第二军医大学学报  2019, Vol. 40 Issue (10): 1124-1129   PDF    
长链非编码RNA在宫颈癌发生、发展中的机制
贺海威, 王静, 徐明娟     
海军军医大学(第二军医大学)长海医院妇产科, 上海 200433
摘要: 宫颈癌是女性第二常见的恶性肿瘤,是发展中国家女性恶性肿瘤死亡的第三大主要原因,早期诊断和治疗是有效治疗宫颈癌、改善预后的关键。由于其复杂性,宫颈癌的发生、发展机制仍然是研究者亟需攻克的难题。近年来,大量研究表明长链非编码RNA(lncRNA)在肿瘤发生、发展中起着重要作用。本文围绕人乳头瘤病毒(HPV)型E6和E7癌蛋白相关机制、lncRNA性质相关机制和肿瘤发生、发展中常见信号通路相关机制,对宫颈癌机制网络中lncRNA的作用进行综述,为筛查宫颈癌早期诊断和治疗中可用的潜在标志物提供参考。
关键词: 长链非编码RNA    宫颈肿瘤    信号转导通路    微RNA    
Long non-coding RNAs in development and progression of cervical cancer: mechanism research status
HE Hai-wei, WANG Jing, XU Ming-juan     
Department of Gynaecology and Obstetrics, Changhai Hospital, Naval Medical University(Second Military Medical University), Shanghai 200433, China
Supported by National Key Research and Development Program of China (2016YFC1303100).
Abstract: Cervical cancer is the second most commonly seen cancer in women and the third leading cause of cancer death in developing countries. Early diagnosis and treatment are the keys to the effective treatment of cervical cancer and the improvement of prognosis. Because of the complexity, the mechanism of development and progression of cervical cancer is still an urgent problem to solve. Recently, quantity of studies have shown that long non-coding RNAs (lncRNAs) play important roles in tumor development and progression. In this review, we sumed up the multiple effects of lncRNAs in cervical cancer, focusing on the related mechanisms of human papilloma virus (HPV) E6 and E7 oncoprotein, the nature of lncRNAs and the signaling pathway in the development and progression of cervical cancer. And we further expounded the cervical cancer mechanism network, providing reference for screening the potential markers for early diagnosis and treatment of cervical cancer.
Key words: long non-coding RNAs    uterine cervical neoplasms    signaling pathway    microRNAs    

宫颈癌是女性生殖系统第二常见的恶性肿瘤[1]。据美国癌症学会估计,到2019年将有13 170例新发侵袭性宫颈癌,且有4 250例女性患者因该病死亡[2]。宫颈癌的发生是一个循序渐进的过程,起病初表现为宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN),经CIN1、CIN2、CIN3、早期浸润癌多个阶段最终发展成浸润癌[3]。宫颈人乳头瘤病毒(human papilloma virus,HPV)的持续感染是宫颈癌癌前病变及宫颈癌发病的必要条件[4]。高危人乳头瘤病毒(high-risk human papilloma virus,hrHPV)感染已被证实为侵袭性宫颈癌的主要病因[5]。大量研究表明长链非编码RNA(long non-coding RNA,lncRNA)在宫颈癌的发生、发展过程中发挥着促癌或抑癌作用,其机制涉及E6和E7癌蛋白、微RNA(microRNA,miRNA)及多条信号通路[6-9]。本文就lncRNA在宫颈癌发生、发展中的机制进行综述。

1 LncRNA概述

LncRNA是具有200多个核苷酸的异质性转录本,由于缺少所需长度的开放阅读框而不具备蛋白质编码能力,可以按照位置[如长基因间RNA(large intergenic noncoding RNA,lincRNA)]、结构[如环状RNA(circular RNA,circRNA)]、功能[如竞争性内源性RNA(competitive endogenous RNA,ceRNA)]和转录方向(如反义RNA)等进行分类[10]

