引用本文

赵潇溟, 黄爱杰, 胡晓霞, 唐古生, 章卫平, 杨建民, 王健民. 恶性血液病患者异基因造血干细胞移植后骨髓T淋巴细胞亚群重建的动态观察[J]. 第二军医大学学报, 2019, 40(12): 1285-1291
ZHAO Xiao-ming, HUANG Ai-jie, HU Xiao-xia, TANG Gu-sheng, ZHANG Wei-ping, YANG Jian-min, WANG Jian-min. Re-constitution of T lymphocyte subsets in bone marrow of patients with hematological malignancies after allogenic hematopoietic stem cell transplantation[J]. Academic Journal of Second Military Medical University, 2019, 40(12): 1285-1291 (in Chinese with English abstract)
恶性血液病患者异基因造血干细胞移植后骨髓T淋巴细胞亚群重建的动态观察
赵潇溟

, 黄爱杰, 胡晓霞, 唐古生, 章卫平, 杨建民, 王健民

海军军医大学(第二军医大学)长海医院血液科, 上海 200433
收稿日期: 2019-09-07 接受日期: 2019-11-01
基金项目: 国家自然科学基金(81530047,81870143),上海市卫生系统优秀人才培养计划(2017BR012).
摘要: 目的 研究恶性血液病患者经异基因造血干细胞移植(allo-HSCT)后骨髓免疫重建中T淋巴细胞的重建规律及其与外周血中T淋巴细胞重建的差异。方法 本研究采用前瞻性研究设计。收集2015年9月至2017年1月在我院血液科行allo-HSCT的41例恶性血液病患者的骨髓及外周血标本,收集同期7名健康供者的骨髓及外周血标本作为对照样本。用流式细胞术分析移植前和移植后15、30、60、90、180 d时的T淋巴细胞亚群分布,包括CD4+T淋巴细胞、CD8+ T淋巴细胞、辅助性T细胞(Th)1、Th2,并用Luminex技术检测Th1相关细胞因子白细胞介素2受体(IL-2R)、白细胞介素18(IL-18)水平。结果 恶性血液病患者在移植后15 d和30 d时骨髓中CD4+T淋巴细胞比例均低于对照组(P均 < 0.05),至移植后180 d仍未见回升;CD8+ T淋巴细胞比例在移植后早期(15、30 d)低于对照组(P均 < 0.01),60 d时恢复至正常水平;骨髓中CD4+和CD8+ T淋巴细胞比例整体水平均低于外周血中水平(P=0.001、0.002)。恶性血液病患者在移植后15、30、60、90、180 d时骨髓中Th1比例均高于对照组(P均 < 0.05),且整体水平高于外周血中水平(P=0.006);骨髓中Th2比例在移植后90 d内均无明显变化,在180 d时高于对照组(P=0.034),但整体水平与外周血中水平无明显差异(P>0.05)。骨髓中CD4+/ CD8+ T淋巴细胞比值在移植后逐渐下降,至移植后180 d时低于对照组(P=0.040);而骨髓中Th1/Th2比值在移植后90 d内各时间节点(15、30、60、90 d)均高于对照组(P均 < 0.01),180 d时与对照组差异无统计学意义(P>0.05)。恶性血液病患者骨髓和外周血中IL-2R水平在移植后15、30、60、90 d均高于对照组(P均 < 0.05);IL-18水平在移植后15、30、60 d高于对照组(P均 < 0.05),但移植后90 d时仅外周血中水平与对照组差异有统计学意义(P=0.021);骨髓与外周血中IL-2R和IL-18整体水平均无明显差异(P均>0.05)。结论 恶性血液病患者allo-HSCT后,骨髓中各T淋巴细胞亚群的重建规律不同,且与外周血中有所差异。
关键词:
异基因造血干细胞移植 骨髓 T淋巴细胞亚群 免疫重建 外周血
Re-constitution of T lymphocyte subsets in bone marrow of patients with hematological malignancies after allogenic hematopoietic stem cell transplantation
ZHAO Xiao-ming

, HUANG Ai-jie, HU Xiao-xia, TANG Gu-sheng, ZHANG Wei-ping, YANG Jian-min, WANG Jian-min

Department of Hematology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai 200433, China
Supported by National Natural Science Foundation of China (81530047, 81870143) and Outstanding Talent Training Plan of Health System of Shanghai (2017BR012).
