慢性下腰痛是全球面临的主要致残因素之一,其发病率呈增长趋势,尤其是在发达国家[1]。椎间盘退变被证明是慢性下腰痛的主要原因,其导致的慢性下腰痛在全世界范围内流行,造成了极大的社会和家庭经济负担[2-3]。椎间盘退变是指随着年龄的增长和各种危险因素暴露导致椎间盘发生的一系列退行性病变,其特点为椎间盘脱水、细胞外基质降解、蛋白多糖含量下降、胶原类型转变及纤维环外层破裂等[4-5]。椎间盘退变的研究均基于椎间盘解剖学结构的改变,正常的椎间盘是位于椎体之间的纤维软骨衬垫,其主要作用是传递和吸收脊柱的生物力学负荷,维持椎体的运动功能,即屈曲、伸展、旋转等[6-7]。一旦出现椎间盘退变,其结构和功能均不能维持,还会导致一系列问题,包括脊柱椎体的稳定性缺失、椎管狭窄、椎体变形等,这些都被证明是慢性下腰痛和运动功能缺失的最主要致病因素[6-7]。然而由于椎间盘退变的分子生物学机制还未完全阐明[1, 8],目前为止包括手术和保守治疗在内的治疗措施与方案都是针对个体的症状缓解和支持治疗,并非针对椎间盘退变的根治[2, 9]。
虽然椎间盘退变的确切机制和分子学改变还不十分清楚,但仍有很多椎间盘退变的形态学改变被记录,并进一步分析了其分子生物学机制。一些研究者提出的假说认为椎间盘退变起源于生物力学的损伤和撕裂[10-12],而另一些研究者似乎更加关注细胞的生理学平衡及稳态,其研究主要集中于椎间盘营养的缺失。这些假说虽然能在一定程度上解释和说明一些问题,但是也都有各自不能解释的内容和盲区,也不能支持更多的椎间盘退变机制的研究,因此目前多数人主张椎间盘退变是一种多因素导致的综合性疾病。由于进展性退行性变与促炎细胞因子水平升高、基质降解酶活性增加、神经元增敏及神经血管向椎间盘内生长有关,因此椎间盘退变被认为是一种慢性炎症状态[13-17],但是这种炎症反应更趋向于应对组织损伤的普通炎症反应,而非抗原特异性免疫反应。
已有研究显示,巨噬细胞是唯一能渗透进入封闭髓核的炎症细胞,且巨噬细胞的数量与椎间盘退变程度呈正相关[18],表明巨噬细胞在椎间盘退变中可能具有关键作用。而且越来越多的研究表明,作为炎症细胞的巨噬细胞可能直接发挥吞噬作用或通过神经-免疫机制协同调节椎间盘的代谢,而巨噬细胞功能失调可引起椎间盘内微环境稳态的破坏及炎性因子的聚集、趋化和扩散,进而导致椎间盘细胞外基质降解和椎间盘退变[19-22]。介导椎间盘退变的巨噬细胞被认为是椎间盘退变机制中的“最终执行者”。本文通过对近年来巨噬细胞表型转换参与椎间盘退变相关机制的总结和归纳,进一步了解椎间盘退变的分子机制,以期促进临床治疗模式的改革和进步。
1 巨噬细胞的表型分类巨噬细胞作为一种独特的细胞群体具有较大的可塑性和多功能性,在不同的体内外微环境影响下可表现出明显的功能差异和活性状态,因此理解巨噬细胞的分型及各分型的生理功能尤为关键。目前根据活化途径、功能状态、调节因子等不同,巨噬细胞主要分为M1型和M2型[23-24]。
M1型巨噬细胞是指单核细胞或组织驻留巨噬细胞在脂多糖(lipopolysaccharide,LPS)或γ干扰素等刺激下诱导分化而成的巨噬细胞,又称经典活化的巨噬细胞,其表面标志物是CD197(CCR7)等。典型的M1型巨噬细胞被认为倾向于Ⅰ型免疫反应中的效应细胞,可杀灭病原体微生物和吞噬损伤、老化的组织细胞及肿瘤细胞,分泌大量的炎性因子如白细胞介素(interleukin,IL)-12、肿瘤坏死因子α(tumor necrosis factor α,TNF-α)、IL-1β等,诱导和级联扩大炎症反应。M2型巨噬细胞是指单核细胞或组织驻留巨噬细胞在IL-4或免疫复合物等刺激下诱导分化而成的巨噬细胞,又称替代活化的巨噬细胞,其表面标志物是CD163、CD206等。Mantovani等[25]进一步对M2型巨噬细胞进行了分类和定义:由IL-4或IL-13诱导产生的巨噬细胞称为M2a型,由免疫复合物和Toll样受体(Toll-like receptor,TLR)或IL-1受体的配体诱导分化的巨噬细胞称为M2b型,由IL-10和糖皮质激素诱导的巨噬细胞称为M2c型。M2a型巨噬细胞主要参与Ⅱ型免疫反应,IL-10诱导分化的M2c型巨噬细胞主要调节和抑制免疫炎症反应,也可能介导组织的保护反应。一般而言,M2型巨噬细胞分泌促炎因子的能力较低,但是由免疫复合物和LPS诱导的M2b型巨噬细胞仍可分泌大量的促炎因子。