研究发现,lncRNA是一类新型的肿瘤主调控因子,在细胞增殖、细胞分化、染色质重构、基因组剪接、表观遗传调控、转录等重要生物学过程中发挥着关键作用[11]。如lncRNA肝细胞核因子1同源异型盒A(hepatocyte nuclear factor 1 homeobox A,HNF1A)反义RNA1在非小细胞肺癌组织和细胞系中表达上调,其高表达与晚期临床分期和转移相关[12]。LncRNA CCAAT/增强子结合蛋白α(CCAAT/enhancer binding protein α,CEBPA)反义RNA1是一种癌基因,其在口腔鳞状细胞癌中表达上调与临床晚期、分化不良、淋巴结转移相关[13]

此外,lncRNA的细胞定位与其潜在功能信息有关。细胞核lncRNA可通过与关键表观遗传调控因子相互作用,增强染色质环化及与剪接因子相互作用调控剪接,从而实现转录调控[14]。目前发现的细胞核lncRNA有lncRNA-肺腺癌转移相关转录本1(metastasis-associated lung adenocarcinoma transcript 1,MALAT1)[15]和lncRNA-核富含丰富的转录本1(nuclear-enriched abundant transcript 1,NEAT1)[16],细胞质lncRNA有lncRNA-分化拮抗非蛋白质编码RNA(differentiation antagonizing nonprotein coding RNA,DANCR)[17]和lncRNA-opa相互作用蛋白5-反义转录本1(opa-interacting protein 5 antisense transcript 1,OIP5-AS1)[18],双定位lncRNA有lncRNA-牛磺酸上调基因1(taurine-upregulated gene 1,TUG1)[19]、lncRNA-癌症易感性候选基因7(cancer susceptibility candidate 7,CasC7)和lncRNA-HOX转录反义RNA(HOX transcript antisense RNA,HOTAIR)[20]。研究发现,细胞质lncRNA在转录后作为ceRNA发挥作用,通过充当miRNA海绵并与mRNA结合来招募RNA结合蛋白,从而促进降解、抑制翻译或启动翻译,例如lncRNA-FAM83H反义RNA1(FAM83H antisense RNA1,FAM83H-AS1)[14]。随着高通量测序等技术的应用,越来越多的研究表明lncRNA是多种生物学过程的重要调控因子,也是宫颈癌中新的生物学调控分子之一[6-8]。LncRNA通过调节HPV中E6、E7癌蛋白、作为诱捕lncRNA调控miRNA、调控Wnt等多条信号通路,从而参与宫颈癌的发生、发展。

2 E6、E7癌蛋白

HPV是一种无包膜的双链DNA病毒,在鳞状上皮细胞中感染和复制[21-22]。HPV病毒基因组分为3个区域:(1)早期(E)区,包括E1~E7,与病毒复制相关;(2)晚期(L)区域,包括主要(L1)和次要(L2)衣壳蛋白;(3)非编码区(non-coding region,NCR),又称长控制区(long control region,LCR)。

病毒蛋白hrHPV E6参与了从HPV感染的早期阶段到癌变的整个进程。HPV E6癌蛋白与多种细胞蛋白相互作用而激活多种致癌途径,如导致细胞凋亡受阻、转录机制改变、细胞相互作用受到干扰和细胞永生。目前只有几个lncRNA被证明受到HPV-16 E6的特异性调控,包括lncRNA-MALAT1和宫颈癌增殖细胞核抗原表达调控lncRNA(cervical carcinoma expressed PCNA regulatory lncRNA,lncRNA-CCEPR)[14]。HPV E6可导致几种宿主lncRNA发生差异表达,包括lncRNA-生长停滞特异性转录本5(growth arrest-specific transcript 5,GAS5)、lncRNA-H19和lncRNA-FAM83H-AS1[14]。HPV E6蛋白的致癌活性之一是通过靶向p53(肿瘤抑制因子)降解使其失活,如lncRNA-WT1反义RNA(WT1 antisense RNA,WT1-AS)可通过miRNA-330-5p上调p53从而抑制宫颈癌细胞生长和侵袭[23]

