第二军医大学学报  2019, Vol. 40 Issue (10): 1083-1088   PDF    
延长鼻导管低流量吸氧时间对肝癌伴肝肺综合征患者肝切除术后恢复的影响
韩谊, 李雨捷, 陈林, 白雪红, 鲁开智, 易斌     
陆军军医大学(第三军医大学)西南医院野战手术麻醉科, 重庆 400038
摘要: 目的 探讨术后长时程吸氧对肝癌伴肝肺综合征患者全麻下行肝切除术后全身炎症反应、肺内分流及预后的影响。方法 选取2017年1月至2018年12月在陆军军医大学(第三军医大学)西南医院麻醉科行择期肝切除术的肝癌伴肝肺综合征患者72例,美国麻醉医师协会(ASA)分级为Ⅱ或Ⅲ级。采用随机数字表法将患者分为两组:对照组(n=36),术毕回病房经鼻导管低流量(2~3 L/min)吸氧8 h;试验组(n=36),经鼻导管低流量(2~3 L/min)吸氧48 h。于麻醉前、术毕、术后8 h、术后24 h、术后48 h、术后72 h分别经桡动脉抽取动脉血进行血气分析,观察动脉血氧分压(PaO2)、肺泡气-动脉血氧分压差[(A-a)DO2]的变化,同时测定并分析两组患者外周血肿瘤坏死因子α(TNF-α)、外周血脂多糖(LPS)、呼出气一氧化氮含量(FeNO)的变化;于术后48 h检测外周血C-反应蛋白(CRP)、白细胞计数、中性粒细胞比例;记录两组患者术后肺部并发症发生率和住院时间并进行比较。结果 两组患者在术毕和术后8 h时点PaO2均高于麻醉前,(A-a)DO2均低于麻醉前(P均 < 0.05);试验组在术后24 h和48 h时点PaO2均高于麻醉前,(A-a)DO2均低于麻醉前(P均 < 0.05);对照组在术后24 h和48 h时点PaO2均低于麻醉前,(A-a)DO2均高于麻醉前(P均 < 0.05);术后24 h和48 h时点,试验组PaO2均高于对照组,(A-a)DO2均低于对照组(P均 < 0.05)。试验组在术后8 h、24 h、48 h时点外周血LPS、外周血TNF-α和FeNO均低于麻醉前(P均 < 0.05),对照组在术后24 h、48 h时点外周血LPS、外周血TNF-α和FeNO均高于麻醉前(P均 < 0.05);术后24 h和48 h时点,试验组外周血LPS、外周血TNF-α和FeNO均低于对照组(P均 < 0.05)。术后48 h时点,试验组炎症反应指标CRP、白细胞计数、中性粒细胞比例均低于对照组(P均 < 0.05)。试验组术后肺部并发症发生率(1/36)低于对照组(6/36),住院时间[(5.2±2.3)d]短于对照组[(7.8±3.2)d],差异均有统计学意义(P均 < 0.05)。结论 术后延长吸氧时限至48 h能有效减轻肝肺综合征患者肝癌切除术后全身炎症反应,减少肺内分流,降低肺部并发症的发生率,利于患者术后恢复。
关键词: 肝肺综合征    肝切除术    长时程吸氧    肺部并发症    
Effect of prolonged low-flow nasal cannula oxygen inhalation time on recovery after hepatectomy in hepatocarcinoma patients with hepatopulmonary syndrome
HAN Yi, LI Yu-jie, CHEN Lin, BAI Xue-hong, LU Kai-zhi, YI Bin     
Department of Battle Field Surgery Anesthesia, Southwest Hospital, Army Medical University(Third Military Medical University), Chongqing 400038, China
National Natural Science Foundation of China (81870422, 81670552).
Abstract: Objective To explore the effect of prolonged low-flow oxygen inhalation time through nasal cannula on systemic inflammatory response, intrapulmonary shunt and prognosis after hepatectomy under general anesthesia in hepatocarcinoma patients with hepatopulmonary syndrome. Methods Seventy-two patients of hepatocarcinoma with hepatopulmonary syndrome, who underwent hepatectomy in Anesthesia Department of Southwest Hospital of Army Medical University (Third Military Medical University) from Jan. 2017 to Dec. 2018, were enrolled in this study. Their American Society of Anesthesiologists (ASA) grades were classified as grade Ⅱ or Ⅲ. All patients were randomized into control group (n=36) and research group (n=36). The patients in the control group inhaled low-flow oxygen (2-3 L/min) through nasal cannula for 8 h after operation, and those in the research group for 48 h. Before anesthesia, and immediately, 8 h, 24 h, 48 h and 72 h after operation, the radial artery blood gas analysis was conducted to record arterial partial pressure of oxygen (PaO2) and alveolar-arterial oxygen pressure difference ([A-a]DO2). At each time point, tumor necrosis factor α (TNF-α) and lipopolysaccharide (LPS) in peripheral blood and fractional exhaled nitric oxide (FeNO) were measured as well. C-reactive protein (CRP), white blood cell count and neutrophil proportion in peripheral blood were measured 48 h after operation. The incidence of postoperative pulmonary complications and hospital stay were compared between the two groups. Results In the two groups, the PaO2 values were significantly higher immediately and 8 h after operation versus before anesthesia, and the (A-a)DO2 values were significantly lower (all P < 0.05). At 24 h and 48 h after operation, the PaO2 values in the research group were significantly higher than that before anesthesia, and the (A-a)DO2 values were significantly lower than that before anesthesia (all P < 0.05); while those in the control group showed the opposites (all P < 0.05); and the PaO2 values in the research group were significantly higher than those in the control group, and (A-a)DO2 values were significantly lower (all P < 0.05). The levels of LPS, TNF-α and FeNO in the research group 8, 24 and 48 h after operation were significantly lower than those before anesthesia (all P < 0.05), while those in the control group 24 and 48 h after operation were significantly higher than those before anesthesia (all P < 0.05). The levels of LPS, TNF-α and FeNO in the research group were significantly lower than those in the control group 24 and 48 h after operation (all P < 0.05). At 48 h after operation, CRP level, white blood cell count and neutrophil proportion in the research group were significantly lower than those in the control group (all P < 0.05). The incidence of postoperative pulmonary complications in the research group (1/36) was lower than that in the control group (6/36), and the hospital stay ([5.2±2.3] d) was shorter than that in the control group ([7.8±3.2] d), and the differences were statistically significant (both P < 0.05). Conclusion Prolonged oxygen inhalation time (48 h) can effectively alleviate systemic inflammatory response, reduce intrapulmonary shunt and the incidence of pulmonary complications, thus facilitating postoperative recovery after hepatectomy in patients of hepatocarcinoma with hepatopulmonary syndrome.
Key words: hepatopulmonary syndrome    hepatectomy    prolonged oxygen inhalation    pulmonary complications    

