第二军医大学学报  2019, Vol. 40 Issue (11): 1231-1235   PDF    
脑损伤后阵发性交感神经过度兴奋的发病机制
朱开鑫, 侯立军     
海军军医大学(第二军医大学)长征医院神经外科, 上海 200003
摘要: 阵发性交感神经过度兴奋(PSH)对脑损伤患者预后影响较大,目前对于PSH的发病机制研究还不透彻。本文回顾了PSH的病因,包括创伤性脑损伤、缺氧性脑损伤、脑血管相关的脑损伤、颅脑感染、抗N-甲基-D-天冬氨酸受体脑炎和其他一些较少见的病因。本文还介绍了有关PSH发病机制的癫假说、断连假说和新提出的神经内分泌假说,为PSH的深入研究提供参考。
关键词: 阵发性交感神经过度兴奋    脑损伤    脑炎    发病机制    
Progress in pathogenesis of paroxysmal sympathetic hyperactivity after brain injury
ZHU Kai-xin, HOU Li-jun     
Department of Neurosurgery, Changzheng Hospital, Naval Medical University(Second Military Medical University), Shanghai 200003, China
Abstract: Paroxysmal sympathetic hyperactivity (PSH) has a profound impact on the prognosis of patients suffering from brain injury, but the research on pathogenesis in relation to PSH is limited. In this paper, the etiologies of PSH, including traumatic brain injury, hypoxic brain injury, cerebrovascular-related brain injury, craniocerebral infection, anti-N-methyl-D-aspartate receptor encephalitis, and a number of rare etiological factors were reviewed. The epilepsy hypothesis, disconnection hypothesis and new-presented neuroendocrine hypothesis about the pathogenesis of PSH were introduced, so as to provide reference for further research on PSH.
Key words: paroxysmal sympathetic hyperactivity    brain injuries    encephalitis    pathogenesis    

阵发性交感神经过度兴奋(paroxysmal sympathetic hyperactivity,PSH)又称为植物神经风暴、自主神经功能异常、有肌张力障碍的自主神经功能紊乱等[1],可在多种原因导致的脑损伤后发生,其中由创伤性脑损伤引发的最多见(79.4%)[2]。PSH主要表现为交感神经系统的阵发性过度兴奋和运动系统异常,临床症状包括心动过速、呼吸过快、体温升高、血压升高、大量出汗、骨骼肌僵硬或出现异常运动等[3]。PSH的诊断主要依靠排他性诊断,诊断标准也有多个版本[4],由于PSH多根据一些非特异的临床症状和医师的个人经验进行诊断,这些诊断标准的可靠性并未得到广泛认可。2014年,一个PSH诊断指导专家小组推出了一个辅助诊断的评分系统,即阵发性交感神经过度兴奋评估量表(paroxysmal sympathetic hyperactivity assessment measure,PSH-AM)[5],目前该评分系统得到普遍接受和使用[6-9]。一些文献对PSH的病因做了描述,对于发病机制也有几种假说,但缺乏相关基础研究支持,目前其明确的发病机制仍不清楚。本文主要就近年来文献报道的PSH各种病因和几种发病机制假说作一综述,以期为其综合性的临床诊治和相关发病机制的基础研究提供参考。

1 PSH的病因

PSH的病因较多,主要与各种病因导致的脑损伤有关。脑损伤后PSH的发病率为15%~33%,并且与脑损伤的严重程度没有关联[10]。病因中占比例最大的是创伤性脑损伤(79.4%),其次是缺氧性脑损伤(9.7%),第3位的是脑血管病导致的脑卒中脑损伤(5.4%)[2, 11],还有一些相对少见的病因如颅脑感染[12]、颅内压升高[13]、白血病[14]等在鉴别诊断时也不容忽视。影像学发现,PSH患者的脑损伤多呈弥漫性,没有特异性的病灶[15]。不同的病因对PSH的临床结果会产生影响[16],不同的环境对PSH的发作和康复也有极大的影响[17]