Abstract: Objective To explore the re-constitution rule of T lymphocyte subsets in bone marrow of patients with hematological malignancies after allogenic hematopoietic stem cell transplantation (allo-HSCT), and its differences with those in the peripheral blood. Methods This study was a prospective study. We collected the bone marrow and peripheral blood samples from 41 patients with hematological malignancies receiving allo-HSCT treatment in Department of Hematology of our hospital from Sep. 2015 to Jan. 2017. During the same period, bone marrow and peripheral blood samples of 7 healthy donors were collected as control samples. Flow cytometry was used to evaluate the distribution of T lymphocyte subsets, including CD4+ T cells, CD8+ T cells, T-helper cell (Th)1 and Th2 before transplantation and 15, 30, 60, 90 and 180 d after transplantation. Luminex technique was used to evaluate Th1-related cytokines (interleukin 2 receptor[IL-2R] and interleukin 18[IL-18]). Results The proportions of CD4+ T cells in bone marrow of the patients with hematological malignancies were significantly lower versus the healthy controls 15 and 30 d after transplantation (both P < 0.05), and no recovery was found 180 d after transplantation. The proportions of CD8+ T cells in bone marrow of the patients with hematological malignancies were significantly lower versus the healthy controls 15 and 30 d after transplantation (both P < 0.01), and it recovered to normal level 60 d after transplantation. The total proportions of CD4+ and CD8+ T lymphocytes in bone marrow were both significantly lower than those in the peripheral blood of the patients with hematological malignancies (P=0.001, 0.002). The proportions of Th1 in bone marrow of the patients with hematological malignancies were significantly higher than those of the healthy controls 15, 30, 60, 90 and 180 d after transplantation (all P < 0.05), and the total level was significantly higher than that in peripheral blood (P=0.006). The proportions of Th2 in bone marrow did not change significantly within 90 d after transplantation, but it was significantly higher 180 d after transplantation than that of the healthy controls (P=0.034), and the total level was similar to the total level of peripheral blood (P>0.05). The ratio of CD4+/CD8+ T lymphocytes in bone marrow was gradually decreased after transplantation, and significantly lower versus the healthy controls 180 d after transplantation (P=0.040). The ratios of Th1/Th2 in bone marrow were significantly higher than those of the healthy controls 15, 30, 60 and 90 d after transplantation (all P < 0.01), while it was similar to the healthy control level 180 d after transplantation (P>0.05). The