巨噬细胞的表型转变和功能状态的各异体现了其可变性和多功能性,由于能诱发较广泛的免疫反应,故参与了体内多种组织器官和多种疾病的病理过程。人体内单核细胞既可以在不同时间接受相同的刺激,也可在相同时间接受不同的刺激,表现出体内接触信号的多样性和复杂性,因此巨噬细胞的表型转变和分化只是对特定时间和特定信号做出反应的一种简便化和概念化的描述。
2 巨噬细胞和椎间盘退变 2.1 退变椎间盘内巨噬细胞表型分类的定位与识别Nakazawa等[26]利用免疫组织化学法检测退变椎间盘内分别代表促炎M1型、重组M2c型和抗炎M2a型巨噬细胞的细胞表面标志物CCR7、CD163和CD206。结果显示在所有退变椎间盘中均发现表达这3种巨噬细胞标志物的细胞,且CCR7和CD163的表达随着退变程度的加剧明显增多,但在健康的椎间盘中未发现以上标志物的表达及变化。这表明在椎间盘退变过程中巨噬细胞或巨噬细胞样细胞扮演了非常重要的角色,也提示巨噬细胞表型平衡的破坏可能涉及复杂的损伤和愈合过程。许多细胞还同时表达多个巨噬细胞标志物。在所有的退行性病变中,CCR7+和CD163+细胞在结构不规则和有损伤的髓核、纤维环和终板区域均显著增多,表明促炎M1型、重组M2c型巨噬细胞在退变的椎间盘内明显增多。髓核和纤维环区许多免疫染色阳性的细胞与固有椎间盘细胞的形态和定位非常相似,提示椎间盘细胞可表达巨噬细胞表面标志物,也支持了椎间盘细胞具有巨噬细胞样特性的观点。相反,终板中阳性染色细胞的形态和分布均不典型,提示存在外源性巨噬细胞浸润椎间盘终板。尽管随着椎间盘退变的加剧,巨噬细胞可侵入纤维环,但是研究显示炎性介质的分泌更多倾向于来自退变的髓核组织[27]。
2.2 巨噬细胞表型与椎间盘退变为了对急性损伤做出反应,巨噬细胞可以迅速转变其表型和功能状态:从早期修复时期(0~3 d)以促炎M1型巨噬细胞为主逐渐(4~18 d)转变为以对抗和消除炎症反应为主的M2型巨噬细胞。这种巨噬细胞的表型转变发生于人体多个组织器官(如心脏、肺、肌肉、皮肤和椎管等)的修复过程[28-32]。但是巨噬细胞表型转变在椎间盘退变中的确切作用还未得到论证。研究表明,巨噬细胞表型的平衡对于维持内环境稳态具有重要作用,而该平衡一旦被打破将会造成内环境稳态的破坏[33-34]。Nakazawa等[26]研究表明,M1型巨噬细胞和M2c型巨噬细胞与椎间盘退变的进展有关,且与椎间盘退变程度高度相关。这一研究结果印证了椎间盘退变是一个涉及巨噬细胞表型失衡导致慢性分解代谢和愈合及修复能力低下的病理过程。通常而言,M1型巨噬细胞分泌大量促炎因子如TNF-α、IL-1等,M2c型巨噬细胞可分泌细胞外基质重组所需的基质金属蛋白酶,而M2a型巨噬细胞通常与组织修复的终末阶段相关,因此退变椎间盘内M1型和M2c型巨噬细胞增加,而M2a型未增加,导致椎间盘持续暴露在促炎症反应和重组的状态,失去了转变为终末阶段组织修复的能力。虽然已知巨噬细胞的微环境是决定其表型转变的关键因素[35],但是这种巨噬细胞表型失衡和转变能力缺失的确切机制仍然不明。有研究证明p38丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)可以通过调控炎性因子表达调节局部微环境,进而调节巨噬细胞的表型转变[36]。因此,我们推测巨噬细胞的表型平衡在正常椎间盘微环境中发挥了较为重要的作用,而一旦表型失衡将导致椎间盘微环境破坏,二者互相影响、互为因果,之后由于巨噬细胞及炎性因子的不断作用椎间盘逐渐发生一系列退行性病变,同时由于组织修复功能的缺失致使椎间盘退变成为不可逆转的病理情况。
