第二军医大学学报  2018, Vol. 39 Issue (7): 716-721   PDF    
间充质干细胞来源外泌体在氧化应激损伤中的研究进展
翟骁1, 王一然2, 朱明向2, 王奇金3     
1. 海军军医大学(第二军医大学)长海医院脊柱外科, 上海 200433;
2. 海军军医大学(第二军医大学)基础医学院学员三大队, 上海 200433;
3. 海军军医大学(第二军医大学)长海医院内分泌科, 上海 200433
摘要: 氧化应激损伤是导致疾病的一个重要因素。间充质干细胞来源外泌体(MSC-exo)含有多种蛋白质、脂质、编码RNA及非编码RNA,可通过多种途径减轻机体的氧化应激损伤,促进受损的组织细胞修复再生,因此MSC-exo在氧化应激所致疾病的治疗中有巨大的发展潜力。本文对MSC-exo在减轻氧化应激导致的心血管损伤、肺组织损伤、肾脏损伤、肝细胞损伤等方面的研究进展作一综述。
关键词: 间充质干细胞     外泌体     氧化性应激     损伤修复    
Research progress of mesenchymal stem cell-derived exosomes in oxidative stress injury
ZHAI Xiao1, WANG Yi-ran2, ZHU Ming-xiang2, WANG Qi-jin3     
1. Department of Spine Surgery, Changhai Hospital, Navy Medical University(Second Military Medical University), Shanghai 200433, China;
2. The Third Student Team, College of Basic Medical Sciences, Navy Medical University(Second Military Medical University), Shanghai 200433, China;
3. Department of Endocrinology, Changhai Hospital, Navy Medical University(Second Military Medical University), Shanghai 200433, China
Supported by General Program of National Natural Science Foundation of China (81670741), National Natural Science Foundation of China for Young Scientists (81701199), and the "1255" Subject Construction and Scientific Innovation Program of Changhai Hospital (CH125541900).
Abstract: Oxidative stress damage is known to be a major factor leading to many diseases. Mesenchymal stem cell-derived exosomes (MSC-exos) are enriched with various proteins, lipids, coding RNAs and non-coding RNAs, and alleviate oxidative stress damage and stimulate the regeneration response of damaged tissues and cells. MSC-exos hold a great potential for the treatment of diseases caused by oxidative stress. In this review, we summarized the research progress of MSC-exos in cardiovascular injury, lung injury, kidney injury and liver cell injury caused by oxidative stress.
Key words: mesenchymal stem cells     exosomes     oxdative stress     damage repair    

氧化应激是指在发生有害刺激时,机体内高活性分子如活性氧(reactive oxygen species,ROS)和活性氮(reactive nitrogen species,RNS)产生过多或消除减少,在体内累积增加,导致组织损伤的反应[1]。ROS包括超氧阴离子、羟自由基(•OH)和过氧化氢等,RNS包括一氧化氮(nitric oxide,NO)、二氧化氮和过氧化亚硝酸盐等,过多的ROS、RNS对细胞和组织产生氧化作用,损伤DNA、脂质以及蛋白质等生物大分子,从而引起多种病理变化[2]。引起DNA氧化损伤的ROS主要是•OH,其可攻击脱氧核糖,使脱氧戊糖分解、磷酸二酯键断裂,引起DNA出现单链或双链断裂;生物膜脂质的磷脂中富含多不饱和脂肪酸,在氧分子(O2)存在的条件下,极易被ROS及其活性衍生物攻击,引发脂质过氧化链式反应;ROS还可攻击蛋白质分子的侧链氨基酸,如赖氨酸、精氨酸、脯氨酸和苏氨酸,均可氧化产生相应的蛋白羰基衍生物[3]。但是氧化应激损伤又因受损组织和器官的不同,临床表现具有异质性。

间充质干细胞(mesenchymal stem cell,MSC)是一类中胚层来源的多能干细胞,具有自我更新与多向分化的潜能[4]。研究表明,MSC可以修复氧化应激导致的多种损伤,具有修复细胞、促进血管生成、抑制组织纤维化以及调节免疫的作用[5],但是其成瘤致畸的风险不容忽视。MSC来源的外泌体(mesenchymal stem cell-derived exosome,MSC-exo)既可以发挥MSC的再生功能,也可以降低成瘤风险,可能替代MSC成为修复氧化应激损伤的有效成分[6]。研究表明MSC-exo对氧化应激损伤相关的心血管损伤、肺组织损伤、肾脏损伤、肝细胞损伤等有修复作用,本文就MSC-exo在氧化应激损伤修复中的研究进展作一综述。