levels of IL-2R in bone marrow and peripheral blood of the patients with hematological malignancies were significantly higher than those of healthy controls 15, 30, 60 and 90 d after allo-HSCT (all P < 0.05). The levels of IL-18 were significantly higher than those of healthy controls 15, 30 and 60 d after allo-HSCT (all P < 0.05), and that in peripheral blood 90 d after transplantation was also significantly different from that of healthy controls (P=0.021). There were no significant differences in IL-2R or IL-18 between bone marrow and peripheral blood (both P>0.05). Conclusion After allo-HSCT, the re-constitution rules of different T lymphocyte subsets in bone marrow of patients with hematological malignancies are different, and are different from those in peripheral blood.
Key words:
allogenetic hematopoietic stem cell transplantation bone marrow T lymphocyte subsets immune re-constitution peripheral blood
异基因造血干细胞移植(allogenetic hematopoietic stem cell transplantation,allo-HSCT)是治疗多种血液病的重要方法,allo-HSCT的成功不仅在于造血功能的重建,更包括免疫功能的重建。既往对allo-HSCT后免疫功能重建的研究多以外周血为观察对象[1-2]。骨髓作为造血器官和一级、二级免疫器官[3-4],其中T淋巴细胞、B淋巴细胞、自然杀伤细胞、树突状细胞等免疫细胞与其分泌的细胞因子及介导的信号通路共同组成免疫微环境(immune niche),免疫微环境的细胞组分等与外周血相差较大。有文献报道了恶性血液病患者接受了allo-HSCT治疗后不同时间点骨髓中部分免疫细胞的变化[5],但鲜见对骨髓中T淋巴细胞的重建规律及其与外周血免疫重建异同的研究。本研究动态观察了allo-HSCT患者自移植前至移植后180 d骨髓CD4+ T淋巴细胞、CD8+ T淋巴细胞、辅助性T细胞(T-helper cell,Th)1、Th2及Th1相关的细胞因子——白细胞介素2受体(interleukin 2 receptor,IL-2R)、白细胞介素(interleukin,IL)-18的动态变化情况,并与外周血的数据进行比较,以更深入地了解allo-HSCT后骨髓T淋巴细胞的重建情况。
1 资料和方法
1.1 研究对象
纳入2015年9月至2017年1月在我院血液内科行allo-HSCT后无移植物抗宿主病(graft-versus-host disease,GVHD)、无严重感染、无复发且造血功能恢复良好的恶性血液病患者41例。患者年龄为11~56岁,中位年龄为36岁;男20例(49%)、女21例(51%);急性髓细胞白血病24例(59%)、急性淋巴细胞白血病14例(34%)、骨髓增生异常综合征2例(5%)、慢性粒细胞白血病1例(2%);人类白细胞抗原(human leukocyte antigen,HLA)配型全相合29例(71%)、非全相合12例(29%);亲缘供体移植27例(66%),无关供体移植14例(34%);输注单个核细胞数为(5.14~14.53)×108/kg,中位数为7.12×108/kg。选择同期7名健康异基因造血干细胞供者为对照组。对照组年龄为23~54岁,中位年龄为37岁;男5例、女2例。本研究通过我院医学伦理委员会审批,所有研究对象或家属均签署知情同意书。
1.2 预处理方案
20例(49%)接受同胞全相合供者allo-HSCT的患者予白消安+环磷酰胺(bulsufan,cyclophosphamide;BuCy)、氟达拉滨+白消安+阿糖胞苷(fludarabine,bulsufan,cytarabine;FBA)或改良BuCy方案(在BuCy方案中加阿糖胞苷)预处理,21例(51%)接受其他供者allo-HSCT的患者在预处理中加用抗胸腺细胞蛋白(anti-thymocyte globulin,ATG) [6]。
1.3 GVHD预防方案
采用环孢素+甲氨蝶呤+霉酚酸酯方案预防GVHD。环孢素3 mg/kg于预处理开始每天静滴,胃肠道功能恢复正常后改为每12 h口服1次,并维持血药浓度200~300 ng/mL;移植后60~90 d开始减量,如无GVHD,至移植后4~6个月停用。甲氨蝶呤于移植后1、3、6 d以10 mg/m2静滴。霉酚酸酯0.72 g每天2次口服,移植后1~30 d用药。
1.4 动员方案
所有供者均予皮下注射重组人粒细胞集落刺激因子(granulocyte-colony stimulating factor,G-CSF)5~10 μg/(kg·d)4~5 d动员。
1.5 标本采集
接受allo-HSCT的患者在移植前和移植后15、30、60、90、180 d及根据病情变化分别留取骨髓、外周血标本于抗凝管、促凝管。对照组健康供者均在动员前留取骨髓、外周血标本于抗凝管、促凝管。采用梯度离心法获得单个核细胞。
1.6 流式细胞术检测T淋巴细胞亚群分布
