第二军医大学学报  2018, Vol. 39 Issue (7): 722-725   PDF    
间充质干细胞来源外泌体在肾脏疾病中的研究进展
纪成, 费书琴, 陈鸣, 张荣雪, 许文荣, 钱晖     
江苏大学医学院分子检验研究室, 镇江 212013
摘要: 外泌体是细胞内多泡体与细胞膜融合后分泌到细胞外的纳米级膜性微小囊泡,其在细胞间的物质和信息传递中起重要作用。间充质干细胞(MSC)来源外泌体(MSC-exo)是MSC重要的旁分泌途径,具有促进组织损伤修复与免疫调节等生物学作用。与MSC相比,MSC-exo有其独特的优势。研究显示,MSC-exo在多种肾脏疾病中通过递送蛋白质、信使RNA、微RNA等生物活性分子靶向受损组织,从而减轻肾损伤。本文对MSC-exo在肾脏疾病中的研究进展作一综述。
关键词: 间充质干细胞     外泌体     肾疾病     损伤修复    
Research progress of mesenchymal stem cell-derived exosomes in kidney diseases
JI Cheng, FEI Shu-qin, CHEN Ming, ZHANG Rong-xue, XU Wen-rong, QIAN Hui     
Molecular Inspection Laboratory, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
Supported by National Natural Science Foundation of China (81272481), Training Program of Innovation and Entrepreneurship for College Students of Jiangsu (201710299042Z), and Research Project for College Students of Jiangsu University (16A502).
Abstract: Exosome is a nanoscale membranous vesicle formed by fusion of multivesicular body with cell membrane and secreted into the extracellular matrix, playing important roles in the intercellular communication of cells. Mesenchymal stem cell (MSC)-derived exosome (MSC-exo) is an important paracrine pathway of MSC to promote tissue injury repair and immune regulation. Compared with the MSC, MSC-exo has specific advantages. Recent research reveals that MSC-exo targets the damaged tissues to ameliorate kidney injury by delivery of protein, mRNA and microRNA. In this review, we summarized the research progress of MSC-exo in kidney diseases.
Key words: mesenchymal stem cells     exosomes     kidney diseases     damage repair    

外泌体是由细胞内多泡体与细胞膜融合后分泌到细胞外的纳米级膜性微小囊泡[1]。外泌体在细胞间的物质和信息传递中起着重要作用,它通过递送特异性蛋白质、信使RNA(messenger RNA,mRNA)、微RNA(microRNA,miRNA)等各种生物活性分子到靶细胞,从而影响靶细胞的生理状态并参与多种疾病的发生和发展,如炎症、肿瘤、心血管疾病和肾脏疾病等[2]。越来越多的研究发现,间充质干细胞(mesenchymal stem cell,MSC)来源外泌体(mesenchymal stem cell-derived exosome,MSC-exo)在脊髓损伤[3]、心肌损伤[4]、肝纤维化[5-6]等多种疾病的治疗中发挥作用。本课题组前期开展了人脐带间充质干细胞(human umbilical cord mesenchymal stem cell,hucMSC)来源外泌体(hucMSC-exo)的组织损伤修复研究,发现hucMSC-exo不仅能缓解四氯化碳(CCl4)诱导的小鼠肝纤维化[5],而且通过递送谷胱甘肽过氧化物酶1(glutathione peroxidase 1,GPX1)发挥修复效应[7]。HucMSC-exo携载Wnt4分子,能够激活β-catenin信号通路,加速表皮细胞再生,促进大鼠皮肤烫伤的创面愈合[8],且在修复后期,hucMSC-exo转运14-3-3ζ蛋白,促进Hippo-大肿瘤抑制激酶(Hippo-large tumor suppressor kinase,Hippo-LATS)信号通路活化,从而抑制皮肤细胞过度增殖和瘢痕形成[9]。此外,hucMSC-exo还能预防和减轻顺铂诱导的急性肾损伤(acute kidney injury,AKI)[10-12]