病毒蛋白hrHPV E6和E7在癌细胞中可组成性表达以维持致癌表型,也可相互拮抗抑制癌基因表达,如lncRNA-胸腺肽假基因2(thymopoietin pseudogene 2,TMPOP2)和HPV16/18 E6/E7在宫颈癌细胞中相互促进表达,增强致癌活性[24]

3 诱捕lncRNA

根据功能可将lncRNA分为4大类:信号lncRNA、诱捕lncRNA、向导lncRNA、支架lncRNA[25]。近年来,越来越多的研究报道lncRNA与miRNA结合并抑制其作用,从而发挥ceRNA或miRNA海绵的作用[26-27]。ceRNA理论认为,lncRNA在细胞质中高度表达,能够与miRNA竞争性结合调控其下游靶基因,从而抑制miRNA的生物学功能,参与肿瘤的发生、发展[28]。诱捕lncRNA可充当ceRNA[29],犹如一种分子海绵,能结合和吸附其他调控蛋白质和miRNA等,从而抑制这些分子的功能间接调控基因的表达。详见表 1。诱捕lncRNA可能成为改善宫颈癌患者化学治疗反应和生存的一个新靶点。

表 1 常见诱捕lncRNA及其在宫颈癌中的作用机制 Tab 1 Common decoy lncRNAs and its mechanisms in cervical cancer

4 信号通路

目前关于宫颈癌相关lncRNA的研究多数仅局限于1个或2个孤立的lncRNA,涉及的细胞信号通路也不多。由于宫颈癌调控体系复杂,涉及的细胞通路多样,有必要对宫颈癌相关的lncRNA进行细胞信号通路层面的归纳和总结。

4.1 Wnt/β-连环蛋白(β-catenin)信号通路

Wnt/β-Catenin信号通路在宫颈癌的发生和转移中扮演着关键角色。LncRNA-HOTAIR被定义为cMyc激活的恶性肿瘤驱动因子,在宫颈癌的进展中发挥重要作用。下调lncRNA-HOTAIR通过抑制Wnt信号通路抑制宫颈癌细胞自噬、增殖和上皮间质转化(epithelial-mesenchymal transition,EMT),从而增强宫颈癌细胞对放射治疗的敏感性[50]。LncRNA-DiGeorge综合征关键区域基因5(DiGeorge syndrome critical region gene 5,DGCR5)下调可激活Wnt信号,从而促进宫颈癌的进展[51]。过表达LINC00675增强了宫颈癌细胞中的Wnt/β-catenin信号[52]

4.2 磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase,PI3K)-蛋白激酶B(protein kinase B,Akt)-哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路

激活PI3K/Akt/mTOR信号通路会促进肿瘤细胞的增殖。PI3K是一种异二聚体蛋白,由1个调控亚基(p85a/b)和1个催化亚基(p110a/b/g/d)组成。激活的PI3K通过调控其下游靶蛋白Akt进而调控细胞增殖、凋亡和肿瘤发生。下调lncRNA-LINC01305通过靶向TNXB抑制PI3K/Akt信号通路,最终抑制EMT、细胞侵袭和细胞迁移[53]。肿瘤抑制因子PTEN是PI3K/PTEN/Akt信号通路的负调控因子,它以Akt为靶点调控细胞生长、分化、增殖和迁移。

