3 危险区(area at risk,AAR)

AAR是指梗死动脉支配的心肌区域,包括可逆损伤心肌(可挽救心肌)和梗死心肌。如果STEMI后不能及时、有效地挽救存活心肌则会发生梗死。检测和定量STEMI后AAR的CMR技术很多,包括T2加权成像[13]、T2 mapping[14]、T1 mapping[15]、EGE序列[16]等,但目前尚无系统比较这些技术的研究或共识。

AAR和梗死心肌大小的差值即为可挽救心肌的大小。心肌挽救指数(myocardial salvage index)指可挽救心肌与AAR大小的比值,是评估STEMI治疗效果较灵敏的方法,且优于心肌梗死灶大小[17]

2 CMR在STEMI再灌注后的应用

CMR技术提高了医师对心肌梗死、MO和IMH等的认识,已成为临床探讨心肌梗死灶大小、心肌残余铁离子、对侧心肌等在左心室负性重构中所起作用的有力工具。

2.1 心肌梗死灶的定量评价

近来,T1 mapping成为定量心肌梗死灶的重要技术,具有替代传统LGE序列的潜力。虽然增强T1 mapping能够准确定量急性心肌梗死灶的大小[18],但是平扫T1 mapping评价心肌梗死灶大小的价值更值得关注。Liu等[19]研究表明平扫T1 mapping能够准确评价急性心肌梗死灶的大小;Alkhalil等[20]也通过平扫T1 mapping监测STEMI患者早期梗死心肌的范围和T1值的演变过程。可见未来可能不需要造影剂即可综合评价STEMI患者的心肌梗死。另有研究发现,平扫T1 mapping可有效缩短扫描时间,从而使CMR能够应用于更广泛的人群[21]。近来,Garg等[22]探讨了应用急性期细胞外容积(extracellular volume,ECV)分数能够评估STEMI患者最终的心肌梗死灶大小,发现急性期ECV分数≥0.46能够预测陈旧性心肌梗死灶的大小。表明ECV能够作为LGE序列检查的补充,被用来评估心肌梗死灶的大小。

尽管T1 mapping在定量评价STEMI患者心肌梗死灶的大小方面具有广阔的应用前景,但是目前发表的数据均为单中心小样本研究。在被广泛认可之前,还需要多中心的大样本研究进一步验证。

2.2 MO和IMH的关系

STEMI患者在经皮冠状动脉介入(percutaneous coronary intervention,PCI)术后的一系列CMR成像证明,MO和IMH的发生和范围会随时间发生变化。LGE序列显示的MO范围在PCI术后4~12 h达到峰值,并在PCI术后48 h内保持稳定[7];Ørn等[23]研究发现仅在PCI术后第2天MO与左心室负性事件有关。对于IMH,有研究显示其在PCI术后第3天达到峰值[6]

研究表明,STEMI再灌注患者EGE序列显示的MO发生率为60%~65%;LGE显示的MO发生率为50%~55%,IMH发生率为35%~40%[7, 24]。Hamirani等[24]发现LGE显示MO的特异度和预测价值均高于EGE,且IMH与LGE显示的MO的相关性明显高于其与EGE显示的MO的相关性。Carrick等[7]利用T2* mapping技术对286例伴IMH的STEMI患者资料进行分析,结果显示286例患者LGE都检出MO。但两者的关系尚不清楚,究竟是MO导致内皮细胞损伤从而造成血液渗漏,IMH仅是MO严重程度的标志,还是IMH压迫血管导致或加重MO?相关机制仍需进一步探讨。

2.3 心肌梗死灶大小与左心室负性重构

通常情况下,心肌梗死灶越大左心室壁应力越高。STEMI患者左心室代偿性扩张保证了其每搏输出量,然而,左心室扩张会导致心室壁应力更大,在左心室壁没有代偿性增厚的情况下左心室扩张会更明显。Westman等[25]探讨了122例STEMI患者心肌梗死灶大小(占左心室心肌总体积的百分比)与左心室负性重构的关系,发现15%的心肌梗死灶大小<18.5%的患者和40%的心肌梗死灶大小≥18.5%的患者发生左心室负性重构。另一项研究分别探讨了急性心肌梗死灶大小和MO与左心室负性重构的关系,发现心肌梗死灶和MO均较大的患者出现了左心室负性重构,而心肌梗死灶较小且不伴MO的患者也可出现左心室负性重构[26]。由此可见,左心室负性重构的发生并非仅与心肌梗死灶大小有关,其过程可能非常复杂,受诸多因素的影响。