肾脏疾病种类繁多,包括由免疫、炎症等因素引起的原发性肾脏疾病,先天性和遗传性肾脏疾病,以及糖尿病、高血压等因素引起的继发性肾脏疾病等。肾脏疾病病程长,治疗困难[13],因此寻找新的有效治疗手段十分必要。2009年,Bruno等[14]首先报道骨髓MSC来源的微囊泡减缓了甘油诱导的小鼠AKI,开启了MSC-exo与肾脏疾病的相关研究。目前,大量研究结果显示MSC-exo是介导肾脏疾病治疗的重要旁分泌媒介,且MSC-exo与肾脏疾病进展关系密切[15-21]。本文就MSC-exo在肾脏疾病中的研究进展作一综述。

1 MSC-exo提取和生物学特性

外泌体携带膜融合蛋白(GTPase)、CD抗原(CD9、CD63、CD81)、热休克蛋白(Hsp70、Hsp90)、脂质相关蛋白、核酸等并传递至受体靶细胞,从而调节靶细胞的基因表达,发挥特定的生物学效应[1, 2, 16]。与其他细胞外泌体的分离方法相似,MSC-exo常见的提取纯化方法有差速离心法、蔗糖/碘克沙醇密度梯度离心法、免疫磁珠分选法等[22-23]。本课题组采用超滤和梯度离心法(获得国家发明专利,专利号:201010226049.0)提取纯化hucMSC-exo,提取的hucMSC-exo稳定且具多种生物学活性,为进一步开发hucMSC-exo的治疗潜能奠定了基础[23]。外泌体的功能取决于来源细胞的类型,故干细胞来源外泌体不仅具有干细胞的部分生物学特性,而且还通过选择性包裹其特异性蛋白质和功能核酸并在细胞间传递,从而发挥多种生物学作用。相对于来源的MSC,纳米级MSC-exo具有颗粒更小、靶向结合、保存稳定、免疫反应低等特点,其临床应用更安全、高效,且能通过生物屏障,因此MSC-exo有望成为一种新型给药途径及基因治疗载体,临床应用前景广阔。

2 MSC-exo在肾脏疾病预防治疗中的作用

近年来我国人口饮食结构和生活习惯的改变导至肾脏疾病的发病率呈逐年上升趋势,病程长且预后不良[24]。随着干细胞再生医学的发展,MSC-exo在肾脏疾病中的预防和治疗作用成为当前的研究热点。

2.1 MSC-exo与AKI

AKI是一种较为常见的临床综合征,其发病机制主要是肾小管上皮损伤和微血管内皮损伤以及炎性反应损伤肾组织。由于缺乏有效的治疗手段,AKI的发病率和病死率一直居高不下,MSC移植已成为AKI治疗的新方案,推动了人骨髓MSC移植治疗AKI临床试验的起步[25]。MSC对AKI的修复机制以旁分泌为主,因此MSC-exo成为研究的焦点。Reis等[17]研究显示,庆大霉素诱导的AKI大鼠注射大鼠骨髓MSC培养基上清及外泌体后,大鼠血清肌酐、尿素氮水平下调,组织细胞凋亡受到抑制,细胞增殖能力增强,从而肾损伤程度减轻。本课题组采用顺铂诱导建立AKI大鼠模型,观察hucMSC-exo对大鼠肾损伤的修复作用,结果发现hucMSC-exo能减少过氧化应激有害产物如8-羟脱氧鸟苷(8-hydroxy-2’-deoxyguanosine,8-OHdG)、丙二醛(malondialdehyde,MDA)等的产生,增加谷胱甘肽(glutathione,GSH)水平,抑制p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38MAPK)通路活化,进而减轻肾实质细胞凋亡;也能激活细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)1/2信号通路,促进肾小管上皮细胞增殖[10]。进一步研究显示hucMSC-exo预处理可抑制顺铂诱导的肾小管上皮细胞损伤,减缓AKI,其作用机制为hucMSC-exo携带14-3-3ζ蛋白促进细胞自噬,进而减轻肾毒性反应[11-12]。在对缺血再灌注引起的AKI模型研究中,Lin等[18]比较了单独注射脂肪间充质干细胞(adipose-derived mesenchymal stem cell,AMSC)和联合注射外泌体的修复效果,发现AMSC联合外泌体的疗效更佳。Shen等[19]对缺血再灌注诱导的AKI小鼠注射CC趋化因子受体2(C-C motif chemokine receptor 2,CCR2)阳性的外泌体,发现小鼠血清肌酐和尿素氮水平显著降低,巨噬细胞浸润炎性反应受到抑制,肾小管细胞凋亡减少。Chen等[20]发现直接注射含有激活转录因子3(activating transcription factor 3,ATF3)RNA的外泌体进入肾小管内皮细胞,抑制了促炎基因单核细胞趋化蛋白1(monocyte chemotactic protein 1,MCP-1)的转录表达,为缺血再灌注诱导的AKI提供了新的靶向治疗方法。Eirin等[21]的研究使用了代谢综合征和肾动脉狭窄的猪模型,发现MSC的细胞外囊泡通过运载抗炎细胞因子白细胞介素10减轻了肾脏炎症,改善了髓质氧化应激和纤维化。