取单个核细胞1×106,根据细胞内、细胞核内破膜/固定试剂盒说明书分别进行细胞膜表面抗体(CD3、CD4、CD8、CD25)、细胞内抗体[γ干扰素(interferon-γ,IFN-γ)、IL-4]标记;所用单克隆抗体及试剂盒均购自美国BD Biosciences公司。采用FACSAria Ⅱ u 8色流式细胞仪(美国BD Biosciences公司)检测CD4+ T淋巴细胞(CD3+CD4+)、CD8+ T淋巴细胞(CD3+CD8+)、Th1(CD3+CD4+ IFN-γ+)、Th2(CD3+CD4+ IL-4+)的分布。采用FlowJo 7.6软件计算CD4+ T淋巴细胞比例(CD4+ T淋巴细胞占淋巴细胞的比例)、CD8+ T淋巴细胞比例(CD8+ T淋巴细胞占淋巴细胞的比例)、Th1比例(Th1占CD4+ T淋巴细胞的比例)、Th2比例(Th2占CD4+ T淋巴细胞的比例)、CD4+/CD8+ T淋巴细胞比值、Th1/Th2比值。
1.7 细胞因子芯片检测IL-2R、IL-18水平
采用Luminex技术,由上海贝晶生物技术公司代为完成。将促凝管中骨髓、外周血离心(室温1 509.12×g离心5 min),取5 μL上清液进行细胞因子芯片检测。
1.8 统计学处理
采用FlowJo 7.6软件绘图,SPSS 20.0软件进行统计学分析。计量资料以x±sx表示,采用F检验对数据进行方差齐性检验,若方差齐,2组间比较采用独立样本t检验,若方差不齐则采用t′检验。组间整体性比较采用重复测量数据的方差分析,数据进行Mauchly“球对称”检验,若拒绝“球对称”假设则用“球对称”系数对F值的自由度进行校正。检验水准(α)为0.05。
2 结果
2.1 allo-HSCT后骨髓、外周血中T淋巴细胞变化
2.1.1 移植后CD4+ T淋巴细胞比例持续降低
见表 1,移植后15 d和30 d时,恶性血液病患者骨髓中CD4+ T淋巴细胞比例均低于对照组(t = 2.357、2.357,P = 0.024、0.024),观察至移植后180 d时仍无回升趋势,但在30~180 d与对照组相比差异均无统计学意义(P均>0.05);移植后,恶性血液病患者外周血中CD4+ T淋巴细胞比例变化规律与骨髓中一致,但在移植后30~180 d与对照组相比差异仍有统计学意义(P均<0.05)。组间数据重复测量方差分析显示恶性血液病患者骨髓中CD4+ T淋巴细胞比例整体水平低于外周血中水平(F = 7.269,P = 0.001)。
表 1
(Tab 1)
表 1 恶性血液病患者allo-HSCT后T淋巴细胞亚群分布
Tab 1 Distribution of T lymphocyte subsets in patients with hematological malignancies after allo-HSCT
x±sx |
Index |
Group |
Before allo-HSCT |
After allo-HSCT |
15 d |
30 d |
60 d |
90 d |
180 d |
CD4+ (%) |
Control BM (n = 7) |
15.4±3.6 |
|
|
|
|
|
| Hematopathy BM (n = 41) |
10.1±1.6 |
6.5±1.6 |
6.7±1.5 |
8.6±1.0 |
8.1±1.3 |
7.0±1.4 |
| Control PB (n = 7) |
27.2±4.8 |
|
|
|
|
|
| Hematopathy PB (n = 41) |
19.1±1.7 |
12.5±2.7 |
13.5±2.3 |
13.6±1.5 |
13.3±1.9 |
11.8±1.7 |
| t/t′ valuea |
1.359 |
2.357 |
2.357 |
1.814 |
1.928 |
2.186 |
| P valuea |
0.209 |
0.024 |
0.024 |
0.112 |
0.092 |
0.060 |
| t/t′ valueb |
1.608 |
2.399 |
2.628 |
2.716 |
3.178 |
3.036 |
| P valueb |
0.149 |
0.017 |
0.013 |
0.029 |
0.004 |
0.017 |
CD8+ (%) |
Control BM (n = 7) |
19.9±4.1 |
|
|
|
|
|
| Hematopathy BM (n = 41) |
19.2±2.8 |
7.8±1.2 |
9.3±1.2 |
28.0±2.6 |
23.7±2.2 |
28.2±3.4 |
| Control PB (n = 7) |
23.7±4.1 |
|
|
|
|
|
| Hematopathy PB (n = 41) |
28.3±3.9 |
13.1±2.0 |
19.1±2.5 |
42.7±3.1 |
36.4±3.0 |
39.7±4.3 |
| t/t′ valuea |
0.143 |
3.938 |
3.433 |
1.814 |
1.928 |
2.186 |
| P valuea |
0.888 |
<0.01 |
0.001 |
0.149 |
0.414 |
0.161 |
| t/t′ valueb |
- 0.767 |
2.399 |
2.628 |
2.716 |
3.178 |
3.036 |
| P valueb |
0.454 |
0.022 |
0.407 |
0.006 |
0.038 |
0.031 |
CD4+/CD8+ |
Control BM (n = 7) |
0.929±0.241 |
|
|
|
|
|
| Hematopathy BM (n = 41) |
0.601±0.077 |
0.796±0.128 |
0.728±0.107 |
0.407±0.083 |
0.392±0.076 |
0.299±0.070 |
| Control PB (n = 7) |
1.518±0.456 |
|
|
|
|
|
| Hematopathy PB (n = 41) |
1.014±0.219 |
0.910±0.165 |
0.828±0.124 |
0.441±0.083 |
0.397±0.077 |
0.342±0.067 |
| t/t′ valuea |
1.294 |
0.443 |
0.877 |
1.340 |
2.126 |
2.513 |
| P valuea |
0.235 |
0.660 |
0.424 |
0.077 |