2.4 心肌残余铁离子与左心室负性重构

STEMI患者PCI术后IMH导致恢复期心肌内出现残余铁离子,这可能导致了梗死区炎症持续存在,从而对左心室负性重构产生影响。Bulluck等[8]发现STEMI患者存在IMH、心肌残余铁离子及梗死周围组织内T2值持续升高,进一步说明了心肌炎症的持续存在。Carberry等[27]通过对203例STEMI患者资料的研究证实,T2* mapping检出36%的STEMI患者存在IMH,并在PCI术后6个月时发现59%的患者存在心肌残余铁离子,且与6个月时左心室负性重构有关,代表患者临床预后更差。

2.5 梗死对侧心肌与临床预后

对侧心肌通常指梗死区对侧180°的心肌节段。STEMI患者PCI术后对侧心肌的细胞外基质变化与左心室负性重构是否有关是目前研究的热点[9, 28-30]。Bulluck等[9]研究了40例STEMI患者的ECV图像,发现急性期对侧心肌ECV分数升高,并且PCI术后5个月内发生左心室负性重构的STEMI患者的ECV分数持续升高,表明STEMI患者PCI术后对侧心肌存在细胞外基质的代偿性变化。急性期ECV分数升高是因为血管内间隙代偿性增大所致,随访中ECV分数升高则可能表明弥漫性间质纤维化在一定程度上参与了左心室负性重构过程。Garg等[30]发现对侧心肌节段ECV分数的升高还可能与受损心室壁增厚、左心室舒张末期容积变化等有关,但ECV分数能否独立预测负性事件的发生有待进一步探讨。

应用T1 mapping的研究得到了类似的结果。Carrick等[29]发现STEMI患者对侧心肌的平扫T1值较高,其与左心室舒张末期容积变化有关,且与主要心血管不良事件(major adverse cardiovascular event,MACE)独立相关。Reinstadler等[28]对STEMI患者随访6个月也发现对侧心肌的平扫T1值升高与MACE独立相关。

由此可见,ECV分数和T1 mapping序列T1值可能会成为临床判断STEMI患者预后及危险度分层的重要指标,但需要多中心研究进一步证实。

2.6 急性期心肌梗死灶大小、MO、IMH与临床预后

研究发现,STEMI后的致死率和致残率与急性期心肌梗死灶大小密切相关。STEMI患者心肌梗死灶每增大5%,PCI术后1年内因心力衰竭住院或死亡的相对风险比增加20%。心肌梗死灶大小≤8%的患者负性事件发生率为1.2%,心肌梗死灶大小>8%且≤17.9%的患者负性事件发生率增高至2.5%,心肌梗死灶大小>17.9%且≤29.8%的患者负性事件发生率为5.6%,心肌梗死灶大小>29.8%的患者负性事件发生率为8.8%[31]。该研究进一步证明了急性期心肌梗死灶大小的预后预测价值。

MO和IMH均与较大的心肌梗死灶、左心室负性重构、较差的临床预后有关[24, 32]。van Kranenburg等[32]通过对1 000余例STEMI患者资料进行meta分析发现,心肌梗死灶大小与MACE并非独立相关,而MO是MACE的独立预测因素。近年来,Symons等[33]研究证实,MO对STEMI患者死亡率及因心力衰竭住院STEMI患者预后的预测价值高于心肌梗死灶大小。MO>0.385 g可作为预测未来发生MACE的一个因素[34]。IMH与左心室负性重构及更差的临床预后有关[24],且其与负性临床预后的相关性较MO更密切[7],可作为STEMI患者重要的预后和疗效评价指标。

由此可见,有较大心肌梗死灶的STEMI患者预后较差,且更可能出现MO和IMH;出现MO的STEMI患者比没有MO患者的预后差,同时伴有MO和IMH的患者预后更差。