1.1 创伤性脑损伤

创伤性脑损伤是PSH的首要病因[2, 18],Perkes等[2]发现,经文献报道的349例患者中有277例与创伤性脑损伤有关。而在创伤性脑损伤患者中,文献报道的PSH发病率为8%~33%[19-20]。创伤性脑损伤引起的PSH与非创伤性脑损伤之比可达到5︰1[2],在重症监护室(intensive care unit,ICU)的患者中可达到5.5︰1[21],在植物状态的患者中达到2︰1[16]

1.2 缺氧性脑损伤

部分PSH由缺氧性脑损伤引起[22],大约占所有PSH的9.7%[2]。有报道显示,PSH在缺氧性脑损伤中的发病率特别高,35例患者中有22例(62.8%)与入院前缺氧相关[23]。总体来看,由创伤性脑损伤引起的PSH远多于缺氧性脑损伤,这可能是因为创伤性脑损伤本身的发病率远远高于缺氧性脑损伤。

1.3 脑血管相关的脑损伤 1.3.1 脑出血

脑出血也可导致PSH,脑电图显示患者发作时没有癫发作[24],如果说是因为间脑的出血损伤导致了断连而产生PSH,也有文献报道额叶的出血也可能导致PSH[25]。出血性脑病与缺血性脑病导致PSH的比例大约为4︰1[2]

1.3.2 缺血性脑血管病

缺血脑梗死引起的PSH比较少见,有研究发现烟雾病导致的脑缺血梗死可能导致多重的脑损伤,破坏脑内的自主神经调节通路,造成类似于创伤性脑损伤的PSH[26]

1.4 颅脑感染 1.4.1 脑炎

以乙型脑炎为多见[12]。有研究发现,由非细菌导致的脑炎患者(51%)相对于细菌导致的脑炎患者(27%)更易产生PSH,并且在非细菌感染组,PSH患者更易发作癫[27]

1.4.2 脑膜炎

结核性脑膜炎也可能伴发PSH,荷兰和印度等国家的医师对结核性脑膜炎导致的PSH均有报道[10, 28],表明在结核性脑膜炎发病早期就考虑并确诊、治疗PSH至关重要。伴有PSH的脑膜炎患者入住ICU的时长明显长于不伴PSH的患者[27]

1.4.3 急性播散性脑脊髓炎

Holder等[29]报道了1例急性播散性脑脊髓炎后发生PSH的病例,考虑到患者广泛的脱髓鞘和脑水肿,推测间脑的神经元间连接可能受到了严重损害,从而导致PSH。

1.5 抗 N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)受体脑炎

抗NMDA受体脑炎患者可能会出现类似PSH的症状[30]。Hinson等[31]报道了1例以PSH为主要临床表现的抗NMDA受体脑炎患者。并且,抗NMDA受体脑炎的临床症状多表现为换气不足、自主神经失衡或异常的运动[32],Hinson等[31]认为由于不够重视抗NMDA受体脑炎与PSH的相关性,部分应该被诊断为PSH的患者被漏诊,其机制可能为交感神经系统环路中的NMDA受体受到大量破坏,进而导致交感神经系统的功能紊乱。氯胺酮可与NMDA的离子通道结合,其机制与抗NMDA受体抗体相似,而氯胺酮可以导致PSH患者高血压和心动过速[33]。两者之间具体的联系和机制有待进一步研究。

1.6 颅内压升高

有研究发现,PSH的发病可能与颅内压升高有关[13],但这种关联的具体情况和机制还有待研究,也有可能是PSH发作导致血压升高进而升高颅内压[2]