2.2 MSC-exo与慢性肾脏病

我国成年人群中慢性肾脏病的患病率为10.8%(约1.2亿),近年其发病率与病死率呈逐年增加趋势[24]。Solé等[26]从32例狼疮性肾炎、15例非狼疮慢性肾脏病患者和20名健康对照的尿液样本中分离出外泌体,检测miR-29c表达量,并分析其与Smad(drosophila mothers against decapentaplegic protein)2/3、转化生长因子β(transforming growth factor β,TGF-β)和基质金属蛋白酶(matrix metalloproteinase,MMP)2/9的相关性,发现尿液外泌体中Smad3和MMP2表达与miR-29c表达呈负相关,miR-29c与慢性肾脏病恶化程度有关,提示miR-29c可以作为狼疮性肾炎患者早期纤维化的新型非侵入性标志物。外泌体不仅可以作为肾脏疾病诊断的生物标志物,有助于实时监测肾脏疾病进程,如慢性肾脏疾病、免疫球蛋白A肾病、肾病综合征和肾小管病变,还可以通过外泌体将治疗分子靶向递送到靶细胞修复肾损伤。Wang等[27]研究发现MSC-exo运送miR-let7c选择性归巢到受损的肾脏部位,肾小管内皮细胞的胶原蛋白Ⅳ、MMP9和TGF-β1的表达显著下调,肾纤维化程度减轻,肾病进程得以延缓。Nagaishi等[15]通过尾静脉注射MSC和MSC培养基上清对高脂饮食诱导的2型糖尿病小鼠和链脲佐菌素诱导的胰岛素缺乏型糖尿病小鼠进行治疗,发现MSC及其培养基上清均可减少蛋白尿,抑制肿瘤坏死因子α(tumor necrosis factor α,TNF-α)、TGF-β1的表达和肾小管间质纤维化,从而减轻糖尿病肾损伤,研究揭示MSC可能通过肾营养因子的外泌体旁分泌途径发挥作用。在大鼠单侧输尿管结扎慢性肾损伤模型中,Choi等[28]发现肾脏来源MSC的微粒通过抑制上皮间质转化改善毛细血管周细胞稀疏,并通过抑制肾小管间质纤维化延缓肾损伤进展。在外泌体治疗肾脏疾病的效果比较中,Wang等[29]发现促红细胞生成素刺激MSC分泌的微囊泡对肾损伤保护的疗效更优。上述研究结果提示在慢性肾脏疾病中,MSC-exo通过运载蛋白、miRNA靶向到肾脏损伤部位,可以作为慢性肾脏病的新型治疗方法。