0.070 |
0.040 |
| t/t′ valueb |
0.851 |
1.164 |
1.828 |
2.680 |
2.821 |
3.005 |
| P valueb |
0.405 |
0.252 |
0.091 |
0.032 |
0.027 |
0.022 |
Th1 (%) |
Control BM (n = 7) |
2.7±0.2 |
|
|
|
|
|
| Hematopathy BM (n = 41) |
4.2±0.5 |
9.0±0.6 |
7.7±0.5 |
5.8±0.5 |
6.3±0.9 |
4.1±0.4 |
| Control PB (n = 7) |
2.1±0.2 |
|
|
|
|
|
| Hematopathy PB (n = 41) |
3.0±0.3 |
7.2±0.5 |
6.7±0.4 |
4.9±0.4 |
4.2±0.3 |
3.5±0.3 |
| t/t′ valuea |
- 1.925 |
- 9.244 |
- 10.000 |
- 6.102 |
- 2.388 |
- 2.542 |
| P valuea |
0.069 |
<0.01 |
<0.01 |
<0.01 |
0.024 |
0.019 |
| t/t′ valueb |
- 2.467 |
- 8.498 |
- 7.966 |
- 6.435 |
- 5.245 |
- 2.592 |
| P valueb |
0.048 |
<0.01 |
<0.01 |
0.001 |
<0.01 |
0.017 |
Th2 (%) |
Control BM (n = 7) |
2.9±0.2 |
|
|
|
|
|
| Hematopathy BM (n = 41) |
3.5±0.5 |
2.6±0.3 |
2.4±0.2 |
2.9±0.3 |
3.1±0.3 |
4.5±0.6 |
| Control PB (n = 7) |
2.3±0.3 |
|
|
|
|
|
| Hematopathy PB (n = 41) |
2.8±0.4 |
2.0±0.1 |
2.2±0.2 |
2.3±0.3 |
2.4±0.2 |
3.8±0.9 |
| t/t′ valuea |
- 0.866 |
0.443 |
1.154 |
0.100 |
- 0.378 |
- 2.301 |
| P valuea |
0.397 |
0.661 |
0.293 |
0.817 |
0.797 |
0.034 |
| t/t′ valueb |
- 0.792 |
0.984 |
0.258 |
0.025 |
- 0.081 |
- 1.124 |
| P valueb |
0.438 |
0.325 |
0.754 |
0.980 |
0.936 |
0.274 |
Th1/Th2 |
Control BM (n = 7) |
0.931±0.049 |
|
|
|
|
|
| Hematopathy BM (n= 41) |
1.257±0.104 |
3.928±0.299 |
3.622±0.267 |
2.478±0.185 |
2.215±0.225 |
1.350±0.241 |
| Control PB (n= 7) |
0.962±0.094 |
|
|
|
|
|
| Hematopathy PB (n = 41) |
1.216±0.135 |
3.816±0.267 |
3.167±0.239 |
2.491±0.209 |
1.960±0.153 |
1.343±0.173 |
| t/t′ valuea |
- 2.828 |
- 4.563 |
- 10.209 |
- 8.080 |
- 10.575 |
- 1.701 |
| P valuea |
0.011 |
<0.01 |
<0.01 |
<0.01 |
<0.01 |
0.109 |
| t/t′ valueb |
- 1.242 |
- 10.090 |
- 8.902 |
- 6.670 |
- 5.545 |
- 1.929 |
| P valueb |
0.229 |
<0.01 |
<0.01 |
<0.01 |
<0.01 |
0.068 |
a: Comparison of the indexes in BM between control group and hematopathy group; b: Comparison of the indexes in PB between control group and hematopathy group. allo-HSCT: Allogenetic hematopoietic stem cell transplantation; Th: T-helper cell; BM: Bone marrow; PB: Peripheral blood |
|
表 1 恶性血液病患者allo-HSCT后T淋巴细胞亚群分布
Tab 1 Distribution of T lymphocyte subsets in patients with hematological malignancies after allo-HSCT
|
2.1.2 移植后CD8+ T淋巴细胞比例迅速恢复
见表 1,恶性血液病患者骨髓中CD8+ T淋巴细胞比例在移植后早期即15、30 d时均低于对照组(t = 3.938、3.433,P<0.01、P = 0.001),其中移植后15 d时最低,然后逐渐上升;恶性血液病患者外周血中CD8+ T淋巴细胞比例变化趋势与骨髓中基本一致,但其回升略早于骨髓。组间数据重复测量方差分析显示移植后骨髓中CD8+ T淋巴细胞比例整体水平低于外周血中水平(F = 21.115,P = 0.002)。
2.1.3 移植后CD4+/CD8+ T淋巴细胞比值持续降低
恶性血液病患者骨髓中CD4+/CD8+ T淋巴细胞比值在移植后早期与对照组相比差异无统计学意义(P>0.05),但随着时间推移逐渐下降,至移植后180 d时低于对照组,差异有统计学意义(t′ = 2.513,P = 0.040);恶性血液病患者外周血中CD4+/CD8+ T淋巴细胞比值变化趋势与骨髓一致,至移植后60、90、180 d时低于对照组(P均<0.05)。组间数据重复测量方差分析显示,恶性血液病患者骨髓与外周血中CD4+/CD8+ T淋巴细胞比值的整体水平差异无统计学意义(P>0.05)。