1.7 其他病因

脑部肿瘤[34]、白血病[14]、脑积水[25]、胼胝体发育不全[13]、格林-巴利综合征[35]、脑创伤后气管切开[36]等也可能导致PSH的发生。

2 PSH的发病机制 2.1 癫机制

Penfield最早在1929年提出间脑的癫活动可能是异常的自主神经阵发性过度兴奋的发病机制,并命名为间脑自主神经癫 [37]。Metz等[38]报道了1例血压升高、心率增快、体内儿茶酚胺水平上升的患者,该患者在服用卡马西平后临床症状得到完全缓解。然而,其他的一些对自主神经功能障碍患者用抗癫药物治疗的尝试却没有取得预期效果[39]。因此,目前来看,虽然癫机制有可能部分解释PSH的发病[40],但应该还有更为合适而完全的发病机制。

2.2 断连机制

断连机制分为传统的断连机制学说和兴奋/抑制比(excitatory:inhibitory ratio,EIR)模型学说。在传统的断连机制中,大脑皮质等高位中枢对交感神经活动起抑制性的调控作用,而间脑(主要是下丘脑)和脑干等低位中枢则对交感神经活动起兴奋性的调节作用[4]。一旦高位的调节中枢受损或高位中枢与低位中枢的联系被破坏,则低位的调节中枢就处于断连失抑制的高兴奋状态,产生PSH,进而出现一系列典型的临床症状[41]。该学说能够很好地解释脑外伤中经典的局灶性损伤和弥漫性轴突损伤,然而也存在一些无法忽略的缺陷,即该学说认为兴奋中枢位于间脑和脑干,那么出现PSH的患者的间脑和脑干及其尾侧结构必须功能完好,然而事实上间脑和脑干及其尾侧结构出现损伤的患者也可能出现PSH[42];同时,传统的断连机制无法很好地解释患者对于无害的、低程度的非疼痛刺激过度敏感的反射性反应。

EIR模型学说最早由Baguley[43]于2008年提出,是通过将一些具有相似的自主神经和肌肉过度活动的临床疾病的病因病理部位和发病机制进行整理与综合分析所得,用于解释PSH等。EIR模型推测,间脑/脑干是调节脊髓传入刺激反射的高位的抑制中枢。在这个假说中,痛觉过敏倾向会引起PSH,而痛觉过敏指的是将非痛觉的无伤害刺激错误地识别为痛觉传入,在脊髓中枢水平产生异常反射。这种痛觉过敏倾向反射通常处于间脑/脑干中枢的紧张性抑制之下。一旦这些抑制中枢或者其下游的传导通路受到损伤,微小的无害刺激可能引发剧烈的痛觉过敏反射[44]。微小的非伤害刺激导致的异常反射的累积最终会导致交感神经的异常兴奋和肌肉异常运动。

2.3 神经内分泌机制

2015年,Renner[11]根据下丘脑-垂体-肾上腺轴提出一个可能解释PSH机制的新猜想。此假说认为,创伤等引起脑损伤的因素导致了脑垂体完全损伤或功能不足,促肾上腺皮质激素分泌减少,从而促使促皮质激素释放激素的大量分泌[11]。这可能导致肾上腺素能亢进的应激反应,导致PSH的发生。然而,PSH与下丘脑-垂体功能相关的确切证据有待进一步的前瞻性实验研究加以证明。

3 小结

PSH的发生主要与脑外伤有关,但应综合考虑其他病因。病因学的研究有助于临床诊断,防止漏诊,也为发病机制的研究提供了方向和思路。目前得到广泛认可的发病机制是EIR模型学说,但也应当关注新提出的有关内分泌或是免疫方面的发病机制。发病机制的研究有利于诊断和治疗的研究发展,为患者减少住院时长、提供更好的预后。已有的关于PSH的文献报道基本都是循证价值较低的个别病案报道和小样本量的临床试验研究,未来如能以病因和发病机制研究为切入点,开展促进诊断和治疗发展的大样本的基础机制与临床研究,必将极大提升对PSH的认识和防治水准。