2.3 巨噬细胞迁移与椎间盘退变巨噬细胞发挥其功能作用的基础是迁移进入封闭的髓核。研究表明,髓核、纤维环、终板细胞均可组成性表达TLR4,且其基础表达量取决于细胞类型。TLR4的表达受其配体LPS等调节,配体与TLR4结合会导致一系列相关的促炎性介质上调的信号级联反应,如TNF-α、IL-1β、IL-6、巨噬细胞迁移抑制因子(migration inhibitory factor,MIF)等,进而抑制细胞外基质的表达[36]。MIF是一种高度保守且具有多种功能的细胞因子,涉及巨噬细胞、白细胞、滑膜成纤维细胞等的招募和迁移。TNF-α、干扰素、转化生长因子及LPS等被证明可通过调节TLR4的信号刺激MIF的表达[37-41]。MIF不仅在巨噬细胞迁移中具有重要作用,而且对其他促炎因子(如TNF-α、IL-1、IL-6等)具有正向调节作用[41],二者同时作用导致附近椎间盘退变。Hamamoto等[42]将非变性和变性椎间盘分别单独培养或与巨噬细胞共培养,结果显示与巨噬细胞共培养的非变性和变性椎间盘细胞产生炎性因子的能力均高于单独培养的非变性和变性椎间盘细胞,提示巨噬细胞在椎间盘退变中有重要作用。进一步研究显示,巨噬细胞和椎间盘的相互作用在分泌与椎间盘退变和疼痛诱导相关的介质(如前列腺素E2、IL-6等)方面具有重要作用。除了MIF可以调节巨噬细胞迁移进入椎间盘,其他调节巨噬细胞迁移的因素逐渐被发现。髓核细胞在促炎因子的刺激下可通过诱导p38 MAPK介导的趋化因子配体3(chemokine ligand 3,CCL3)表达促进巨噬细胞的迁移[43]。CCL3的表达与椎间盘退变程度呈正相关,表明CCL3可能具有促进椎间盘退变的作用[43]。在促炎因子的刺激下髓核细胞可以分泌趋化因子(如CCL3),进而促进巨噬细胞和T淋巴细胞迁移进入组织。TNF-α、IL-1可以通过MAPK、核因子(nuclear factor,NF)、CCAAT-增强子结合蛋白信号通路调节CCL3的产生[44]。CCL3与其受体CCR1结合,并在细胞因子依赖的巨噬细胞迁移和炎症反应的加重中扮演了非常重要的作用[43]。亦有研究证明CCL4同样具有相似作用。Li等[45]发现在退变的髓核组织中CCL4表达明显升高,进一步研究显示在髓核细胞内抑制素与其受体和TLR4结合可以通过p38 MAPK和NF-κB促进CCL4表达,而CCL4表达的升高可导致巨噬细胞迁移。巨噬细胞迁移进入髓核是椎间盘发生不可逆性退行性病变的标志,因此巨噬细胞的迁移是所有因素导致椎间盘退变的共同通路,若能阐明巨噬细胞迁移的确切分子机制即可对其进行特异性干预,从而防治椎间盘退变。
2.4 巨噬细胞导致椎间盘退变的信号通路介导椎间盘退变的信号通路有多条,如p53-p21-Rb通路/p16-Rb信号通路、p38 MAPK信号通路、Wnt-β连环蛋白信号通路、哺乳动物雷帕霉素靶蛋白信号通路等,其中与巨噬细胞较为密切的信号通路是p38 MAPK信号通路[46]。如上所述,多种细胞因子和趋化因子均可激活该通路,各种氧化应激和组织损伤也可激活该通路。如MIF与其受体CD74结合、抑制素与其受体TLR4结合及LPS与其受体TLR4结合等均可激活p38 MAPK信号通路[47]。p38被MAPK激酶3和6在氧化应激下激活,随后p16被激活,Rb被去磷酸化,导致细胞周期停滞[48]。另一方面,p38 MAPK介导的氧化应激激活DNA损伤反应,进而诱导细胞衰老。p38上调还原型烟酰胺腺嘌呤二核苷酸磷酸(reduced nicotinamide adenine dinucleotide phosphate,NADPH)氧化酶的表达,从而产生更多的导致DNA损伤的过氧化物,随后激活p53-p21-Rb通路[47]。研究表明在体内退变的纤维环内p38(尤其是p38α、p38β及p38δ)表达上调[49],这进一步证明了p38 MAPK通路在椎间盘细胞衰老中的作用。亦有研究显示NF-κB信号通路也在巨噬细胞和椎间盘退变中发挥一定作用。Li等[45]发现抑制素可与其受体TLR4结合激活NF-κB信号通路,导致CCL4表达增加,进而促进巨噬细胞的迁移。另一项研究也证明NF-κB信号通路在椎间盘退变中发挥作用,石蒜碱可以通过抑制NF-κB信号通路抑制软骨终板退变,进而预防椎间盘退变[50]。综上所述,对巨噬细胞与椎间盘退变中信号通路的研究具有较大的意义,可以为临床上生物治疗提供确切的药物靶点、降低不必要的不良反应、提高治疗的精准性和有效性。
3 小结作为椎间盘退变的重要调节因素之一,巨噬细胞可以分泌大量炎性因子如TNF-α和IL-1β等,而在炎性因子和趋化因子的作用下又可招募更多的巨噬细胞,巨噬细胞和炎性因子的正反馈调节及巨噬细胞表型转变功能的缺失导致椎间盘持续暴露于炎症环境下,而不能转变为组织修复阶段。巨噬细胞可在一系列相关的炎性因子和趋化因子作用下迁移至椎间盘组织内,并发挥关键的诱发和级联放大炎症反应的作用。对于巨噬细胞在椎间盘退变中的确切机制和分子通路还未被完全阐明,相信更深入的研究可以揭示其原理,从而进一步加深对椎间盘退变的理解,最终指导椎间盘退变的防治。