1 MSC-exo的生物学特性及常用提取纯化方法

随着分子生物学的发展,细胞外囊泡逐渐成为研究热点,其包括外泌体、微囊泡、凋亡小体等。微囊泡具有高度异质性,无特殊生物学标记[7]。MSC-exo属于细胞外囊泡的一种,与微囊泡有相似之处,是一种由MSC分泌到细胞外的直径为40~100 nm的小囊泡,可悬浮于浓度为1.13~1.19 g/mL的蔗糖溶液中,其与微囊泡的区别之处在于其有特殊的表面标志物,如CD63等[8]。MSC-exo中含有多种蛋白质、脂质、编码RNA及非编码RNA等,通过胞吐释放,以旁分泌的形式作用于周围组织,参与多种生理和病理过程[9]。MSC-exo具有向炎性组织迁移的特性,能够减轻炎性反应、促进细胞增殖,并可减轻细胞的坏死和凋亡[10]。目前主要通过差速离心法、超滤法、密度梯度离心法、免疫捕获法(使用抗EpCAM包被的磁珠分离)及改良ExoQuick-TC法提取和纯化MSC-exo。差速离心法操作简便,但提取的外泌体纯度和浓度较低;超滤法的产出效率高于差速离心法,并且对外泌体的破坏作用小于差速离心法;密度梯度离心法的优点是分离效果好,颗粒不会挤压变形,能保持颗粒活性,可一次性获得较纯净颗粒,但其缺点是离心时间长,需要制备惰性梯度介质溶液,操作相对复杂;免疫捕获法的效率最高,但成本也较高;改良ExoQuick-TC法的成本低于免疫捕获法,提取的外泌体纯度和浓度优于差速离心法[11]。可通过透射电子显微镜等观察提纯的外泌体的形态和大小,可采用蛋白质印迹法等分析鉴定外泌体表面特异性标志物[12]

2 MSC-exo对机体氧化应激损伤的修复作用 2.1 MSC-exo减轻心血管氧化应激损伤

研究表明,ROS通过信号通路介导心肌细胞肥大和凋亡,通过灭活NO形成活性更强的过氧化物―亚硝基过氧化物,从而导致内皮功能紊乱,出现脂质过氧化;在动脉粥样硬化、心肌细胞再灌注损伤、高血压以及心力衰竭等心血管疾病的发生和发展中,氧化应激扮演着重要角色[13]。MSC-exo具有减少心肌梗死范围、修复心肌细胞、增加毛细血管密度、提高左心房射血分数的作用[14]。2007年,Timmers等[15]首次证实MSC可参与细胞旁分泌,减少心肌梗死面积,发挥治疗修复的功能。Shao等[16]通过缺氧造成大鼠心肌组织氧化应激损伤,经MSC-exo处理后,大鼠心肌细胞存活率明显升高。有研究者通过微RNA(microRNA,miRNA)阵列和定量聚合酶链反应分析MSC-exo中的miRNA,发现miR-21可通过增强同源性磷酸酶和张力蛋白/蛋白激酶B(phosphatase and tensin homolog/protein kinase B,PTEN/Akt)途径,促进心肌细胞存活[17]。美国西奈山医学院的Eduardo Marbán教授团队发现心肌球来源的细胞(cardiosphere-derived cell,CDC)通过分泌外泌体减少心肌梗死面积,这些外泌体中包含丰富的Y RNA片段并可转移至巨噬细胞,诱导白细胞介素10(interleukin 10,IL-10)的转录和分泌,对氧化应激的心肌细胞起保护作用[18]。如果在缺血再灌注后的冠状动脉内注射含有丰富Y RNA片段的外泌体,也可减少梗死面积[18]。因此,MSC-exo可以减轻心血管的氧化应激损伤,通过MSC-exo促进心肌细胞修复,有望成为心血管氧化应激损伤后治疗的新策略。