参考文献
[1]
KIRK K A, MICHAEL S, JEONG J H, TYLER-KABARA E C, HENDERSON M J, BELL M J, et al. Dysautonomia after pediatric brain injury[J]. Dev Med Child Neurol, 2012, 54: 759-764. DOI:10.1111/j.1469-8749.2012.04322.x
[2]
PERKES I, BAGULEY I J, NOTT M T, MENON D K. A review of paroxysmal sympathetic hyperactivity after acquired brain injury[J]. Ann Neurol, 2010, 68: 126-135.
[3]
HASEN M A, ALMOJUELA A, ZEILER F A. Autonomic dysfunction and associations with functional and neurophysiologic outcome in moderate/severe traumatic brain injury:a scoping review[J]. J Neurotrauma, 2018, 36: 1491-1504.
[4]
MEYFROIDT G, BAGULEY I J, MENON D K. Paroxysmal sympathetic hyperactivity:the storm after acute brain injury[J]. Lancet Neurol, 2017, 16: 721-729. DOI:10.1016/S1474-4422(17)30259-4
[5]
BAGULEY I J, PERKES I E, FERNANDEZ-ORTEGA J F, RABINSTEIN A A, DOLCE G, HENDRICKS H T. Paroxysmal sympathetic hyperactivity after acquired brain injury:consensus on conceptual definition, nomenclature, and diagnostic criteria[J]. J Neurotrauma, 2014, 31: 1515-1520. DOI:10.1089/neu.2013.3301
[6]
VAN EIJCK M M, SPRENGERS M O P, OLDENBEUVING A W, DE VRIES J, SCHOONMAN G G, ROKS G. The use of the PSH-AM in patients with diffuse axonal injury and autonomic dysregulation:a cohort study and review[J]. J Crit Care, 2019, 49: 110-117. DOI:10.1016/j.jcrc.2018.10.018
[7]
ALOFISAN T O, ALGARNI Y A, ALHARFI I M, MILLER M R, CHARYK S T, FRASER D D, et al. Paroxysmal sympathetic hyperactivity after severe traumatic brain injury in children:prevalence, risk factors, and outcome[J]. Pediatr Crit Care Med, 2018, 20: 252-258.
[8]
SAMUEL S, LEE M, BROWN R J, CHOI H A, BAGULEY I J. Incidence of paroxysmal sympathetic hyperactivity following traumatic brain injury using assessment tools[J]. Brain Inj, 2018, 32: 1115-1121. DOI:10.1080/02699052.2018.1482002
[9]
GODO S, IRINO S, NAKAGAWA A, KAWAZOE Y, FUJITA M, KUDO D, et al. Diagnosis and management of patients with paroxysmal sympathetic hyperactivity following acute brain injuries using a consensus-based diagnostic tool:a single institutional case series[J]. Tohoku J Exp Med, 2017, 243: 11-18. DOI:10.1620/tjem.243.11
[10]
RAMDHANI N A, SIKMA M A, WITKAMP T D, SLOOTER A J, DE LANGE D W. Paroxysmal autonomic instability with dystonia in a patient with tuberculous meningitis: a case report[J/OL]. J Med Case Rep, 2010, 4: 304. doi: 10.1186/1752-1947-4-304. https://link.springer.com/article/10.1186/1752-1947-4-304
[11]
RENNER C I. Interrelation between neuroendocrine disturbances and medical complications encountered during rehabilitation after TBI[J]. J Clin Med, 2015, 4: 1815-1840.
[12]
VERMA R, GIRI P, RIZVI I. Paroxysmal sympathetic hyperactivity in neurological critical care[J]. Indian J Crit Care Med, 2015, 19: 34-37.
[13]
DIAMOND A L, CALLISON R C, SHOKRI J, CRUZ-FLORES S, KINSELLA L J. Paroxysmal sympathetic storm[J]. Neurocrit Care, 2005, 2: 288-291.
[14]
FEYISSA A M, TUMMALA S. Unusual case of paroxysmal sympathetic hyperactivity in a patient with leukemia[J]. Clin Neurophysiol, 2014, 125: 1069-1071. DOI:10.1016/j.clinph.2013.09.023