2.1.4 移植后Th1比例升高
见表 1,恶性血液病患者骨髓中Th1比例在移植前与对照组相比差异无统计学意义(P>0.05),移植后升高,15 d时达最高水平,之后稳定下降,但至观察结束仍高于对照组,移植后15、30、60、90、180 d时与对照组相比差异均有统计学意义(t′ = - 9.244、- 10.000、- 6.102,t = - 2.388、- 2.542;P均<0.05);恶性血液病患者移植后外周血中Th1比例变化规律与骨髓基本一致。但恶性血液病患者外周血中Th1比例整体水平低于骨髓水平(F = 11.820,P = 0.006)。
2.1.5 移植后早期Th2比例与对照组相似
见表 1,恶性血液病患者骨髓和外周血中Th2比例在移植后90 d内均无明显变化,与对照组相比差异均无统计学意义(P均>0.05),仅骨髓中Th2比例在移植后180 d时高于对照组(t = - 2.301,P = 0.034)。经组间数据重复测量方差分析,恶性血液病患者骨髓与外周血中Th2比例整体水平差异无统计学意义(P>0.05)。
2.1.6 移植后Th1/Th2比值高于正常对照
见表 1,恶性血液病患者骨髓中Th1/Th2比值在移植后15 d升至最高水平,之后稳定下降,但在移植后90 d内各时间节点(15、30、60、90 d)均高于对照组(t = - 4.563,t′ = - 10.209、- 8.080、- 10.575;P均<0.01),移植后180 d时与对照组差异无统计学意义(P>0.05);外周血中Th1/Th2比值变化规律与骨髓中一致。经组间数据重复测量方差分析,恶性血液病患者骨髓与外周血中Th1/Th2比值整体水平差异无统计学意义(P>0.05)。
2.2 allo-HSCT后骨髓中Th1相关细胞因子变化
2.2.1 移植后IL-2R浓度持续升高
见表 2,恶性血液病患者骨髓中IL-2R浓度在移植后15 d时达到最高水平,之后有所下降但仍高于对照组,各时间节点(15、30、60、90 d)与对照组相比差异均有统计学意义(t′ = - 4.496、- 4.088、- 2.674、- 3.026,P = 0.003、0.001、0.021、0.009);外周血中IL-2R浓度变化规律与骨髓一致。但经组间数据重复测量方差分析,恶性血液病患者骨髓与外周血中IL-2R的整体水平差异无统计学意义(P>0.05)。
表 2
(Tab 2)
表 2 恶性血液病患者allo-HSCT后Th1相关细胞因子IL-2R、IL-18变化
Tab 2 Changes of Th1-related cytokines IL-2R and IL-18 in patients with hematological malignancies after allo-HSCT
ρB/(pg·mL-1), x±sx |
Index |
Group |
Before allo-HSCT |
After allo-HSCT |
15 d |
30 d |
60 d |
90 d |
IL-2R |
Control BM (n = 7) |
1 543.98±323.66 |
|
|
|
|
| Hematopathy BM (n = 41) |
3 795.92±945.65 |
16 107.89±3 682.90 |
5 107.09±809.21 |
4 644.14±1 113.34 |
5 933.54±1 397.18 |
| Control PB (n = 7) |
1 817.39±363.37 |
|
|
|
|
| Hematopathy PB (n = 41) |
3 495.97±571.40 |
12 040.65±2 106.59 |
5 880.93±928.85 |
4 786.19±947.96 |
5 015.66±1 151.64 |
| t/t′ valuea |
- 2.253 |
- 4.496 |
- 4.088 |
- 2.674 |
- 3.026 |
| P valuea |
0.058 |
0.003 |
0.001 |
0.021 |
0.009 |
| t/t′ valueb |
- 2.396 |
- 4.782 |
- 4.074 |
- 2.924 |
- 2.648 |
| P valueb |
0.032 |
<0.01 |
0.01 |
0.012 |
0.019 |
IL-18 |
Control BM (n = 7) |
20.75±5.80 |
|
|
|
|
| Hematopathy BM (n = 41) |
54.54±11.57 |
93.75±11.40 |
60.62±12.06 |
65.66±13.99 |
64.17±20.09 |
| Control PB (n = 7) |
19.82±4.50 |
|
|
|
|
| Hematopathy PB (n = 41) |
30.53±5.20 |
62.48±12.45 |
45.57±10.60 |
45.57±10.60 |
56.75±12.99 |
| t/t′ valuea |
- 2.473 |
- 5.273 |
- 2.980 |
- 2.965 |
- 2.077 |
| P valuea |
0.031 |
<0.01 |
0.009 |
0.012 |
0.057 |
| t/t′ valueb |
- 1.531 |
- 2.450 |
- 2.830 |
- 2.236 |
- 2.686 |
| P valueb |
0.154 |
0.027 |
0.013 |
0.045 |
0.021 |
a: Comparison of the indexes in BM between control group and hematopathy group; b: Comparison of the indexes in PB between control group and hematopathy group. allo-HSCT: Allogenetic hematopoietic stem cell transplantation; Th: T-helper cell; IL-2R: Interleukin 2 receptor; IL-18: Interleukin 18; BM: Bone marrow; PB: Peripheral blood |