[1] |
MURRAY C J, VOS T, LOZANO R, NAGHAVI M, FLAXMAN A D, MICHAUD C, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380: 2197-2223. DOI:10.1016/S0140-6736(12)61689-4 |
[2] |
VOS T, FLAXMAN A D, NAGHAVI M, LOZANO R, MICHAUD C, EZZATI M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380: 2163-2196. DOI:10.1016/S0140-6736(12)61729-2 |
[3] |
HONG J, REED C, NOVICK D, HAPPICH M. Costs associated with treatment of chronic low back pain: an analysis of the UK General Practice Research Database[J]. Spine (Phila Pa 1976), 2013, 38: 75-82. DOI:10.1097/BRS.0b013e318276450f |
[4] |
ADAMS M A, ROUGHLEY P J. What is intervertebral disc degeneration, and what causes it?[J]. Spine (Phila Pa 1976), 2006, 31: 2151-2161. DOI:10.1097/01.brs.0000231761.73859.2c |
[5] |
ROUGHLEY P J. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix[J]. Spine (Phila Pa 1976), 2004, 29: 2691-2699. DOI:10.1097/01.brs.0000146101.53784.b1 |
[6] |
RISBUD M V, SHAPIRO I M. Role of cytokines in intervertebral disc degeneration: pain and disc content[J]. Nat Rev Rheumatol, 2014, 10: 44-56. DOI:10.1038/nrrheum.2013.160 |
[7] |
SAKAI D, ANDERSSON G B. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions[J]. Nat Rev Rheumatol, 2015, 11: 243-256. DOI:10.1038/nrrheum.2015.13 |
[8] |
ZHANG F, ZHAO X, SHEN H, ZHANG C. Molecular mechanisms of cell death in intervertebral disc degeneration (review)[J]. Int J Mol Med, 2016, 37: 1439-1448. DOI:10.3892/ijmm.2016.2573 |
[9] |
EVANS CH, HUARD J. Gene therapy approaches to regenerating the musculoskeletal system[J]. Nat Rev Rheumatol, 2015, 11: 234-242. DOI:10.1038/nrrheum.2015.28 |
[10] |