肝肺综合征是在慢性肝病和(或)门静脉高压的基础上出现肺内微血管异常扩张、气体交换障碍、动脉血氧合作用异常而导致的一种严重的肺部并发症,发生率为5%~29%,伴发肝肺综合征明显增高患者围手术期肺部并发症的发生率和死亡率[1-2]。研究报道肝移植术后普通肝硬化患者存活时间中位数为87个月,5年生存率为63%;而肝肺综合征患者存活时间中位数仅24个月,5年生存率仅23%[3]。近年来,肝肺综合征患者的围手术期管理引起了国内外肝病学和危重病学专家的关注。研究发现,伴有中度至重度肺内分流肝肺综合征的患者术前氧合能力显著低于轻度或不存在肺内分流的患者,这也是导致患者术中和术后发生低氧血症的病理生理基础之一[4]。在手术麻醉期间,吸入麻醉较全凭静脉麻醉更易加重肝肺综合征患者的低氧症状,同时,术中应用体外膜式氧合(extracorporeal membrane oxygenation,ECMO)技术已被证实可显著改善患者肝移植术后的氧合情况[5]。术后静脉注射亚甲蓝或调整体位能够在一定程度上改善部分患者动脉氧合状态[6-7]。上述研究表明,采取正确的围手术期管理措施避免通气/血流比例失调加重、促进氧分子弥散是保证肝肺综合征患者围手术期氧供的关键。本研究拟探索术后延长吸氧时限对肝癌伴肝肺综合征患者肝切除术后全身炎症反应、肺内分流及预后的影响,旨在为此类患者围手术期管理提供一定依据。