2.2 MSC-exo减轻肺组织氧化应激损伤

急性肺损伤是呼吸系统常见的疾病,病毒感染或者大潮气量机械通气均会导致肺损伤,其中内毒素等损伤性因素造成的“呼吸爆发”可产生大量的氧自由基,进一步激活多形核白细胞,加重肺损伤[19]。急性肺损伤模型小鼠尾静脉注入MSC-exo后,小鼠肺组织病理切片显示病变程度明显减轻;肺组织湿干质量比和肺泡灌洗液中总蛋白含量、中性粒细胞比例与对照组相比明显降低;肺泡灌洗液中促炎因子水平降低而抗炎因子水平升高;此外,肿瘤坏死因子α刺激基因6(tumor necrosis factor α-stimulated gene-6,TSG-6)是减轻病变的关键因子[20]。Li等[21]将骨髓MSC缺氧处理不同时间后提取其外泌体,作用于内毒素肺损伤模型小鼠,结果显示MSC-exo可以显著降低肺泡灌洗液中中性粒细胞比例,并且呈剂量依赖性。因此,MSC-exo可以减轻肺组织氧化应激造成的损伤。

2.3 MSC-exo减轻肾脏氧化应激损伤

肾脏的缺血再灌注会造成氧化应激反应,损害肾功能。研究显示缺血的肾脏组织中激活的caspase-8、caspase-3蛋白剪切片段和Bax蛋白的表达升高,肾小管细胞凋亡明显增加,肾小管细胞出现片状坏死[22]。MSC-exo对肾脏损伤的修复功能与其表达的CC趋化因子受体2(CC motif chemokine receptor 2,CCR2)有关,抑制CCR2表达后,发现MSC-exo对小鼠肾脏缺血再灌注损伤的保护作用受到抑制,表明MSC-exo上表达的受体蛋白CCR2在氧化应激肾脏损伤修复中起关键作用[23]。糖尿病产生的氧化应激会导致肾损伤,进而导致糖尿病肾病[24]。Nagaishi等[25]的研究表明,MSC-exo有助于改善糖尿病肾病,可以抑制蛋白尿的产生,调节细胞间黏附分子1(intercellular cell adhesion molecule 1,ICAM-1)的表达,从而抑制骨髓来源树突状细胞(bone marrow-derived dendritic cell,BMDC)过度浸润到肾脏,抑制促炎细胞因子表达[如肿瘤坏死因子α(tumor necrosis factor α,TNF-α)]和肾小管间质纤维化,进而抑制肾小管上皮细胞的上皮间质转化。MSC-exo可以改善肾脏功能障碍、提高肾小管上皮细胞抵抗凋亡的能力[26]。因此,MSC-exo可以减轻氧化应激导致的肾损伤。

2.4 MSC-exo缓解肝细胞氧化应激损伤

在氧化应激导致的肝脏纤维化、急慢性肝损伤中,肝脏葡萄糖调节蛋白(glucose-regulated protein,GRP)78和GRP 94、血红素加氧酶、SOD和还原型谷胱甘肽(glutathione,GSH)水平显著降低,丙二醛(malondialdehyde,MDA)水平升高[27]。肝移植常因免疫排斥造成移植肝脏的氧化应激损伤,进而出现肝功能衰竭。MSC-exo可以抑制肝细胞炎性反应,促进肝细胞再生,从而减缓氧化应激损伤。江苏大学的许文荣团队通过尾静脉注射或灌胃方式给予肝移植小鼠人脐带间充质干细胞(human umbilical cord mesenchymal stem cell,hucMSC)来源外泌体(hucMSC-exo),观察到hucMSC-exo具有抗氧化和抗凋亡作用并能缓解小鼠肝脏衰竭。进一步探索机制发现,hucMSC-exo中的谷胱甘肽过氧化物酶1(glutathione peroxidase 1,GPX1)可缓解四氯化碳(CCl4)和过氧化氢(H2O2)诱导的肝损伤,减少氧化应激和细胞凋亡[28]。亦有研究发现miR-181-5p修饰的脂肪来源的间充质干细胞(adipose-derived mesenchymal stem cell,AMSC)外泌体(AMSC-exo)可以预防肝纤维化,修复细胞损伤[29]。因此,MSC-exo可以通过抗氧化和抗凋亡作用缓解肝细胞损伤。