|
表 2 恶性血液病患者allo-HSCT后Th1相关细胞因子IL-2R、IL-18变化
Tab 2 Changes of Th1-related cytokines IL-2R and IL-18 in patients with hematological malignancies after allo-HSCT
|
2.2.2 移植后IL-18浓度升高
见表 2,恶性血液病患者移植前骨髓中IL-18浓度高于对照组(t = - 2.473,P = 0.031),在移植后15 d时达到最高水平,之后虽有所下降,但在移植后15、30、60 d仍高于对照组(t′ = - 5.273、- 2.980、- 2.965,P均<0.05),移植后90 d与对照组差异无统计学意义(P>0.05);移植后外周血中IL-18浓度变化规律与骨髓中一致,但在移植后90 d与对照组相比差异仍有统计学意义(t = - 2.686,P = 0.021)。移植后恶性血液病患者IL-18浓度在外周血中与骨髓中的整体变化水平差异无统计学意义(P>0.05)。
3 讨论
既往对allo-HSCT后免疫重建的数据多来自外周血,考虑到骨髓免疫微环境在结构、细胞组分等方面与外周血差异较大,本研究探讨了恶性血液病患者allo-HSCT后骨髓免疫微环境中T淋巴细胞亚群(CD4+ T淋巴细胞、CD8+ T淋巴细胞、Th1、Th2)重建规律及其与外周血的差异。
目前认为allo-HSCT后T淋巴细胞重建主要依赖2条途径:(1)非胸腺依赖的外周淋巴细胞扩增,来自供者移植物中的T淋巴细胞,CD8+ T淋巴细胞主要依赖此途径重建;(2)胸腺依赖途径,来自供者造血细胞增殖、分化并经胸腺培育产生,CD4+ T淋巴细胞的重建主要依赖该途径[7]。既往研究发现allo-HSCT后胸腺输出功能在移植后1年内不能达移植前水平[8-10],因此外周血中CD4+ T淋巴细胞恢复缓慢,而CD8+ T淋巴细胞的恢复速度较快[11]。本研究中,除发现外周血和骨髓中CD4+ T淋巴细胞比例在allo-HSCT后早期下降,以及CD8+ T淋巴细胞比例在allo-HSCT后早期即恢复至对照组水平外,还发现骨髓中CD4+ T淋巴细胞、CD8+ T淋巴细胞整体水平均低于外周血,提示移植后早期的T淋巴细胞主要来源于供者移植物中T淋巴细胞在外周器官的扩增[12]。移植后CD4+/CD8+ T淋巴细胞比值也间接反映了移植后CD4+ T淋巴细胞和CD8+ T淋巴细胞的重建速度。既往研究认为allo-HSCT后1年内存在CD4+/CD8+ T淋巴细胞比值倒置[13-14],本研究结果与此一致。
CD4+ T淋巴细胞分化的Th根据分泌的细胞因子主要分为Th1、Th2、Th17等亚群。Th1可分泌IFN-γ、IL-18、IL-2、肿瘤坏死因子等细胞因子,引起炎症反应[15];Th2可分泌IL-4、IL-5、IL-10等细胞因子,有抗细胞内感染的作用[16]。既往研究发现移植后骨髓中Th1比例升高[14],但少有研究观察其动态变化。本研究连续性观察结果显示,恶性血液病患者allo-HSCT后骨髓和外周血中Th1比例均在移植后升高,之后虽有下降但至移植后180 d仍高于对照组,且骨髓中Th1比例整体高于外周血中水平。而研究认为allo-HSCT后外周血中Th2比例与健康对照组无显著差异[17],但也有研究认为骨髓中Th2比例在移植后90 d高于健康对照组[5]。本研究通过连续性观察发现,骨髓和外周血中Th2比例在移植前至移植后15、30、60、90 d均与对照组无显著差异,仅在180 d时高于对照组。Th的分化受多种细胞因子的调节,各亚群间有交叉影响,如IFN-γ既能促进T淋巴细胞向Th1分化,也能抑制Th2的扩增[18]。Guo等[17]通过动物实验研究发现,移植后若Th发生Th1极化则易发生GVHD;若发生Th2极化,则易出现疾病复发。Wang等[5]的临床研究发现,allo-HSCT后90 d时骨髓中Th1/Th2比值与对照组无显著差异。本研究通过连续性观察发现,恶性血液病患者骨髓和外周血中Th1/Th2比值在移植后15 d达最高水平,在180 d时降至对照组水平。
如前文所述,T淋巴细胞的分化、迁移受多种细胞因子影响。IL-2R是一种多聚体蛋白,可特异性结合Th1分泌的IL-2,并促进IL-2的生物学作用[19]。本研究结果显示,恶性血液病患者移植后骨髓和外周血中IL-2R浓度均较对照组升高,且与Th1比例变化规律一致。此外,IL-18可通过增强Th1单克隆和富集多克隆T淋巴细胞产生Th1类细胞因子,从而增强Th1毒性[20]。既往研究认为allo-HSCT后外周血中IL-18浓度升高,并与急性GVHD的发生和严重程度显著相关[21]。本研究首次通过动态观察发现恶性血液病患者在移植后早期骨髓和外周血中IL-18浓度均较对照组升高,并在移植后90 d恢复至正常水平,其变化趋势与移植后Th1比例变化趋势相似。
综上所述,本研究首次通过对恶性血液病患者allo-HSCT后骨髓和外周血中CD4+ T淋巴细胞、CD8+ T淋巴细胞、Th1、Th2比例及Th1相关细胞因子IL-2R、IL-18浓度进行了连续性检测,发现allo-HSCT后骨髓和外周血中T淋巴细胞重建规律存在差异,为进一步了解骨髓免疫微环境重建规律及其在骨髓移植患者转归中的作用提供了基础数据。下一步我们将进一步观察移植后CD4+/CD8+ T淋巴细胞比值、Th1/Th2比值、Th1相关细胞因子的变化与严重GVHD和疾病复发之间的关系。
参考文献
[1] |
DRYLEWICZ J, SCHELLENS I M, GAISER R, NANLOHY N M, QUAKKELAAR E D, OTTEN H, et al. Rapid reconstitution of CD4 T cells and NK cells protects against CMV-reactivation after allogeneic stem cell transplantation[J/OL]. J Transl Med, 2016, 14: 230. doi: 10.1186/s12967-016-0988-4.