4.3 丝裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路

MAPK通路在细胞增殖、分化、血管生成和存活等关键过程中发挥重要作用。该通路的核心是一个三级级联的磷酸化-去磷酸化反应MAPK激酶激酶/MAPK激酶/MAPK,启动后导致基因转录。MAPK信号通路的下游是ERK通路,这是一个进化上保守的级联信号。ERK/MAPK通路是肿瘤治疗的重要靶点,例如在黑素瘤和肝细胞癌中,lncRNA-RMEL3[54]和lncRNA-URHC[55]下调可通过使ERK/MAPK通路失活调控肿瘤细胞增殖,诱导细胞凋亡;在子宫内膜癌中,lncRNA-BRAF激活的非编码RNA(BRAF-activated non-protein-coding RNA,BANCR)下调可通过降低基质金属蛋白酶(matrix metalloproteinase,MMP)-1和MMP-2抑制ERK/MAPK通路[56];在胶质瘤中,lncRNA-MALAT1介导的肿瘤抑制可能通过下调MMP-2而降低ERK/MAPK信号通路活性[57]。关于宫颈癌中lncRNA对MAPK通路作用的报道较少,Liu等[58]发现lncRNA-MNX1 AS1可通过激活MAPK通路影响宫颈癌的进展。

5 小结与展望

细胞信号通路等机制在宫颈癌的发生、发展、转归等过程中发挥着不可替代的作用,作为其中重要的组成部分,大量的lncRNA起着不可忽视的调控作用。LncRNA-HOTAIR已成为宫颈癌药物治疗的分子靶标。中药有效成分青蒿琥酯可通过抑制lncRNA-HOTAIR表达而下调环氧合酶2(cyclooxygenase 2,COX-2),继而抑制MMP和血小板源性生长因子(platelet-derived growth factor,PDGF)合成,发挥抑制宫颈癌细胞侵袭与转移的作用[59]

由于宫颈癌调控体系的复杂性和涉及细胞通路的多样性,单一或少数的lncRNA并不足以产生决定性影响,应从整体层面把控lncRNA并进行总结归纳,分析lncRNA与miRNA、癌基因E6/E7、细胞信号通路之间的联系。基于细胞信号通路层面整体把控的宫颈癌lncRNA有望成为宫颈癌早期诊断和预后相关的生物标志物,从中筛选关键节点的lncRNA可能有助于开发新的治疗策略。