2.5 MSC-exo修复神经元氧化应激损伤

阿尔茨海默病、帕金森病、肌萎缩侧索硬化症和亨廷顿病等神经退行性疾病以及糖尿病神经病变与氧化应激的增强关系密切,最终导致神经元凋亡[30-31]。MSC能够分泌促进脑中神经元再生长的因子,促进神经元修复[32]。MSC-exo所含有的蛋白质、脂质和RNA等多种成分具有介导缺血后神经损伤修复和脑重塑功能[33]。人AMSC-exo可携带胰岛素样生长因子和肝细胞生长因子等具有神经营养作用的细胞因子,通过激活PI3/K-Akt信号通路介导神经保护作用[34]。另有研究发现,人AMSC-exo中含有一种长链非编码RNA肺腺癌转移相关转录子1(metastasis-associated lung adenocarcinoma transcript 1,MALAT1),当HT22神经元发生损伤时,其可增加HT22细胞中蛋白激酶CδⅡ(protein kinase CδⅡ,PKCδⅡ)的表达,促进神经元的存活和增殖[35]。由于外泌体能够穿透血脑屏障,不可自我复制,可控性更高,可以被附近的受体细胞吸收或通过血流行进到远端器官的细胞中。因此,MSC-exo可以修复神经元氧化应激损伤,且在临床应用方面MSC-exo比MSC有更明显的优势[36-37]

2.6 MSC-exo减轻糖尿病中的氧化应激损伤

高血糖引起葡萄糖的有氧氧化、蛋白的非酶糖基化作用加强及脂代谢异常是糖尿病患者体内ROS产生增加的主要原因,同时一些抗氧化酶的活性也明显降低,导致糖尿病患者体内存在一定程度的氧化应激[38]。氧化应激会使外周组织对胰岛素的敏感性下降,还会加剧胰岛β细胞凋亡以及其他器官的损伤,因此氧化应激在糖尿病的病理过程中发挥着重要作用[39]。有报道指出,MSC-exo转移到因糖尿病受损的神经元和星形胶质细胞后,可改善糖尿病引起的认知功能障碍[40]。MSC-exo可以抑制自身免疫作用,在1型糖尿病和葡萄膜炎小鼠模型中,MSC-exo能够有效抑制抗原递呈细胞的活化和辅助T细胞的活性[41]。hucMSC-exo还可有效抑制高糖诱导的人脐静脉内皮细胞凋亡,促进细胞增殖、迁移和血管再生[42]。因此,MSC-exo可能是一种糖尿病及其并发症治疗的有效手段。

2.7 MSC-exo促进血管生成,增强氧化应激损伤组织修复

体内氧化系统和抗氧化系统的调控水平失衡导致大量ROS产生,ROS除了对细胞产生直接损害外,还可以激活多种氧化通路,间接加重组织的损伤程度[43]。新生血管可以促进物质代谢,减轻氧化应激。南开大学的研究团队发现,通过NO刺激从人胎盘来源间充质干细胞(human placental mesenchymal stem cell,hpMSC)释放的外泌体(hpMSC-exo)可增强人脐静脉内皮细胞的血管生成。此外,经过NO刺激释放的hpMSC-exo能够促进后肢缺血小鼠的血管生成并改善肢体功能。进一步分析显示,NO刺激释放的hpMSC-exo中,血管内皮生长因子(vascular endothelial growth factor,VEGF)和miR-126表达上调,表明VEGF和miR-126是促进血管生成的关键因子[44]。人AMSC-exo可以由内皮细胞吸收,并在体外和体内显著促进血管生成。人AMSC-exo中富含miR-125a,抑制血管生成抑制剂delta样4蛋白(delta-like 4,Dll4)的表达,促进血管生成[45]。因此,MSC-exo可以促进血管生成,增强氧化应激损伤组织修复,可能是治疗组织修复的一个很有希望的候选试剂。