ADAMS M A, DOLAN P, MCNALLY D S. The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology[J]. Matrix Biol, 2009, 28: 384-389. DOI:10.1016/j.matbio.2009.06.004 |
[11] |
ADAMS M A, FREEMAN B J, MORRISON H P, NELSON I W, DOLAN P. Mechanical initiation of intervertebral disc degeneration[J]. Spine (Phila Pa 1976), 2000, 25: 1625-1636. DOI:10.1097/00007632-200007010-00005 |
[12] |
ADAMS M A, LAMA P, ZEHRA U, DOLAN P. Why do some inter-vertebral discs degenerate, when others (in the same spine) do not?[J]. Clin Anat, 2015, 28: 195-204. DOI:10.1002/ca.22404 |
[13] |
CORNEJO M C, CHO S K, GIANNARELLI C, IATRIDIS J C, PURMESSUR D. Soluble factors from the notochordal-rich intervertebral disc inhibit endothelial cell invasion and vessel formation in the presence and absence of pro-inflammatory cytokines[J]. Osteoarthritis Cartilage, 2015, 23: 487-496. DOI:10.1016/j.joca.2014.12.010 |
[14] |
LE MAITRE C L, HOYLAND J A, FREEMONT A J. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNF-α expression profile[J/OL]. Arthritis Res Ther, 2007, 9: R77. doi: 10.1186/ar2275.
|
[15] |
PURMESSUR D, FREEMONT A J, HOYLAND J A. Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc[J/OL]. Arthritis Res Ther, 2008, 10: R99. doi: 10.1186/ar2487.
|
[16] |
RISBUD M V, SHAPIRO I M. Role of cytokines in intervertebral disc degeneration: pain and disc content[J]. Nat Rev Rheumatol, 2014, 10: 44-56. DOI:10.1038/nrrheum.2013.160 |
[17] |
SHAMJI M F, SETTON L A, JARVIS W, SO S, CHEN J, JING L F, et al. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues[J]. Arthritis Rheum, 2010, 62: 1974-1982. DOI:10.1002/art.27444 |
[18] |
YANG C, CAO P, GAO Y, WU M, LIN Y, TIAN Y, et al. Differential expression of p38 MAPK α, β, γ, δ isoforms in nucleus pulposus modulates macrophage polarization in intervertebral disc degeneration[J/OL]. Sci Rep, 2016, 6: 22182. doi: 10.1038/srep22182.