1 资料和方法 1.1 一般资料

采用前瞻性随机对照研究设计。纳入陆军军医大学(第三军医大学)西南医院2017年至2018年伴发肝肺综合征的择期肝癌切除术患者72例。患者年龄为35~65岁,美国麻醉医师协会(American Society of Anesthesiologists,ASA)分级为Ⅱ级或Ⅲ级。入选标准:(1)符合Milan标准[8]的原发性肝癌患者,患者单个肿瘤直径≤5 cm,或多发的肿瘤<3个且最大直径≤3 cm,无大血管侵犯现象,无淋巴结或肝外转移现象;(2)临床分期为T1~T2N0M0期;(3)肝功能Child-Pugh评分为A级;(4)合并肝肺综合征。肝肺综合征诊断标准[9]:(1)慢性肝病或严重肝病或门静脉高压存在,有严重肝功能不全,无原发性心肺疾病;(2)临床表现上,主诉有呼吸困难,体格检查发现蜘蛛痣、肝掌、杵状指;(3)站立位、静息状态下血气分析肺泡气-动脉血氧分压差[alveolar-arterial oxygen pressure difference,(A-a)DO2]≥15 mmHg(>64岁的老年人≥20 mmHg,1 mmHg=0.133 kPa);(4)肺内血管扩张,对比增强超声心动图检查阳性,提示肺内血管异常。采用随机数字表法将患者分为两组:术后8 h低流量吸氧组(对照组,n=36)和术后48 h低流量吸氧组(试验组,n=36)。本研究经陆军军医大学(第三军医大学)西南医院医学伦理委员会审批(2017科研第35号)。

1.2 麻醉方法

患者入室后建立静脉通道,常规监测血压、心率、脉搏血氧饱和度(pulse oxygen saturation,SpO2)、中心静脉压(central venous pressure,CVP)、呼气末二氧化碳分压(end-expiratory carbon dioxide partial pressure,PETCO2)及脑电双频谱指数(bispectral index,BIS)等。采用气管插管静脉吸入复合全身麻醉。麻醉诱导:静脉注射咪达唑仑0.1 mg/kg、顺式阿曲库铵0.2 mg/kg、丙泊酚1.5 mg/kg、舒芬太尼0.5 μg/kg。吸入氧浓度均为80%,调节麻醉机参数维持潮气量为6~8 mL/kg、呼吸频率为10~12/min、PETCO2为30~40 mmHg、呼气末正压通气(positive end expiratory pressure,PEEP)为3~4 mmHg;手术结束前膨肺,平台压35 mmHg,持续30 s。术中麻醉维持:丙泊酚2.5~3.5 mg/(kg•h),瑞芬太尼0.1~0.3 μg/(kg•min),间断静脉注射顺式阿曲库铵维持骨骼肌松弛;维持BIS为40~60。术毕患者清醒后开启术后静脉自控镇痛泵。

1.3 手术方法

所有患者手术方法均为传统的开腹肝癌切除术。患者取头高脚低位,全身麻醉后通过合适的切口,完全暴露手术视野,根据患者肿瘤大小、位置,充分游离肝周围的韧带。将第一肝门阻断,结合肝脏切除部位将相应门静脉分支阻断,标记露出的缺血线。用钳夹法根据缺血线将肝实质钝性切开,并对切断的肝内动脉、静脉、胆管予以结扎,充分止血,阻断胆漏,然后重复此操作直到切除完毕。结扎相应肝静脉,切除肿瘤,缝合肝断面,止血后冲洗创面,留置引流管。最后关闭腹腔。术后予以常规抗生素预防感染。

1.4 术后吸氧方法

对照组患者术后给予8 h的常规鼻导管低流量(2~3 L/min)吸氧,试验组患者术后延长鼻导管低流量吸氧至48 h。吸氧期间指导患者用鼻慢慢深吸气,再以口缓缓呼气,并鼓励患者自主咳嗽,保持呼吸道湿润、通畅。