2.8 MSC-exo发挥免疫调节作用,减轻氧化应激损伤

免疫系统通过氧化应激清除病原,但是过度的氧化应激反应又会造成免疫系统紊乱[46]。MSC-exo具有免疫调节能力,可诱导免疫细胞产生抗炎细胞因子,抑制炎性反应,为治疗免疫疾病提供了可能性[47]。外泌体可以在同种异体造血干细胞移植(allogeneic hematopoietic stem cell transplantation,allo-HSCT)中发挥作用。hucMSC-exo以剂量依赖的方式抑制丝裂原诱导的脾细胞增殖,从健康供体骨髓提取的MSC-exo抑制了促炎因子TNF-α和IL-1β的分泌,因而可预防急性移植物抗宿主病(acute graft-versus-host disease,aGVHD)[48]。MiRNA在MSC-exo的免疫调节中发挥了重要作用。研究发现,hucMSC-exo中存在3种特异性的miRNA(miR-21、miR-146a、miR-181),这些miRNA与炎症调节功能有关。其中miR-21可以沉默靶基因PTEN和程序性凋亡蛋白4(programmed cell death protein 4,PDCD4),抑制内毒素诱导的TNF-α表达和核因子κB(nuclear factor κB,NF-κB)的活化,从而抑制炎症的发生[49];miR-146a是炎性反应中先天免疫应答的关键调节因子,可抑制TNF-α/IL-6/IFN-γ等炎性细胞因子的表达[50];miR-181可以促进T淋巴细胞、B淋巴细胞、NK细胞增殖与分化,可快速降低炎性细胞因子而不影响抗炎细胞因子的表达,从而将免疫状态从高炎症转变为内毒素耐受性,发挥抗内毒素休克作用[51]。因此,MSC-exo可以发挥免疫调节作用,减轻机体氧化应激损伤。

3 小结与展望

近年来,MSC-exo在治疗修复方面的作用受到越来越多的关注。MSC-exo通过传递功能蛋白、RNA和miRNA,可获得与MSC移植类似的治疗效果。同时MSC-exo可通过静脉注射,安全性较高,不会引起不良反应,避免了传统干细胞治疗带来的风险,为患者提供了治疗新策略,未来可在治疗氧化应激导致的衰老和疾病中发挥作用[52],并且已经在心血管损伤、肾损伤、肝损伤以及肺损伤中显示出良好的应用前景。然而,目前MSC-exo在修复治疗方面的研究主要停留在动物实验或临床前研究阶段,临床研究较少,并且其分子机制尚待进一步明确。今后随着MSC-exo提取技术的成熟及其成本的下降,分子机制的进一步明晰,有望将其研究成果转化用于氧化应激损伤的临床治疗。