[15]
LV L Q, HOU L J, YU M K, QI X Q, CHEN H R, CHEN J X, et al. Prognostic influence and magnetic resonance imaging findings in paroxysmal sympathetic hyperactivity after severe traumatic brain injury[J]. J Neurotrauma, 2010, 27: 1945-1950.
[16]
DOLCE G, QUINTIERI M, LETO E, MILANO M, PILEGGI A, LAGANI V, et al. Dysautonomia and clinical outcome in vegetative state[J/OL]. J Neurotrauma, 2008 Sep 4. https: //doi.org/10.1089/neu.2008.0536.
[17]
LETZKUS L, ADDISON N, TURNER L, CONAWAY M, QUATRARA B. Paroxysmal sympathetic hyperactivity and environmental factors:a pilot study[J]. J Neurosci Nurs, 2018, 50: 88-92.
[18]
RAITHEL D S, OHLER K H, PORTO I, BICKNESE A R, KRAUS D M. Morphine:an effective abortive therapy for pediatric paroxysmal sympathetic hyperactivity after hypoxic brain injury[J]. J Pediatr Pharmacol Ther, 2015, 20: 335-340.
[19]
FERNANDEZ-ORTEGA J F, PRIETO-PALOMINO M A, GARCIA-CABALLERO M, GALEAS-LOPEZ J L, QUESADA-GARCIA G, BAGULEY I J. Paroxysmal sympathetic hyperactivity after traumatic brain injury:clinical and prognostic implications[J]. J Neurotrauma, 2012, 29: 1364-1370.
[20]
BUENO GONZÁLEZ A M, CORCOBADO MARQUEZ M C, PORTILLA BOTELHO M, AMBRÓS CHECA A. Diagnostic challenge of paroxysmal sympathetic hyperactivity (PSH) associated with diffuse axonal injury (DAI) in head trauma[J/OL]. Springerplus, 2014, 3: 752. doi: 10.1186/2193-1801-3-752. https://link.springer.com/article/10.1186/2193-1801-3-752
[21]
RABINSTEIN A A. Paroxysmal sympathetic hyperactivity in the neurological intensive care unit[J]. Neurol Res, 2007, 29: 680-682.
[22]
BLACKMAN J A, PATRICK P D, BUCK M L, RUST RS Jr. Paroxysmal autonomic instability with dystonia after brain injury[J]. Arch Neurol, 2004, 61: 321-328.
[23]
BAGULEY I J, NICHOLLS J L, FELMINGHAM K L, CROOKS J, GURKA J A, WADE L D. Dysautonomia after traumatic brain injury:a forgotten syndrome?[J]. J Neurol Neurosurg Psychiatry, 1999, 67: 39-43. DOI:10.1136/jnnp.67.1.39
[24]
CHITTIBOINA P, NIXON M, NANDA A, GUTHIKONDA B. Diagnosing paroxysmal autonomic instability with dystonia following intracerebral hemorrhage[J]. Neurol India, 2011, 59: 906-908. DOI:10.4103/0028-3886.91377
[25]
BECKER R, BENES L, SURE U, HELLWIG D, BERTALANFFY H. Intrathecal baclofen alleviates autonomic dysfunction in severe brain injury[J]. J Clin Neurosci, 2000, 7: 316-319.
[26]
DEEPIKA A, REDDY M, SHUKLA D. Paroxysmal sympathetic hyperactivity in a child with moyamoya disease[J]. J Neurosurg Anesthesiol, 2014, 26: 87-88.
[27]
FARIAS-MOELLER R, CARPENTER J L, DEAN N, WELLS E M. Paroxysmal sympathetic hyperactivity in critically ill children with encephalitis and meningoencephalitis[J]. Neurocrit Care, 2015, 23: 380-385.
[28]
SINGH D K, SINGH N. Paroxysmal autonomic instability with dystonia in a child:rare manifestation of an interpeduncular tuberculoma[J]. Pediatr Neurosurg, 2011, 47: 275-278.
[29]