|
[19] |
PENG B, HAO J, HOU S, WU W, JIANG D, FU X, et al. Possible pathogenesis of painful intervertebral disc degeneration[J]. Spine, 2006, 31: 560-566. DOI:10.1097/01.brs.0000201324.45537.46 |
[20] |
NERLICH A G, WEILER C, ZIPPERER J, NAROZNY M, BOOS N. Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs[J]. Spine (Phila Pa 1976), 2002, 27: 2484-2490. DOI:10.1097/00007632-200211150-00012 |
[21] |
KAWAGUCHI S, YAMASHITA T, YOKOGUSHI K, MURAKAMI T, OHWADA O, SATO N. Immunophenotypic analysis of the inflammatory infiltrates in herniated intervertebral discs[J]. Spine (Phila Pa 1976), 2001, 26: 1209-1214. DOI:10.1097/00007632-200106010-00008 |
[22] |
KOIKE Y, UZUKI M, KOKUBUN S, SAWAI T. Angiogenesis and inflammatory cell infiltration in lumbar disc herniation[J]. Spine (Phila Pa 1976), 2003, 28: 1928-1933. DOI:10.1097/01.BRS.0000083324.65405.AE |
[23] |
GORDON S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3: 23-35. DOI:10.1038/nri978 |
[24] |
MANTOVANI A, SICA A, LOCATI M. Macrophage polarization comes of age[J]. Immunity, 2005, 23: 344-346. DOI:10.1016/j.immuni.2005.10.001 |
[25] |
MANTOVANI A, SICA A, SOZZANI S, ALLAVENA P, VECCHI A, LOCATI M. The chemokine system in diverse forms of macrophage activation and polarization[J]. Trends Immunol, 2004, 25: 677-686. DOI:10.1016/j.it.2004.09.015 |
[26] |
NAKAZAWA K R, WALTER B A, LAUDIER D M, KRISHNAMOORTHY D, MOSLEY G E, SPILLER K L, et al. Accumulation and localization of macrophage phenotypes with human intervertebral disc degeneration[J]. Spine J, 2018, 18: 343-356. DOI:10.1016/j.spinee.2017.09.018 |
[27] |
WILLEMS N, TELLEGEN A R, BERGKNUT N, CREEMERS L B, WOLFSWINKEL J, FREUDIGMANN C, et al. Inflammatory profiles in canine intervertebral disc degeneration[J/OL]. BMC Vet Res, 2016, 12: 10. doi: 10.1186/s12917-016-0635-6.
|
[28] |
TROIDL C, MÖLLMANN H, NEF H, MASSELI F, VOSS S, SZARDIEN S, et al. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction[J]. J Cell Mol Med, 2010, 13(9B): 3485-3496. |
[29] |
JOHNSTON L K, RIMS C R, GILL S E, MCGUIRE J K, MANICONE A M. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury[J]. Am J Respir Cell Mol Biol, 2012, 47: 417-426. DOI:10.1165/rcmb.2012-0090OC |
[30] |
ARNOLD L, HENRY A, PORON F, BABA-AMER Y, VAN ROOIJEN N, PLONQUET A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis[J]. J Exp Med, 2007, 204: 1057-1069. DOI:10.1084/jem.20070075 |
[31] |
MIRZA R E, FANG M M, ENNIS W J, KOH T J. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes[J]. Diabetes, 2013, 62: 2579-2587. DOI:10.2337/db12-1450 |
[32] |
KIGERL K A, GENSEL J C, ANKENY D P, ALEXANDER J K, DONNELLY D J, POPOVICH P G. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord[J]. J Neurosci, 2009, 29: 13435-13444. DOI:10.1523/JNEUROSCI.3257-09.2009 |
[33] |
JONES P, GARDNER L, MENAGE J, WILLIAMS G T, ROBERTS S. Intervertebral disc cells as competent phagocytes in vitro: implications for cell death in disc degeneration[J/OL]. Arthritis Res Ther, 2008, 10: R86. doi: 10.1186/ar2466.