|
[2] | |
[3] | |
[4] |
ZHAO E, XU H, WANG L, KRYCZEK I, WU K, HU Y, et al. Bone marrow and the control of immunity[J]. Cell Mol Immunol, 2012, 9: 11-19. DOI:10.1038/cmi.2011.47 |
[5] |
WANG Y T, KONG Y, SONG Y, HAN W, ZHANG Y Y, ZHANG X H, et al. Increased type 1 immune response in the bone marrow immune microenvironment of patients with poor graft function after allogeneic hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2016, 22: 1376-1382. DOI:10.1016/j.bbmt.2016.04.016 |
[6] |
ZHANG W P, WANG Z W, HU X X, CHEN J, YANG D, SONG X M, et al. Preconditioning with fludarabine, busulfan and cytarabine versus standard BuCy2 for patients with acute myeloid leukemia:a prospective, randomized phase Ⅱ study[J]. Bone Marrow Transplant, 2019, 54: 894-902. DOI:10.1038/s41409-018-0356-5 |
[7] |
PENG X G, DONG Y, ZHANG T T, WANG K, MA Y J. Immune reconstitution of CD4 + T cells after allogeneic hematopoietic stem cell transplantation and its correlation with invasive fungal infection in patients with hematological malignancies[J]. Asian Pac J Cancer Prev, 2015, 16: 3137-3140. DOI:10.7314/APJCP.2015.16.8.3137 |
[8] |
DOUEK D C, MCFARLAND R D, KEISER P H, GAGE E A, MASSEY J M, HAYNES B F, et al. Changes in thymic function with age and during the treatment of HIV infection[J]. Nature, 1998, 396: 690-695. DOI:10.1038/25374 |
[9] |
SAGLIO F, CENA S, BERGER M, QUARELLO P, BOCCASAVIA V, FERRANDO F, et al. Association between thymic function and allogeneic hematopoietic stem cell transplantation outcome:results of a pediatric study[J]. Biol Blood Marrow Transplant, 2015, 21: 1099-1105. DOI:10.1016/j.bbmt.2015.02.010 |
[10] |
TÖRLÉN J, GABALLA A, REMBERGER M, MÖRK L M, SUNDBERG B, MATTSSON J, et al. Effect of graft-versus-host disease prophylaxis regimens on T and B cell reconstitution after allogeneic hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2019, 25: 1260-1268. DOI:10.1016/j.bbmt.2019.01.029 |
[11] | |
[12] |
TOUBERT A, GLAUZY S, DOUAY C, CLAVE E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans:never say never again[J]. Tissue Antigens, 2012, 79: 83-89. DOI:10.1111/j.1399-0039.2011.01820.x |
[13] |
RETIÈRE C, WILLEM C, GUILLAUME T, VIÉ H, GAUTREAU-ROLLAND L, SCOTET E, et al. Impact on early outcomes and immune reconstitution of high-dose post-transplant cyclophosphamide vs anti-thymocyte globulin after reduced intensity conditioning peripheral blood stem cell allogeneic transplantation[J]. Oncotarget, 2018, 9: 11451-11464. |
[14] |
SONG Y, SHI M M, ZHANG Y Y, MO X D, WANG Y, ZHANG X H, et al. Abnormalities of the bone marrow immune microenvironment in patients with prolonged isolated thrombocytopenia after allogeneic hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2017, 23: 906-912. DOI:10.1016/j.bbmt.2017.02.021 |
[15] |
JOHNSON M O, WOLF M M, MADDEN M Z, ANDREJEVA G, SUGIURA A, CONTRERAS D C, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism[J/OL]. Cell, 2018, 175: 1780-1795.e19. doi: 10.1016/j.cell.2018.10.001.
|
[16] |
MELENHORST J J, TIAN X, XU D, SANDLER N G, SCHEINBERG P, BIANCOTTO A, et al. Cytopenia and leukocyte recovery shape cytokine fluctuations after myeloablative allogeneic hematopoietic stem cell transplantation[J]. Haematologica, 2012, 97: 867-873. DOI:10.3324/haematol.2011.053363 |
[17] |
GUO H, QIAO Z, ZHU L, WANG H, SU L, LU Y, et al. Th1/Th2 cytokine profiles and their relationship to clinical features in patients following nonmyeloablative allogeneic stem cell transplantation[J]. Am J Hematol, 2004, 75: 78-83. DOI:10.1002/ajh.10443 |
[18] |
SZABO S J, KIM S T, COSTA G L, ZHANG X, FATHMAN C G, GLIMCHER L H. A novel transcription factor, T-bet, directs Th1 lineage commitment[J]. Cell, 2000, 100: 655-669. DOI:10.1016/S0092-8674(00)80702-3 |
[19] |
BERGER M, SIGNORINO E, MURARO M, QUARELLO P, BIASIN E, NESI F, et al. Monitoring of TNFR1, IL-2Rα, HGF, CCL8, IL-8 and IL-12p70 following HSCT and their role as GVHD biomarkers in paediatric patients[J]. Bone Marrow Transplant, 2013, 48: 1230-1236. DOI:10.1038/bmt.2013.41 |
[20] | |
[21] |
JU X P, XU B, XIAO Z P, LI J Y, CHEN L, LU S Q, et al. Cytokine expression during acute graft-versus-host disease after allogeneic peripheral stem cell transplantation[J]. Bone Marrow Transplant, 2005, 35: 1179-1186. DOI:10.1038/sj.bmt.1704972 |