参考文献
[1]
HOSSEINI E S, MERYET-FIGUIERE M, SABZALIPOOR H, KASHANI H H, NIKZAD H, ASEMI Z. Dysregulated expression of long noncoding RNAs in gynecologic cancers[J/OL]. Mol Cancer, 2017, 16: 107. doi: 10.1186/s12943-017-0671-2.
[2]
SMITH R A, ANDREWS K S, BROOKS D, FEDEWA S A, MANASSARAM-BAPTISTE D, SASLOW D, et al. Cancer screening in the United States, 2019:a review of current American Cancer Society guidelines and current issues in cancer screening[J]. CA:Cancer J Clin, 2019, 69: 184-210. DOI:10.3322/caac.21557
[3]
周青, 张瑞金, 刘帅妹, 石慧, 林宁, 吴玉璘, 等. 宫颈癌发生相关lncRNA的研究进展[J]. 中国医药导报, 2018, 15: 42-45.
[4]
邬素珍, 许焕英. 宫颈人乳头瘤病毒感染的免疫研究进展[J]. 医学信息, 2018, 31: 33-36.
[5]
LEI J, PLONER A, LAGHEDEN C, EKLUND C, NORDQVIST KLEPPE S, ANDRAE B, et al. High-risk human papillomavirus status and prognosis in invasive cervical cancer: a nationwide cohort study[J/OL]. PLoS Med, 2018, 15: e1002666. doi: 10.1371/journal.pmed.1002666.
[6]
PENG L, YUAN X, JIANG B, TANG Z, LI G C. LncRNAs:key players and novel insights into cervical cancer[J]. Tumour Biol, 2016, 37: 2779-2788. DOI:10.1007/s13277-015-4663-9
[7]
DONG J, SU M, CHANG W, ZHANG K, WU S, XU T. Long non-coding RNAs on the stage of cervical cancer (review)[J]. Oncol Rep, 2017, 38: 1923-1931. DOI:10.3892/or.2017.5905
[8]
AALIJAHAN H, GHORBIAN S. Long non-coding RNAs and cervical cancer[J]. Exp Mol Pathol, 2019, 106: 7-16. DOI:10.1016/j.yexmp.2018.11.010
[9]
LUAN X, WANG Y. LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against miR-331-3p and miR-338-3p[J/OL]. J Gynecol Oncol, 2018, 29: e95. doi: 10.3802/jgo.2018.29.e95.
[10]
QU X, ALSAGER S, ZHUO Y, SHAN B. HOX transcript antisense RNA (HOTAIR) in cancer[J]. Cancer Lett, 2019, 454: 90-97. DOI:10.1016/j.canlet.2019.04.016
[11]
XIAO X, ZHU W, LIAO B, XU J, GU C, JI B, et al. BPLLDA: predicting lncRNA-disease associations based on simple paths with limited lengths in a heterogeneous network[J/OL]. Front Genet, 2018, 9: 411. doi: 10.3389/fgene.2018.00411.
[12]
LIU Z, LI H, FAN S, LIN H, LIAN W. STAT3-induced upregulation of long noncoding RNA HNF1A-AS1 promotes the progression of oral squamous cell carcinoma via activating Notch signaling pathway[J]. Cancer Biol Ther, 2019, 20: 444-453. DOI:10.1080/15384047.2018.1529119
[13]
GUO Y, MA Y, HU X, SONG R, ZHU L, ZHONG M. Long non-coding RNA CEBPA-AS1 correlates with poor prognosis and promotes tumorigenesis via CEBPA/Bcl2 in oral squamous cell carcinoma[J]. Cancer Biol Ther, 2018, 19: 205-213. DOI:10.1080/15384047.2017.1416276
[14]
BARR J A, HAYES K E, BROWNMILLER T, HAROLD A D, JAGANNATHAN R, LOCKMAN P R, et al. Long non-coding RNA FAM83H-AS1 is regulated by human papillomavirus 16 E6 independently of p53 in cervical cancer cells[J/OL]. Sci Rep, 2019, 9: 3662. doi: 10.1038/s41598-019-40094-8.
[15]
ZHU P, WANG F Q, LI Q R. Correlation study between long non-coding RNA MALAT1 and radiotherapy efficiency on cervical carcinoma and generation of radiotherapy resistant model of cancer[J]. Eur Rev Med Pharmacol Sci, 2018, 22: 5140-5148.
[16]
WANG H L, HOU S Y, LI H B, QIU J P, BO L, MAO C P. Biological function and mechanism of long noncoding RNAs nuclear-enriched abundant transcript 1 in development of cervical cancer[J]. Chin Med J (Engl), 2018, 131: 2063-2070. DOI:10.4103/0366-6999.239308