3 小结

在MSC-exo与肾脏疾病的研究中,目前临床研究主要集中在血液和尿液外泌体作为诊断标志物的研发,基础研究聚焦在通过MSC-exo靶向递送生物活性分子至肾脏损伤部位减缓肾损伤,寻找肾脏疾病新的治疗手段。随着研究的不断深入,MSC-exo在肾脏疾病中的保护作用及相关机制将更加明确,这对肾脏疾病的诊断和治疗皆有重要意义。

参考文献
[1]
DENZER K, KLEIJMEER M J, HEIJNEN H F, STOORVOGEL W, GEUZE H J. Exosome:from internal vesicle of the multivesicular body to intercellular signaling device[J]. J Cell Sci, 2000, 19: 3365-3374.
[2]
CAMUSSI G, DEREGIBUS M C, BRUNO S, CANTALUPPI V, BIANCONE L. Exosomes/microvesicles as a mechanism of cell-to-cell communication[J]. Kidney Int, 2010, 78: 838-848. DOI:10.1038/ki.2010.278
[3]
HUANG J H, YIN X M, XU Y, XU C C, LIN X, YE F B, et al. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats[J]. J Neurotrauma, 2017, 34: 3388-3396. DOI:10.1089/neu.2017.5063
[4]
MA J, ZHAO Y, SUN L, SUN X, ZHAO X, SUN X, et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D[J]. Stem Cells Transl Med, 2016, 6: 51-59.
[5]
LI T, YAN Y, WANG B, QIAN H, ZHANG X, SHEN L, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis[J]. Stem Cells Dev, 2013, 22: 845-854. DOI:10.1089/scd.2012.0395
[6]
QU Y, ZHANG Q, CAI X, LI F, MA Z, XU M, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation[J]. J Cell Mol Med, 2017, 21: 2491-2502. DOI:10.1111/jcmm.2017.21.issue-10
[7]
YAN Y, JIANG W, TAN Y, ZOU S, ZHANG H, MAO F, et al. HucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury[J]. Mol Ther, 2017, 25: 465-479. DOI:10.1016/j.ymthe.2016.11.019
[8]
ZHANG B, WANG M, GONG A, ZHANG X, WU X, ZHU Y, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing[J]. Stem Cells, 2015, 33: 2158-2168. DOI:10.1002/stem.1771
[9]
ZHANG B, SHI Y, GONG A, PAN Z, SHI H, YANG H, et al. HucMSC exosome-delivered 14-3-3ζ orchestrates self-control of the Wnt response via modulation of YAP during cutaneous regeneration[J]. Stem Cells, 2016, 34: 2485-2500. DOI:10.1002/stem.2432
[10]
ZHOU Y, XU H, XU W, WANG B, WU H, TAO Y, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro[J]. Stem Cell Res Ther, 2013, 4: 34. DOI:10.1186/scrt194
[11]
WANG B, JIA H, ZHANG B, WANG J, JI C, ZHU X, et al. Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy[J/OL]. Stem Cell Res Ther, 2017, 8: 75. doi: 10.1186/s13287-016-0463-4.
[12]
WANG J, JIA H, ZHANG B, YIN L, MAO F, YU J, et al. HucMSC exosome-transported 14-3-3ζ prevents the injury of cisplatin to HK-2 cells by inducing autophagy in vitro[J]. Cytotherapy, 2018, 20: 29-44. DOI:10.1016/j.jcyt.2017.08.002
[13]
ANDERSON S, HALTER J B, HAZZARD W R, HIMMELFARB J, HORNE F M, KAYSEN G A, et al. Prediction, progression, and outcomes of chronic kidney disease in older adults[J]. J Am Soc Nephrol, 2009, 20: 1199-1209. DOI:10.1681/ASN.2008080860
[14]
BRUNO S, GRANGE C, DEREGIBUS M C, CALOGERO R A, SAVIOZZI S, COLLINO F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury[J]. J Am Soc Nephrol, 2009, 20: 1053-1067. DOI:10.1681/ASN.2008070798
[15]