3 小结和展望

CMR检查提高了临床对STEMI患者梗死心肌、可挽救心肌、对侧心肌的病理生理学变化的认识,有助于进一步了解心肌梗死灶的大小及MO、IMH对患者预后的预测价值。CMR技术的进步有效缩短了扫描时间,甚至避免了造影剂的使用,使适用人群进一步扩大。未来CMR在STEMI灌注后应用中的逐步规范化和标准化也将促进临床对STEMI病理生理学改变相关机制的认识,有望成为STEMI患者危险度分层、指导治疗、评价疗效、改善预后的重要工具。

参考文献
[1]
NABEL E G, BRAUNWALD E. A tale of coronary artery disease and myocardial infarction[J]. N Engl J Med, 2012, 366: 54-63. DOI:10.1056/NEJMra1112570
[2]
TORABI A, RIGBY A S, CLELAND J G. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction[J]. J Am Coll Cardiol, 2009, 55: 79-81. DOI:10.1016/j.jacc.2009.05.080
[3]
SAAD M, STIERMAIER T, FUERNAU G, PÖSS J, DE WAHA-THIELE S, DESCH S, et al. Impact of direct stenting on myocardial injury assessed by cardiac magnetic resonance imaging and prognosis in ST-elevation myocardial infarction[J]. Int J Cardiol, 2019, 283: 88-92. DOI:10.1016/j.ijcard.2018.11.141
[4]
NEUMANN F J, SOUSA-UVA M, AHLSSON A, ALFONSO F, BANNING A P, BENEDETTO U, et al. 2018 ESC/EACTS guidelines on myocardial revascularization[J]. EuroIntervention, 2019, 14: 1435-1534. DOI:10.4244/EIJY19M01_01
[5]
MESSROGHLI D R, MOON J C, FERREIRA V M, GROSSE-WORTMANN L, HE T, KELLMAN P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J/OL]. J Cardiovasc Magn Reson, 2017, 19: 75. doi: 10.1186/s12968-017-0389-8.
[6]
CARRICK D, HAIG C, AHMED N, RAUHALAMMI S, CLERFOND G, CARBERRY J, et al. Temporal evolution of myocardial hemorrhage and edema in patients after acute ST-segment elevation myocardial infarction: pathophysiological insights and clinical implications[J/OL]. J Am Heart Assoc, 2016, 5: e002834. doi: 10.1161/JAHA.115.002834.
[7]
CARRICK D, HAIG C, AHMED N, MCENTEGART M, PETRIE M C, ETEIBA H, et al. Myocardial hemorrhage after acute reperfused ST-segment-elevation myocardial infarction: relation to microvascular obstruction and prognostic significance[J/OL]. Circ Cardiovasc Imaging, 2016, 9: e004148. doi: 10.1161/CIRCIMAGING.115.004148.
[8]
BULLUCK H, ROSMINI S, ABDEL-GADIR A, WHITE S K, BHUVA A N, TREIBEL T A, et al. Residual myocardial iron following intramyocardial hemorrhage during the convalescent phase of reperfused ST-segment-elevation myocardial infarction and adverse left ventricular remodeling[J/OL]. Circ Cardiovasc Imaging, 2016, 9: e004940. DOI: 10.1161/CIRCIMAGING.116.004940.
[9]
BULLUCK H, ROSMINI S, ABDEL-GADIR A, WHITE S K, BHUVA A N, TREIBEL T A, et al. Automated extracellular volume fraction mapping provides insights into the pathophysiology of left ventricular remodeling post-reperfused ST-elevation myocardial infarction[J/OL]. J Am Heart Assoc, 2016, 5: e003555. doi: 10.1161/JAHA.116.003555.
[10]
KRUG A, DU MESNIL DE ROCHEMONT, KORB G. Blood supply of the myocardium after temporary coronary occlusion[J]. Circ Res, 1966, 19: 57-62. DOI:10.1161/01.RES.19.1.57
[11]
BULLUCK H, ROSMINI S, ABDEL-GADIR A, BHUVA A N, TREIBEL T A, FONTANA M, et al. Diagnostic performance of T1 and T2 mapping to detect intramyocardial hemorrhage in reperfused ST-segment elevation myocardial infarction (STEMI) patients[J]. J Magn Reson Imaging, 2017, 46: 877-886. DOI:10.1002/jmri.v46.3
[12]