[17]
LIANG H, ZHANG C, GUAN H, LIU J, CUI Y. LncRNA DANCR promotes cervical cancer progression by upregulating ROCK1 via sponging miR-335-5p[J]. J Cell Physiol, 2019, 234: 7266-7278. DOI:10.1002/jcp.27484
[18]
YANG J, JIANG B, HAI J, DUAN S, DONG X, CHEN C. Long noncoding RNA OPA-interacting protein 5 antisense transcript 1 promotes proliferation and invasion through elevating integrin α6 expression by sponging miR-143-3p in cervical cancer[J]. J Cell Biochem, 2019, 120: 907-916. DOI:10.1002/jcb.27454
[19]
HU Y, SUN X, MAO C, GUO G, YE S, XU J, et al. Upregulation of long noncoding RNA TUG1 promotes cervical cancer cell proliferation and migration[J]. Cancer Med, 2017, 6: 471-482. DOI:10.1002/cam4.994
[20]
LENNOX K A, BEHLKE M A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides[J]. Nucleic Acids Res, 2016, 44: 863-877. DOI:10.1093/nar/gkv1206
[21]
TOMMASINO M. The human papillomavirus family and its role in carcinogenesis[J]. Semin Cancer Biol, 2014, 26: 13-21. DOI:10.1016/j.semcancer.2013.11.002
[22]
HATTERSCHIDE J, BOHIDAR A E, GRACE M, NULTON T J, KIM H W, WINDLE B, et al. PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis[J]. Proc Natl Acad Sci USA, 2019, 116: 7033-7042. DOI:10.1073/pnas.1819534116
[23]
CUI L, NAI M, ZHANG K, LI L, LI R. lncRNA WT1-AS inhibits the aggressiveness of cervical cancer cell via regulating p53 expression via sponging miR-330-5p[J]. Cancer Manag Res, 2019, 11: 651-667. DOI:10.2147/CMAR.S176525
[24]
HE H, LIU X, LIU Y, ZHANG M, LAI Y, HAO Y, et al. Human papillomavirus E6/E7 and long noncoding RNA TMPOP2 mutually upregulated gene expression in cervical cancer cells[J/OL]. J Virol, 2019, 93, pii: e01808-18. doi: 10.1128/JVI.01808-18.
[25]
黄桢, 王艳林, 黄利鸣. 长链非编码RNA与宫颈癌关系的研究进展[J]. 生命的化学, 2018, 38: 185-190.
[26]
MAO Y, LIU R, ZHOU H, YIN S, ZHAO Q, DING X, et al. Transcriptome analysis of miRNA-lncRNA-mRNA interactions in the malignant transformation process of gastric cancer initiation[J]. Cancer Gene Ther, 2017, 24: 267-275. DOI:10.1038/cgt.2017.14
[27]
BALLANTYNE M D, MCDONALD R A, BAKER A H. LncRNA/microRNA interactions in the vasculature[J]. Clin Pharmacol Therap, 2016, 99: 494-501. DOI:10.1002/cpt.355
[28]
RUI X, XU Y, JIANG X, YE W, HUANG Y, JIANG J. Long non-coding RNA C5orf66-AS1 promotes cell proliferation in cervical cancer by targeting miR-637/RING1 axis[J/OL]. Cell Death Dis, 2018, 9: 1175. doi: 10.1038/s41419-018-1228-z.
[29]
ZHANG X, ZHAO X, LI Y, ZHOU Y, ZHANG Z. Long noncoding RNA SOX21-AS1 promotes cervical cancer progression by competitively sponging miR-7/VDAC1[J]. J Cell Physiol, 2019, 234: 17494-17504.
[30]
YAO J, LI Z, YANG Z, XUE H, CHANG H, ZHANG X, et al. Long noncoding RNA TOB1-AS1, an epigenetically silenced gene, functioned as a novel tumor suppressor by sponging miR-27b in cervical cancer[J]. Am J Cancer Res, 2018, 8: 1483-1498.
[31]
ZHANG J, YAO T, WANG Y, YU J, LIU Y, LIN Z. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21[J]. Cancer Biol Ther, 2016, 17: 104-113. DOI:10.1080/15384047.2015.1108496
[32]
GAO J, LIU L, LI G, CAI M, TAN C, HAN X, et al. LncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis[J]. Int J Biol Macromol, 2019, 126: 994-1001. DOI:10.1016/j.ijbiomac.2018.12.176
[33]