HOLDER E K, MCCALL J C, FEEKO K J. Acute disseminated encephalomyelitis in an adult:an uncommon case of paroxysmal sympathetic hyperactivity[J]. PM R, 2015, 7: 781-784. DOI:10.1016/j.pmrj.2015.02.006
[30]
DALMAU J, LANCASTER E, MARTINEZ-HERNANDEZ E, ROSENFELD M R, BALICE-GORDON R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis[J]. Lancet Neurol, 2011, 10: 63-74.
[31]
HINSON H E, TAKAHASHI C, ALTOWAIJRI G, BAGULEY I J, BOURDETTE D. Anti-NMDA receptor encephalitis with paroxysmal sympathetic hyperactivity:an under-recognized association?[J]. Clin Auton Res, 2013, 23: 109-111.
[32]
DALMAU J, GLEICHMAN A J, HUGHES E G, ROSSI J E, PENG X, LAI M, et al. Anti-NMDA-receptor encephalitis:case series and analysis of the effects of antibodies[J]. Lancet Neurol, 2008, 7: 1091-1098.
[33]
PRYZBYLKOWSKI P G, DUNKMAN W J, LIU R, CHEN L. Case report:anti-N-methyl-D-aspartate receptor encephalitis and its anesthetic implications[J]. Anesth Analg, 2011, 113: 1188-1191.
[34]
LEE S, JUN G W, JEON S B, KIM C J, KIM J H. Paroxysmal sympathetic hyperactivity in brainstem-compressing huge benign tumors: clinical experiences and literature review[J/OL]. Springerplus, 2016, 5: 340. doi: 10.1186/s40064-016-1898-x. https://link.springer.com/article/10.1186/s40064-016-1898-x
[35]
BATOUCHE D D, BENATTA M, OKBANI R, BENATTA N F. .[High blood pressure during the autonomic crises in children in intensive care unit:etiologic circumstances and modality therapeutic][J]. Ann Cardiol Angeiol (Paris), 2017, 66: 176-180. DOI:10.1016/j.ancard.2017.06.001
[36]
LI Z, CHEN J, ZHANG D, LV L, HOU L. Tracheostomy as a risk factor for paroxysmal sympathetic hyperactivity in severe traumatic brain injury[J/OL]. World Neurosurg, 2019, 123: e156-e161. doi: 10.1016/j.wneu.2018.11.101.
[37]
PENFIELD W. Diencephalic autonomic epilepsy[J]. Arch NeurPsych, 1929, 22: 358-374.
[38]
METZ S A, HALTER J B, PORTE D, ROBERTSON R P. Autonomic epilepsy:clonidine blockade of paroxysmal catecholamine release and flushing[J]. Ann Intern Med, 1978, 88: 189-193.
[39]
BAGULEY I J, HERISEANU R E, GURKA J A, NORDENBO A, CAMERON I D. Gabapentin in the management of dysautonomia following severe traumatic brain injury:a case series[J]. J Neurol Neurosurg Psychiatry, 2007, 78: 539-541.
[40]
BERNATH O. Treatment of paroxysmal sympathetic storm with labetalol[J]. J Neurol Neurosurg Psychiatry, 2001, 70: 818-819. DOI:10.1136/jnnp.70.6.818
[41]
COMPTON E. Paroxysmal sympathetic hyperactivity syndrome following traumatic brain injury[J]. Nurs Clin North Am, 2018, 53: 459-467.
[42]
LUMP D, MOYER M. Paroxysmal sympathetic hyperactivity after severe brain injury[J/OL]. Curr Neurol Neurosci Rep, 2014, 14: 494. doi: 10.1007/s11910-014-0494-0. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM25220846
[43]
BAGULEY I J. The excitatory:inhibitory ratio model (EIR model):an integrative explanation of acute autonomic overactivity syndromes[J]. Med Hypotheses, 2008, 70: 26-35.
[44]
FENG Y, ZHENG X, FANG Z. Treatment progress of paroxysmal sympathetic hyperactivity after acquired brain injury[J]. Pediatr Neurosurg, 2015, 50: 301-309. DOI:10.1159/000439282