KALI A, TANG R L, KUMAR A, MIN J K, DHARMAKUMAR R. Detection of acute reperfusion myocardial hemorrhage with cardiac MR imaging:T2 versus T2*[J]. Radiology, 2013, 269: 387-395. DOI:10.1148/radiol.13122397
[13]
BERRY C, KELLMAN P, MANCINI C, CHEN M Y, BANDETTINI W P, LOWREY T, et al. Magnetic resonance imaging delineates the ischemic area at risk and myocardial salvage in patients with acute myocardial infarction[J]. Circ Cardiovasc Imaging, 2010, 3: 527-535. DOI:10.1161/CIRCIMAGING.109.900761
[14]
VERHAERT D, THAVENDIRANATHAN P, GIRI S, MIHAI G, RAJAGOPALAN S, SIMONETTI O P, et al. Direct T2 quantification of myocardial edema in acute ischemic injury[J]. JACC Cardiovasc Imaging, 2011, 4: 269-278. DOI:10.1016/j.jcmg.2010.09.023
[15]
BULLUCK H, WHITE S K, ROSMINI S, BHUVA A, TREIBEL T A, FONTANA M, et al. T1 mapping and T2 mapping at 3T for quantifying the area-at-risk in reperfused STEMI patients[J/OL]. J Cardiovasc Magn Reson, 2015, 17: 73. doi: 10.1186/s12968-015-0173-6.
[16]
HAMMER-HANSEN S, LEUNG S W, HSU L Y, WILSON J R, TAYLOR J, GREVE A M, et al. Early gadolinium enhancement for determination of area at risk:a preclinical validation study[J]. JACC Cardiovasc Imaging, 2017, 10: 130-139. DOI:10.1016/j.jcmg.2016.04.009
[17]
ENGBLOM H, HEIBERG E, ERLINGE D, JENSEN S E, NORDREHAUG J E, DUBOIS-RANDÉ J L, et al. Sample size in clinical cardioprotection trials using myocardial salvage index, infarct size, or biochemical markers as endpoint[J/OL]. J Am Heart Assoc, 2016, 5: e002708. doi: 10.1161/JAHA.115.002708.
[18]
BULLUCK H, HAMMOND-HALEY M, FONTANA M, KNIGHT D S, SIRKER A, HERREY A S, et al. Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping[J/OL]. J Cardiovasc Magn Reson, 2017, 19: 57. doi: 10.1186/s12968-017-0370-6.
[19]
LIU D, BORLOTTI A, VILIANI D, JEROSCH-HEROLD M, ALKHALIL M, DE MARIA G L, et al. CMR native T1 mapping allows differentiation of reversible versus irreversible myocardial damage in ST-segment-elevation myocardial infarction: an OxAMI study (Oxford Acute Myocardial Infarction)[J/OL]. Circ Cardiovasc Imaging, 2017, 10: e005986. doi: 10.1161/CIRCIMAGING.116.005986.
[20]
ALKHALIL M, BORLOTTI A, DE MARIA G L, GAUGHRAN L, LANGRISH J, LUCKING A, et al. Dynamic changes in injured myocardium, very early after acute myocardial infarction, quantified using T1 mapping cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2018, 20: 82. doi: 10.1186/s12968-018-0506-3.
[21]
DASTIDAR A G, HARRIES I, PONTECORBOLI G, BRUNO V D, DE GARATE E, MORET C, et al. Native T1 mapping to detect extent of acute and chronic myocardial infarction: comparison with late gadolinium enhancement technique[J/OL]. Int J Cardiovasc Imaging, 2018. doi: 10.1007/s10554-018-1467-1.
[22]
GARG P, BROADBENT D A, SWOBODA P P, FOLEY J R J, FENT G J, MUSA T A, et al. Acute infarct extracellular volume mapping to quantify myocardial area at risk and chronic infarct size on cardiovascular magnetic resonance imaging[J/OL]. Circ Cardiovasc Imaging, 2017, 10: e006182. doi: 10.1161/CIRCIMAGING.117.006182.
[23]