YAO T, LU R, ZHANG J, FANG X, FAN L, HUANG C, et al. Growth arrest-specific 5 attenuates cisplatin-induced apoptosis in cervical cancer by regulating STAT3 signaling via miR-21[J]. J Cell Physiol, 2019, 234: 9605-9615. DOI:10.1002/jcp.27647
[34]
JIANG H, HUANG G, ZHAO N, ZHANG T, JIANG M, HE Y, et al. Long non-coding RNA TPT1-AS1 promotes cell growth and metastasis in cervical cancer via acting AS a sponge for miR-324-5p[J/OL]. J Exp Clin Cancer Res, 2018, 37: 169. doi: 10.1186/s13046-018-0846-8.
[35]
RUI X, XU Y, HUANG Y, JI L, JIANG X. lncRNA DLG1-AS1 promotes cell proliferation by competitively binding with miR-107 and up-regulating ZHX1 expression in cervical cancer[J]. Cell Physiol Biochem, 2018, 49: 1792-1803. DOI:10.1159/000493625
[36]
ZHANG W Y, LIU Y J, HE Y, CHEN P. Suppression of long noncoding RNA NCK1-AS1 increases chemosensitivity to cisplatin in cervical cancer[J]. J Cell Physiol, 2019, 234: 4302-4313. DOI:10.1002/jcp.27198
[37]
GAO Y L, ZHAO Z S, ZHANG M Y, HAN L J, DONG Y J, XU B. Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR-424[J]. Oncol Res, 2017, 25: 1391-1398. DOI:10.3727/096504017X14881559833562
[38]
CHEN X, XIONG D, YE L, WANG K, HUANG L, MEI S, et al. Up-regulated lncRNA XIST contributes to progression of cervical cancer via regulating miR-140-5p and ORC1[J/OL]. Cancer Cell Int, 2019, 19: 45. doi: 10.1186/s12935-019-0744-y.
[39]
DONG P, XIONG Y, YU J, CHEN L, TAO T, YI S, et al. Control of PD-L1 expression by miR-140/142/340/383 and oncogenic activation of the OCT4-miR-18a pathway in cervical cancer[J]. Oncogene, 2018, 37: 5257-5268. DOI:10.1038/s41388-018-0347-4
[40]
ZHU H, ZHENG T, YU J, ZHOU L, WANG L. LncRNA XIST accelerates cervical cancer progression via upregulating Fus through competitively binding with miR-200a[J]. Biomed Pharmacother, 2018, 105: 789-797. DOI:10.1016/j.biopha.2018.05.053
[41]
XU Y, ZHOU W, ZHANG C, LIU X, LV J, LI X, et al. Long non-coding RNA RP11-552M11.4 favors tumorigenesis and development of cervical cancer via modulating miR-3941/ATF1 signaling[J]. Int J Biol Macromol, 2019, 130: 24-33. DOI:10.1016/j.ijbiomac.2019.02.083
[42]
GUO H, YANG S, LI S, YAN M, LI L, ZHANG H. LncRNA SNHG20 promotes cell proliferation and invasion via miR-140-5p-ADAM10 axis in cervical cancer[J]. Biomed Pharmacother, 2018, 102: 749-757. DOI:10.1016/j.biopha.2018.03.024
[43]
ZHANG X, MAO L, LI L, HE Z, WANG N, SONG Y. Long noncoding RNA GIHCG functions as an oncogene and serves as a serum diagnostic biomarker for cervical cancer[J]. J Cancer, 2019, 10: 672-681. DOI:10.7150/jca.28525
[44]
LIAO L M, ZHANG F H, YAO G J, AI S F, ZHENG M, HUANG L. Role of long noncoding RNA 799 in the metastasis of cervical cancer through upregulation of TBL1XR1 expression[J]. Mol Ther Nucleic Acids, 2018, 13: 580-589. DOI:10.1016/j.omtn.2018.10.007
[45]
CHEN X, XIONG D, YANG H, YE L, MEI S, WU J, et al. Long noncoding RNA OPA-interacting protein 5 antisense transcript 1 upregulated SMAD3 expression to contribute to metastasis of cervical cancer by sponging miR-143-3p[J]. J Cell Physiol, 2019, 234: 5264-5275. DOI:10.1002/jcp.27336
[46]
HUO H, TIAN J, WANG R, LI Y, QU C, WANG N. Long non-coding RNA NORAD upregulate SIP1 expression to promote cell proliferation and invasion in cervical cancer[J]. Biomed Pharmacother, 2018, 106: 1454-1460. DOI:10.1016/j.biopha.2018.07.101