1.5 观察指标

分别于麻醉前、术毕、术后8 h、术后24 h、术后48 h、术后72 h经桡动脉抽取动脉血进行血气分析检查,观察两组患者动脉血氧分压(arterial partial pressure of oxygen,PaO2)、(A-a)DO2的变化。于各时点分别取5 mL外周静脉血,立即分离血清,封闭后于-80 ℃保存待测。采用酶联免疫吸附试验(试剂盒购自南京建成生物工程研究所)检测外周血肿瘤坏死因子α(tumor necrosis factor α,TNF-α)的含量,用脂多糖(lipopolysaccharide,LPS)定量测定仪(型号EDS-99,北京金山川科技发展有限公司)测定外周血LPS含量,用多导流量法测定呼出气一氧化氮含量(fractional exhaled nitric oxide,FeNO)。同时测定术后48 h外周血中C-反应蛋白(C-reactive protein,CRP)、白细胞计数和中性粒细胞比例。

记录术后至出院期间肺部并发症的发生情况和住院时间。肺部并发症采用墨尔本分类评分(Melbourne group scale,MGS)标准[10]判断:(1)体温>38 ℃;(2)白细胞计数上升(>11.2×109/L);(3)合并胸部X线表现或肺不张;(4)咳嗽、咯脓性痰;(5)痰培养结果阳性;(6)临床诊断为肺炎;(7)呼吸室内空气时SpO2<90%(氧分压<60 mmHg,伴或不伴二氧化碳分压>50 mmHg);(8)延长住院或监护治疗时间。患者满足上述4条及以上定义为出现术后肺部并发症。

1.6 统计学处理

采用SPSS 17.0软件进行统计学分析。计量资料以x±s表示,组内各时点的比较采用重复测量方差分析,组间各时点的比较采用独立样本t检验;计数资料的比较采用χ2检验。检验水准(α)为0.05。

2 结果 2.1 两组患者一般情况

两组患者年龄、性别、体质量指数、血生物化学指标、血流动力学指标及手术时间等一般情况差异均无统计学意义(P>0.05),见表 1。所有患者麻醉及手术经过顺利,无麻醉意外或严重并发症发生。

表 1 两组患者一般情况比较 Tab 1 Comparison of general conditions of patients between two groups

2.2 两组患者PaO2和(A-a)DO2比较

表 2可见,两组患者在术毕和术后8 h时点PaO2均高于麻醉前,(A-a)DO2均低于麻醉前(P均<0.05);试验组在术后24 h和48 h时点PaO2均高于麻醉前、(A-a)DO2均低于麻醉前(P均<0.05),对照组在术后24 h和48 h时点PaO2均低于麻醉前、(A-a)DO2均高于麻醉前(P均<0.05);术后72 h两组患者PaO2和(A-a)DO2与麻醉前相比差异均无统计学意义(P均>0.05)。术后24 h和48 h时点,试验组PaO2均高于对照组,(A-a)DO2均低于对照组(P均<0.05);麻醉前、术毕、术后8 h、术后72 h时点,两组患者PaO2和(A-a)DO2差异均无统计学意义(P均>0.05)。

表 2 两组患者不同时点PaO2和(A-a)DO2的比较 Tab 2 Comparison of PaO2 and (A-a)DO2 of patients at different time points between two groups

2.3 两组患者外周血指标及FeNO比较

表 3可见,试验组在术后8 h、24 h、48 h时点外周血LPS、外周血TNF-α和FeNO均低于麻醉前(P均<0.05);对照组在术后8 h时点外周血LPS、外周血TNF-α和FeNO均低于麻醉前,而术后24 h、48 h时点上述3项指标均高于麻醉前(P均<0.05)。术后24 h和48 h,试验组外周血LPS、外周血TNF-α和FeNO均低于对照组(P均<0.05);麻醉前、术毕及术后72 h,两组患者上述3项指标差异均无统计学意义(P均>0.05)。在术后48 h时点,试验组和对照组炎症反应指标CRP分别为(102.53±39.71)和(146.33±32.85)mg/L,白细胞计数分别为(9.91±3.96)和(13.65±4.52)×109/L,中性粒细胞比例分别为0.756±0.098和0.856±0.104,试验组CRP、白细胞计数、中性粒细胞比例均低于对照组(P均<0.05)。