|
[34] |
CHEN Y F, ZHANG Y Z, ZHANG W L, LUAN G N, LIU Z H, GAO Y, et al. Insights into the hallmarks of human nucleus pulposus cells with particular reference to cell viability, phagocytic potential and long process formation[J]. Int J Med Sci, 2013, 10: 1805-1816. DOI:10.7150/ijms.6530 |
[35] |
LAVIN Y, WINTER D, BLECHER-GONEN R, DAVID E, KEREN-SHAUL H, MERAD M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment[J]. Cell, 2014, 159: 1312-1326. DOI:10.1016/j.cell.2014.11.018 |
[36] |
RAJAN N E, BLOOM O, MAIDHOF R, STETSON N, SHERRY B, LEVINE M, et al. Toll-like receptor 4 (TLR4) expression and stimulation in a model of intervertebral disc inflammation and degeneration[J]. Spine (Phila Pa 1976), 2013, 38: 1343-1351. DOI:10.1097/BRS.0b013e31826b71f4 |
[37] |
DEWOR M, STEFFENS G, KROHN R, WEBER C, BARON J, BERNHAGEN J. Macrophage migration inhibitory factor (MIF) promotes fibroblast migration in scratch-wounded monolayers in vitro[J]. FEBS Lett, 2007, 581: 4734-4742. DOI:10.1016/j.febslet.2007.08.071 |
[38] |
YANG Y, DEGRANPRÉ, PIERRE, KHARFI A. Identification of macrophage migration inhibitory factor as a potent endothelial cell growth-promoting agent released by ectopic human endometrial cells[J]. J Clin Endocrinol Metab, 2000, 85: 4721-4727. |
[39] |
METZ C N, BUCALA R. Role of macrophage migration inhibitory factor in the regulation of the immune response[J]. Adv Immunol, 1997, 66: 197-223. DOI:10.1016/S0065-2776(08)60598-2 |
[40] |
LEECH M, METZ C, HALL P, HUTCHINSON P, GIANIS K, SMITH M, et al. Macrophage migration inhibitory factor in rheumatoid arthritis: evidence of proinflammatory function and regulation by glucocorticoids[J]. Arthritis Rheum, 1999, 42: 1601-1608. DOI:10.1002/1529-0131(199908)42:8<1601::AID-ANR6>3.0.CO;2-B |
[41] |
CALANDRA T, ROGER T. Macrophage migration inhibitory factor: a regulator of innate immunity[J]. Nat Rev Immunol, 2003, 3: 791-800. DOI:10.1038/nri1200 |
[42] |
HAMAMOTO H, MIYAMOTO H, DOITA M, TAKADA T, NISHIDA K, KUROSAKA M. Capability of nondegenerated and degenerated discs in producing inflammatory agents with or without macrophage interaction[J]. Spine (Phila Pa 1976), 2012, 37: 161-167. DOI:10.1097/BRS.0b013e31821a874b |
[43] |
WANG J, TIAN Y, PHILLIPS K L, CHIVERTON N, HADDOCK G, BUNNING R A, et al. Tumor necrosis factor α- and interleukin-1β-dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1[J]. Arthritis Rheum, 2013, 65: 832-842. DOI:10.1002/art.37819 |
[44] |
LIM C A, YAO F, WONG J J, GEORGE J, XU H, CHIU K P, et al. Genome-wide mapping of RELA (p65) binding identifies E2F1 as a transcriptional activator recruited by NF-κB upon TLR4 activation[J]. Mol Cell, 2007, 27: 622-635. DOI:10.1016/j.molcel.2007.06.038 |
[45] |
LI Z, WANG X, PAN H, YANG H, LI X, ZHANG K, et al. Resistin promotes CCL4 expression through toll-like receptor-4 and activation of the p38-MAPK and NF-κB signaling pathways: implications for intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2017, 25: 341-350. DOI:10.1016/j.joca.2016.10.002 |
[46] |
FENG C, LIU H, YANG M, ZHANG Y, HUANG B, ZHOU Y. Disc cell senescence in intervertebral disc degeneration: causes and molecular pathways[J]. Cell Cycle, 2016, 15: 1674-1684. DOI:10.1080/15384101.2016.1152433 |
[47] |
XIONG C J, HUANG B, ZHOU Y, CUN Y P, LIU L T, WANG J, et al. Macrophage migration inhibitory factor inhibits the migration of cartilage end plate-derived stem cells by reacting with CD74[J/OL]. PLoS One, 2012, 7: e43984. doi: 10.1371/journal.pone.0043984.
|
[48] |
IWASA H, HAN J, ISHIKAWA F. Mitogen-activated protein kinase p38 defines the common senescence-signaling pathway[J]. Genes Cells, 2003, 8: 131-144. DOI:10.1046/j.1365-2443.2003.00620.x |
[49] |
DONN R P, RAY D W. Macrophage migration inhibitory factor: molecular, cellular and genetic aspects of a key neuroendocrine molecule[J]. J Endocrinol, 2004, 182: 1-9. DOI:10.1677/joe.0.1820001 |
[50] |
WANG G, HUANG K, DONG Y, CHEN S, ZHANG J, WANG J, et al. Lycorine suppresses endplate-chondrocyte degeneration and prevents intervertebral disc degeneration by inhibiting NF-κB signaling pathway[J]. Cell Physiol Biochem, 2018, 45: 1252-1269. DOI:10.1159/000487457 |