参考文献
[1]
ODEGAARD A O, JACOBS D R Jr, SANCHEZ O A, GOFF D C Jr, REINER A P, GROSS M D. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes[J/OL]. Cardiovasc Diabetol, 2016, 15: 51. doi: 10.1186/s12933-016-0369-6.
[2]
WEN D, PENG Y, LIU D, WEIZMANN Y, MAHATO R I. Mesenchymal stem cell and derived exosome as small RNA carrier and immunomodulator to improve islet transplantation[J]. J Control Release, 2016, 238: 166-175. DOI:10.1016/j.jconrel.2016.07.044
[3]
ESPINOSA-DIEZ C, MIGUEL V, MENNERICH D, KIETZMANN T, SÁNCHEZ-PÉREZ P, CADENAS S, et al. Antioxidant responses and cellular adjustments to oxidative stress[J]. Redox Biology, 2015, 6: 183-197. DOI:10.1016/j.redox.2015.07.008
[4]
PITTENGER M F, MACKAY A M, BECK S C, JAISWAL R K, DOUGLAS R, MOSCA J D, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284: 143-147. DOI:10.1126/science.284.5411.143
[5]
HARPOLE M, DAVIS J, ESPINA V. Current state of the art for enhancing urine biomarker discovery[J]. Expert Rev Proteomics, 2016, 13: 609-626. DOI:10.1080/14789450.2016.1190651
[6]
SUN L, LI D, SONG K, WEI J, YAO S, LI Z, et al. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplat-ininduced ovarian granulosa cell stress and apoptosis in vitro[J/OL]. Sci Rep, 2017, 7: 2552. doi: 10.1038/s41598-017-02786-x.
[7]
TKACH M, THÉRY C. Communication by extracellular vesicles:where we are and where we need to go[J]. Cell, 2016, 164: 1226-1232. DOI:10.1016/j.cell.2016.01.043
[8]
XIONG Z H, WEI J, LU M Q, JIN M Y, GENG H L. Protective effect of human umbilical cord mesenchymal stem cell exosomes on preserving the morphology and angiogenesis of placenta in rats with preeclampsia[J]. Biomed Pharmacother, 2018, 105: 1240-1247. DOI:10.1016/j.biopha.2018.06.032
[9]
JOYCE D P, KERIN M J, DWYER R M. Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer[J]. Int J Cancer, 2016, 139: 1443-1448. DOI:10.1002/ijc.30179
[10]
LOU G, CHEN Z, ZHENG M, LIU Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases[J/OL]. Exp Mol Med, 2017, 49: e346. doi: 10.1038/emm.2017.63.
[11]
YANG F, LIAO X Z, TIAN Y, LI G Y. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies[J/OL]. Biotechnol J, 2017, 12: 1600699. doi: 10.1002/biot.201600699.
[12]
LI P, KASLAN M, LEE S H, YAO J, GAO Z Q. Progress in exosome isolation techniques[J]. Theranostics, 2017, 7: 789-804. DOI:10.7150/thno.18133
[13]
RANI V, DEEP G, SINGH R K, PALLE K, YADAV U C. Oxidative stress and metabolic disorders:pathogenesis and therapeutic strategies[J]. Life Sci, 2016, 148: 183-193. DOI:10.1016/j.lfs.2016.02.002
[14]
LAI R C, ARSLAN F, LEE M M, SZE N S, CHOO A, CHEN T S, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2010, 4: 214-222. DOI:10.1016/j.scr.2009.12.003
[15]
TIMMERS L, LIM S K, ARSLAN F, ARMSTRONG J S, HOEFER I E, DOEVENDANS P A, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium[J]. Stem Cell Res, 2007, 1: 129-137.
[16]
SHAO L, ZHANG Y, LAN B, WANG J, ZHANG Z, ZHANG L, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair[J/OL]. Biomed Res Int, 2017, 2017: 4150705. doi: 10.1155/2017/4150705.
[17]
WANG K, JIANG Z, WEBSTER K A, CHEN J, HU H, ZHOU Y, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA-21[J]. Stem Cells Transl Med, 2017, 6: 209-222. DOI:10.5966/sctm.2015-0386
[18]
CAMBIER L, DE COUTO G, IBRAHIM A, ECHAVEZ A K, VALLE J, LIU W, et al. Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion[J]. EMBO Mol Med, 2017, 9: 337-352. DOI:10.15252/emmm.201606924
[19]
BEIGI HARCHEGANI A, TAHMASBPOUR E, BORNA H, IMAMY A, GHANEI M, SHAHRIARY A. Free radical production and oxidative stress in lung tissue of patients exposed to sulfur mustard:an overview of cellular and molecular mechanisms[J]. Chem Res Toxicol, 2018, 31: 211-222. DOI:10.1021/acs.chemrestox.7b00315
[20]
CHAUBEY S, THUESON S, PONNALAGU D, ALAM M A, GHEORGHE C P, AGHAI Z, et al. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6[J/OL]. Stem Cell Res Ther, 2018, 9: 173. doi: 10.1186/s13287-018-0903-4.
[21]