表 3 两组患者不同时点外周血LPS、外周血TNF-α和FeNO的比较 Tab 3 Comparison of LPS and TNF-α in peripheral blood, and FeNO of patients at different time points between two groups

2.4 两组患者术后肺部并发症发生情况及住院时间比较

试验组术后肺部并发症发生率(1/36)低于对照组(6/36),住院时间[(5.2±2.3)d]短于对照组[(7.8±3.2)d],差异均有统计学意义(P均<0.05)。

3 讨论

肝肺综合征是在慢性肝病基础上出现的以显著肺微血管扩张、进行性呼吸困难和低氧血症为主要表现的严重肺部并发症,其导致的肺内分流支间断开放进而导致低氧血症间断发生,容易被临床忽略,进而增高术后缺氧的风险[1-2]。术后缺氧易导致肠道细菌移位,使血液中LPS显著增加,一氧化氮(nitric oxide,NO)水平急剧升高,最终导致低氧血症加重;严重的低氧血症进一步加剧肠道菌群移位,进而陷入恶性循环[11-14]。因此,探寻改善肝肺综合征患者术后低氧血症的有效方法已经成为亟待解决的问题。

目前尚无一种切实有效的改善肝癌伴肝肺综合征患者肝切除术后低氧的方法。临床上常用的其他改善术后低氧的方法,如一氧化氮合酶抑制剂亚甲蓝等由于易导致心血管、胃肠道并发症而限制了其使用范围[15],而术后机械通气则易导致肺压力性损伤、循环障碍、呼吸道感染、肺不张、喉损伤和气管损伤等不良后果[16]。既往我院对术后血气指标在正常范围内的肝肺综合征患者给予常规短时间(2~8 h)吸氧,但在临床实践中发现,此类患者尽管血气指标正常,然而因肺内分流支间断开放而导致间断发生低氧血症的可能,进而增高了术后肺部并发症的发生风险。术后48 h是预防并发症和促进患者恢复的黄金时间,在此期间患者需氧量增加,术后延长吸氧时间可能对患者的术后恢复有利。为此,我们设计了本研究,即将术后吸氧时间延长至48 h,以预防可能间断发生的潜在低氧血症,促进患者术后恢复。研究结果发现,术后24 h和48 h,试验组PaO2高于对照组,(A-a)DO2低于对照组,外周血LPS、外周血TNF-α和FeNO低于对照组(P均<0.05);术后48 h,试验组炎症反应指标CRP、白细胞计数、中性粒细胞比例均低于对照组(P均<0.05);此外,试验组术后肺部并发症发生率(1/36)低于对照组(6/36),住院时间[(5.2±2.3)d]短于对照组[(7.8±3.2)d],差异均有统计学意义(P均<0.05)。上述结果表明延长术后持续低流量吸氧时间可改善肝肺综合征患者术后体内的低氧状态,减少肺内分流,降低外周血LPS、外周血TNF-α和FeNO,改善炎症反应相关指标,降低肺部并发症发生率,缩短住院时间,对患者术后恢复有积极的意义。