ØRN S, MANHENKE C, GREVE O J, LARSEN A I, BONARJEE V V, EDVARDSEN T, 等. Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention[J]. Eur Heart J, 2009, 30: 1978-1985.
[24]
HAMIRANI Y S, WONG A, KRAMER C M, SALERNO M. Effect of microvascular obstruction and intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial infarction:a systematic review and meta-analysis[J]. JACC Cardiovasc Imaging, 2014, 7: 940-952. DOI:10.1016/j.jcmg.2014.06.012
[25]
WESTMAN P C, LIPINSKI M J, LUGER D, WAKSMAN R, BONOW R O, WU E, et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction[J]. J Am Coll Cardiol, 2016, 67: 2050-2060.
[26]
BULLUCK H, GO Y Y, CRIMI G, LUDMAN A J, ROSMINI S, ABDEL-GADIR A, et al. Defining left ventricular remodeling following acute ST-segment elevation myocardial infarction using cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2017, 19: 26. doi: 10.1186/s12968-017-0343-9.
[27]
CARBERRY J, CARRICK D, HAIG C, AHMED N, MORDI I, MCENTEGART M, et al. Persistent iron within the infarct core after ST-segment elevation myocardial infarction:implications for left ventricular remodeling and health outcomes[J]. JACC Cardiovasc Imaging, 2018, 11: 1248-1256. DOI:10.1016/j.jcmg.2017.08.027
[28]
REINSTADLER S J, STIERMAIER T, LIEBETRAU J, FUERNAU G, EITEL C, DE WAHA S, et al. Prognostic significance of remote myocardium alterations assessed by quantitative noncontrast T1 mapping in ST-segment elevation myocardial infarction[J]. JACC Cardiovasc Imaging, 2018, 11: 411-419. DOI:10.1016/j.jcmg.2017.03.015
[29]
CARRICK D, HAIG C, RAUHALAMMI S, AHMED N, MORDI I, MCENTEGART M, et al. Pathophysiology of LV remodeling in survivors of STEMI:inflammation, remote myocardium, and prognosis[J]. JACC Cardiovasc Imaging, 2015, 8: 779-789. DOI:10.1016/j.jcmg.2015.03.007
[30]
GARG P, BROADBENT D A, SWOBODA P P, FOLEY J R J, FENT G J, MUSA T A, et al. Extracellular expansion in the normal, non-infarcted myocardium is associated with worsening of regional myocardial function after acute myocardial infarction[J/OL]. J Cardiovasc Magn Reson, 2017, 19: 73. doi: 10.1186/s12968-017-0384-0.
[31]
STONE G W, SELKER H P, THIELE H, PATEL M R, UDELSON J E, OHMAN E M, et al. Relationship between infarct size and outcomes following primary PCI:patient-level analysis from 10 randomized trials[J]. J Am Coll Cardiol, 2016, 67: 1674-1683.
[32]
VAN KRANENBURG M, MAGRO M, THIELE H, DE WAHA S, EITEL I, COCHET A, et al. Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients[J]. JACC Cardiovasc Imaging, 2014, 7: 930-939.
[33]
SYMONS R, PONTONE G, SCHWITTER J, FRANCONE M, IGLESIAS J F, BARISON A, et al. Long-term incremental prognostic value of cardiovascular magnetic resonance after ST-segment elevation myocardial infarction:a study of the collaborative registry on CMR in STEMI[J]. JACC Cardiovasc Imaging, 2018, 11: 813-825. DOI:10.1016/j.jcmg.2017.05.023
[34]
GALEA N, DACQUINO G M, AMMENDOLA R M, COCO S, AGATI L, DE LUCA L, et al. Microvascular obstruction extent predicts major adverse cardiovascular events in patients with acute myocardial infarction and preserved ejection fraction[J/OL]. Eur Radiol, 2018. doi: 10.1007/s00330-018-5895-z.