NAGAISHI K, MIZUE Y, CHIKENJI T, OTANI M, NAKANO M, KONARI N, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes[J/OL]. Sci Rep, 2016, 6: 34842. doi: 10.1038/srep34842.
[16]
MAROTE A, TEIXEIRA F G, MENDES-PINHEIRO B, SALGADO A J. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential[J/OL]. Front Pharmacol, 2016, 7: 231. doi: 10.3389/fphar.2016.00231.
[17]
REIS L A, BORGES F T, SIMÕES M J, BORGES A A, SINIGAGLIA-COIMBRA R, SCHOR N. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats[J/OL]. PLoS One, 2012, 7: e44092. doi: 10.1371/journal.pone.0044092.
[18]
LIN K C, YIP H K, SHAO P L, WU S C, CHEN K H, CHEN Y T, et al. Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia-reperfusion injury[J]. Int J Cardiol, 2016, 216: 173-185. DOI:10.1016/j.ijcard.2016.04.061
[19]
SHEN B, LIU J, ZHANG F, WANG Y, QIN Y, ZHOU Z, et al. CCR2 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury[J/OL]. Stem Cells Int, 2016, 2016: 1240301. doi: 10.1155/2016/1240301.
[20]
CHEN H H, LAI P F, LAN Y F, CHENG C F, ZHONG W B, LIN Y F, et al. Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion[J]. J Cell Physiol, 2014, 229: 1202-1211. DOI:10.1002/jcp.24554
[21]
EIRIN A, ZHU X Y, PURANIK A S, TANG H, MCGURREN K A, VAN WIJNEN A J, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation[J]. Kidney Int, 2017, 92: 114-124. DOI:10.1016/j.kint.2016.12.023
[22]
OKSVOLD M P, NEURAUTER A, PEDERSEN K W. Magnetic bead-based isolation of exosomes[J]. Methods Mol Biol, 2015, 1218: 465-481. DOI:10.1007/978-1-4939-1538-5
[23]
ZHANG B, SHEN L, SHI H, PAN Z, WU L, YAN Y, et al. Exosomes from human umbilical cord mesenchymal stem cells: identification, purification, and biological characteristics[J/OL]. Stem Cells Int, 2016, 2016: 1929536. doi: 10.1155/2016/1929536.
[24]
中华医学会糖尿病学分会微血管并发症学组. 糖尿病肾病防治专家共识(2014年版)[J]. 中华糖尿病杂志, 2014, 6: 792-801. DOI:10.3760/cma.j.issn.1674-5809.2014.11.004
[25]
TÖGEL F E, WESTENFELDER C. Mesenchymal stem cells:a new therapeutic tool for AKI[J]. Nat Rev Nephrol, 2010, 6: 179-183.
[26]
SOLÉ C, CORTÉS-HERNÁNDEZ J, FELIP M L, VIDAL M, ORDI-ROS J. MiR-29c in urinary exosomes as predictor of early renal fibrosis in lupus nephritis[J]. Nephrol Dial Transplant, 2015, 30: 1488-1496. DOI:10.1093/ndt/gfv128
[27]
WANG B, YAO K, HUUSKES B M, SHEN H H, ZHUANG J, GODSON C, et al. Mesenchymal stem cells deliver exogenous microRNA-let7c via exosomes to attenuate renal fibrosis[J]. Mol Ther, 2016, 24: 1290-1301. DOI:10.1038/mt.2016.90
[28]
CHOI H Y, LEE H G, KIM B S, AHN S H, JUNG A, LEE M, et al. Mesenchymal stem cell-derived microparticles ameliorate peritubular capillary rarefaction via inhibition of endothelial-mesenchymal transition and decrease tubulointerstitial fibrosis in unilateral ureteral obstruction[J/OL]. Stem Cell Res Ther, 2015, 6: 18. doi: 10.1186/s13287-015-0012-6.
[29]
WANG Y, LU X, HE J, ZHAO W. Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease[J/OL]. Stem Cell Res Ther, 2015, 6: 100. doi: 10.1186/s13287-015-0095-0.