既往相关动物模型和临床转化研究结果表明,全身性内毒素血症和NO增加在肝肺综合征病理进程中发挥着极为重要的作用[17]。NO是一种气体信使分子,由细胞内的一氧化氮合酶催化L-精氨酸生成,主要通过弥散方式激活鸟苷酸环化酶,促进环磷酸鸟苷(cyclic guanosinc monophosphate,cGMP)生成,从而发挥各种生物学效应[18]。NO是肝肺综合征发病机制中研究最多的血管扩张因子。研究发现肝肺综合征患者体内NO水平异常增高,在进行肝移植术治疗后3个月又恢复正常,并发的肺内血管扩张和异常分流也得到纠正[19]。一氧化氮合酶抑制剂亚甲蓝可使肝肺综合征患者的低氧血症迅速得到纠正,表明通过抑制一氧化氮合酶活性减少NO生成可改善肝肺综合征患者的低氧血症;进一步的研究表明,NO通过活化肺血管细胞中的鸟苷酸环化酶提高cGMP水平,致使肺微血管扩张,肺内动-静脉短路,通气/血流比例失调,最终发展为肝肺综合征[20]。近期研究发现,肠道细菌移位致使血液中LPS升高是导致NO水平异常增高的主要原因。LPS通过诱导Toll样受体2的表达激活机体的免疫反应,启动TNF-α、白细胞介素1a等一系列炎性介质的表达,导致肺血管内巨噬细胞聚集并过度表达一氧化氮合酶,诱导合成过多的NO,进而引发肺循环血管扩张[12, 21]。因此肠源性LPS入血及其导致的TNF-α等炎性因子的释放对肝肺综合征的发生起着重要的作用。既往研究报道维持正常血氧浓度可在一定程度上阻止肠道菌群移位,降低血液中LPS水平,减少诱导型一氧化氮合酶的合成[22]。我们推测延长吸氧时间可改善患者术后低氧血症,减少LPS入血,进而减弱炎症反应及NO介导的肺内微血管扩张程度,促进患者恢复。

总之,本研究发现肝肺综合征患者肝癌切除术后吸氧时限延长至48 h可以有效减轻全身炎症反应,减少肺内分流和肺部并发症,利于患者术后康复和缩短住院时间。但本研究属于单中心单病种研究,仍需开展多中心、大样本、多病种研究进一步证实。同时本研究采取的是延长低流量吸氧时间的方法,并未与高流量吸氧进行比较,关于吸氧方案的优化仍有待进一步探索。