[47]
JIN X J, CHEN X J, ZHANG Z F, HU W S, OU R Y, LI S, et al. Long noncoding RNA SNHG12 promotes the progression of cervical cancer via modulating miR-125b/STAT3 axis[J]. J Cell Physiol, 2019, 234: 6624-6632. DOI:10.1002/jcp.27403
[48]
ZHENG P, YIN Z, WU Y, XU Y, LUO Y, ZHANG T C. LncRNA HOTAIR promotes cell migration and invasion by regulating MKL1 via inhibition miR206 expression in HeLa cells[J/OL]. Cell Commun Signal, 2018, 16: 5. doi: 10.1186/s12964-018-0216-3.
[49]
LIU M, JIA J, WANG X, LIU Y, WANG C, FAN R. Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p[J]. Cancer Biol Ther, 2018, 19: 391-399. DOI:10.1080/15384047.2018.1423921
[50]
GUO X, XIAO H, GUO S, LI J, WANG Y, CHEN J, et al. Long noncoding RNA HOTAIR knockdown inhibits autophagy and epithelial-mesenchymal transition through the Wnt signaling pathway in radioresistant human cervical cancer HeLa cells[J]. J Cell Physiol, 2019, 234: 3478-3489. DOI:10.1002/jcp.26828
[51]
LIU Y, CHANG Y, LU S, XIANG Y Y. Downregulation of long noncoding RNA DGCR5 contributes to the proliferation, migration, and invasion of cervical cancer by activating Wnt signaling pathway[J]. J Cell Physiol, 2019, 234: 11662-11669. DOI:10.1002/jcp.27825
[52]
MA S, DENG X, YANG Y, ZHANG Q, ZHOU T, LIU Z. The lncRNA LINC00675 regulates cell proliferation, migration, and invasion by affecting Wnt/β-catenin signaling in cervical cancer[J]. Biomed Pharmacother, 2018, 108: 1686-1693. DOI:10.1016/j.biopha.2018.10.011
[53]
YAN S P, CHU D X, QIU H F, XIE Y, WANG C F, ZHANG J Y, et al. LncRNA LINC01305 silencing inhibits cell epithelial-mesenchymal transition in cervical cancer by inhibiting TNXB-mediated PI3K/Akt signalling pathway[J]. J Cell Mol Med, 2019, 23: 2656-2666. DOI:10.1111/jcmm.14161
[54]
CARDOSO C, SERAFIM R B, KAWAKAMI A, GONÇALVES PEREIRA C, ROSZIK J, VALENTE V, et al. The lncRNA RMEL3 protects immortalized cells from serum withdrawal-induced growth arrest and promotes melanoma cell proliferation and tumor growth[J]. Pigment Cell Melanoma Res, 2019, 32: 303-314. DOI:10.1111/pcmr.12751
[55]
XU W H, ZHANG J B, DANG Z, LI X, ZHOU T, LIU J, et al. Long non-coding RNA URHC regulates cell proliferation and apoptosis via ZAK through the ERK/MAPK signaling pathway in hepatocellular carcinoma[J]. Int J Biol Sci, 2014, 10: 664-676. DOI:10.7150/ijbs.8232
[56]
WANG D, WANG D, WANG N, LONG Z, REN X. Long non-coding RNA BANCR promotes endometrial cancer cell proliferation and invasion by regulating MMP2 and MMP1 via ERK/MAPK signaling pathway[J]. Cell Physiol Biochem, 2016, 40: 644-656. DOI:10.1159/000452577
[57]
HAN Y, WU Z, WU T, HUANG Y, CHENG Z, LI X, et al. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling[J/OL]. Cell Death Dis, 2016, 7: e2123. doi: 10.1038/cddis.2015.407.
[58]
LIU X, YANG Q, YAN J, ZHANG X, ZHENG M. LncRNA MNX1-AS1 promotes the progression of cervical cancer through activating MAPK pathway[J]. J Cell Biochem, 2019, 120: 4268-4277. DOI:10.1002/jcb.27712
[59]
ZHANG L, QIAN H, SHA M, LUAN Z, LIN M, YUAN D, et al. Downregulation of HOTAIR expression mediated anti-metastatic effect of artesunate on cervical cancer by inhibiting COX-2 expression[J/OL]. PLoS One, 2016, 11: e0164838. doi: 10.1371/journal.pone.0164838.