参考文献
[1]
LAM SHIN CHEUNG J, NAIMI M, SYKES J, GUPTA S. A role for alveolar exhaled nitric oxide measurement in the diagnosis of hepatopulmonary syndrome[J/OL]. J Clin Gastroenterol, 2019. doi: 10.1097/MCG.0000000000001246.
[2]
SWANSON K L. Translational research in hepatopulmonary syndrome:lessons learned despite negative results[J]. Liver Transpl, 2019, 25: 1136-1137. DOI:10.1002/lt.25586
[3]
SWANSON K L, WIESNER R H, KROWKA M J. Natural history of hepatopulmonary syndrome:impact of liver transplantation[J]. Hepatology, 2005, 41: 1122-1129. DOI:10.1002/hep.20658
[4]
JIN X, SUN B J, SONG J K, ROH J H, JANG J Y, KIM D H, et al. Time-dependent reversal of significant intrapulmonary shunt after liver transplantation[J]. Korean J Intern Med, 2019, 34: 510-518. DOI:10.3904/kjim.2017.152
[5]
KIM J A, LEE J J, KIM C S, CHUNG I S, GWAK M S, KIM G S. Does general anesthesia with inhalation anesthetics worsen hypoxemia in patients with end-stage liver disease and an intrapulmonary shunt?[J]. Transplant Proc, 2011, 43: 1665-1668. DOI:10.1016/j.transproceed.2011.03.056
[6]
ARGUEDAS M R, FALLON M B. Hepatopulmonary syndrome[J]. Clin Liver Dis, 2005, 9: 733-746. DOI:10.1016/j.cld.2005.07.006
[7]
MONSEL A, MAL H, BRISSON H, LUO R, EYRAUD D, VEZINET C, et al. Extracorporeal membrane oxygenation as a bridge to liver transplantation for acute respiratory distress syndrome-induced life-threatening hypoxaemia aggravated by hepatopulmonary syndrome[J/OL]. Crit Care, 2011, 15: R234. doi: 10.1186/cc10476.
[8]
MAZZAFERRO V, LLOVET J M, MICELI R, BHOORI S, SCHIAVO M, MARIANI L, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria:a retrospective, exploratory analysis[J]. Lancet Oncol, 2009, 10: 35-43. DOI:10.1016/S1470-2045(08)70284-5
[9]
KROWKA M J, FALLON M B, KAWUT S M, FUHRMANN V, HEIMBACH J K, RAMSAY M A, et al. International liver transplant society practice guidelines:diagnosis and management of hepatopulmonary syndrome and portopulmonary hypertension[J]. Transplantation, 2016, 100: 1440-1452. DOI:10.1097/TP.0000000000001229
[10]
LUGG S T, AGOSTINI P J, TIKKA T, KERR A, ADAMS K, BISHAY E, et al. Long-term impact of developing a postoperative pulmonary complication after lung surgery[J]. Thorax, 2016, 71: 171-176. DOI:10.1136/thoraxjnl-2015-207697
[11]
KHORAMZADEH M, DEHGHANIAN A, KETABCHI F. Roles of endothelin B receptors and endothelial nitric oxide synthase in the regulation of pulmonary hemodynamic in cirrhotic rats[J]. J Cardiovasc Pharmacol, 2019, 73: 178-185. DOI:10.1097/FJC.0000000000000650
[12]
ZHANG J, YANG W, HU B, WU W, FALLON M B. Endothelin-1 activation of the endothelin B receptor modulates pulmonary endothelial CX3CL1 and contributes to pulmonary angiogenesis in experimental hepatopulmonary syndrome[J]. Am J Pathol, 2014, 184: 1706-1714. DOI:10.1016/j.ajpath.2014.02.027
[13]
KOCH D G, BOGATKEVICH G, RAMSHESH V, LEMASTERS J J, UFLACKER R, REUBEN A. Elevated levels of endothelin-1 in hepatic venous blood are associated with intrapulmonary vasodilatation in humans[J]. Dig Dis Sci, 2012, 57: 516-523. DOI:10.1007/s10620-011-1905-6
[14]
MAS N, ISIK A T, MAS M R, COMERT B, TASCI I, DEVECI S, et al. Hyperbaric oxygen-induced changes in bacterial translocation and acinar ultrastructure in rat acute necrotizing pancreatitis[J]. J Gastroenterol, 2005, 40: 980-986. DOI:10.1007/s00535-005-1653-5
[15]
ROMA J, BALBI E, PACHECO-MOREIRA L, GONZALEZ A C, LEAL C G, POUSA F, et al. Methylene blue used as a bridge to liver transplantation postoperative recovery:a case report[J]. Transplant Proc, 2010, 42: 601-604. DOI:10.1016/j.transproceed.2010.01.003
[16]
PHAM T, BROCHARD L J, SLUTSKY A S. Mechanical ventilation:state of the art[J]. Mayo Clin Proc, 2017, 92: 1382-1400. DOI:10.1016/j.mayocp.2017.05.004
[17]
ZHANG Z J, YANG C Q. Progress in investigating the pathogenesis of hepatopulmonary syndrome[J]. Hepatobiliary Pancreat Dis Int, 2010, 9: 355-360.
[18]
KEMP-HARPER B, SCHMIDT H H. cGMP in the vasculature[J]. Handb Exp Pharmacol, 2009(191): 447-467.
[19]
ROLLA G, BRUSSINO L, COLAGRANDE P, SCAPPATICCI E, MORELLO M, BERGERONE S, et al. Exhaled nitric oxide and impaired oxygenation in cirrhotic patients before and after liver transplantation[J]. Ann Intern Med, 1998, 129: 375-378. DOI:10.7326/0003-4819-129-5-199809010-00005
[20]
GRONEBERG D A, FISCHER A. Methylene blue improves the hepatopulmonary syndrome[J]. Ann Intern Med, 2001, 135: 380-381. DOI:10.7326/0003-4819-135-5-200109040-00018
[21]
易慧敏, 汪根树, 蔡常洁, 杨扬, 陆敏强, 胡斌, 等. 肝肺综合征患者外周血单核细胞Toll样受体2和一氧化氮合酶的表达及其意义[J]. 中华医学杂志, 2009, 89: 1521-1524.
[22]
INAL V, MAS M R, ISIK A T, COMERT B, AYDN S, MAS N, et al. A new combination therapy in severe acute pancreatitis-hyperbaric oxygen plus 3-aminobenzamide:an experimental study[J]. Pancreas, 2015, 44: 326-330. DOI:10.1097/MPA.0000000000000240