LI L, JIN S, ZHANG Y. Ischemic preconditioning potentiates the protective effect of mesenchymal stem cells on endotoxin-induced acute lung injury in mice through secretion of exosome[J]. Int J Clin Exp Med, 2018, 3825-3832.
[22]
LI J, HONG Z, LIU H, ZHOU J, CUI L, YUAN S, et al, Hydrogen-rich saline promotes the recovery of renal function after ischemia/reperfusion injury in rats via anti-apoptosis and anti-inflammation[J/OL]. Front Pharmacol, 2016, 7: 106. doi: 10.3389/fphar.2016.00106.
[23]
SHEN B, LIU J, ZHANG F, WANG Y, QIN Y, ZHOU Z, et al. CCR2 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury[J/OL]. Stem Cells Int, 2016, 2016: 1240301. doi: 10.1155/2016/1240301.
[24]
TANAKA S, SUGIURA Y, SAITO H, SUGAHARA M, HIGASHIJIMA Y, YAMAGUCHI J, et al. Sodium-glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice[J/OL]. Kidney Int, 2018, pii: S0085-2538(18)30353-3. doi: 10.1016/j.kint.2018.04.025.[Epubaheadofprint].
[25]
NAGAISHI K, MIZUE Y, CHIKENJI T, OTANI M, NAKANO M, KONARI N, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes[J/OL]. Sci Rep, 2016, 6: 34842. doi: 10.1038/srep34842.
[26]
BRUNO S, GRANGE C, DEREGIBUS M C, CALOGERO R A, SAVIOZZI S, COLLINO F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury[J]. J Am Soc Nephrol, 2009, 20: 1053-1067. DOI:10.1681/ASN.2008070798
[27]
LI S, TAN H Y, WANG N, ZHANG Z J, LAO L X, WONG C W, et al. The role of oxidative stress and antioxidants in liver diseases[J]. Int J Mol Sci, 2015, 16: 26087-26124. DOI:10.3390/ijms161125942
[28]
YAN Y, JIANG W, TAN Y, ZOU S, ZHANG H, MAO F, et al. HucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury[J]. Mol Ther, 2017, 25: 465-479. DOI:10.1016/j.ymthe.2016.11.019
[29]
QU Y, ZHANG Q, CAI X, LI F, MA Z, XU M, et al. Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation[J]. J Cell Mol Med, 2017, 21: 2491-2502. DOI:10.1111/jcmm.2017.21.issue-10
[30]
AL-REJAIE S S, ALEISA A M, ABUOHASHISH H M, PARMAR M Y, OLA M S, AL-HOSAINI A A, et al. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy[J]. Neurol Res, 2015, 37: 924-933.
[31]
XIONG W, MacCOLL GARFINKEL A E, LI Y Q, BENOWITZ L I, CEPKO C L. NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage[J]. J Clin Invest, 2015, 125: 1433-1445. DOI:10.1172/JCI79735
[32]
HASAN A, DEEB G, RAHAL R, ATWI K, MONDELLO S, MAREI H E, et al. Mesenchymal stem cells in the treatment of traumatic brain injury[J/OL]. Front Neurol, 2017, 8: 28. doi: 10.3389/fneur.2017.00028.
[33]
KONIUSZ S, ANDRZEJEWSKA A, MURACA M, SRIVASTAVA A K, JANOWSKI M, LUKOMSKA B. Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools[J/OL]. Front Cell Neurosci, 2016, 10: 109. doi: 10.3389/fncel.2016.00109.
[34]
魏俊吉, 陈云飞, 薛春玲, 马百涛, 沈雅梅, 关健, 等. 间充质干细胞来源的Exosome对神经损伤的保护作用[J]. 中国医学科学院学报, 2016, 38: 33-36. DOI:10.3881/j.issn.1000-503X.2016.01.006
[35]
EL BASSIT G, PATEL R S, CARTER G, SHIBU V, PATEL A A, SONG S, et al. MALAT1 in human adipose stem cells modulates survival and alternative splicing of PKCδ Ⅱ in HT22 cells[J]. Endocrinology, 2017, 158: 183-195.
[36]
DOEPPNER T R, HERZ J, GÖRGENS A, SCHLECHTER J, LUDWIG A K, RADTKE S, et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression[J]. Stem Cells Transl Med, 2015, 4: 1131-1143. DOI:10.5966/sctm.2015-0078
[37]
SARKO D K, McKINNEY C E. Exosomes: origins and therapeutic potential for neurodegenerative disease[J/OL]. Front Neurosci, 2017, 11: 82. doi: 10.3389/fnins.2017.00082.
[38]
UMENO A, BIJU V, YOSHIDA Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer's disease, Parkinson's disease, and diabetes[J]. Free Radic Res, 2017, 51: 413-427. DOI:10.1080/10715762.2017.1315114
[39]
MOON J S, WON K C. Oxidative stress:link between hypertension and diabetes[J]. Korean J Intern Med, 2017, 32: 439-441. DOI:10.3904/kjim.2017.153
[40]
NAKANO M, NAGAISHI K, KONARI N, SAITO Y, CHIKENJI T, MIZUE Y, et al. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes[J/OL]. Sci Rep, 2016, 6: 24805. doi: 10.1038/srep24805.
[41]
SHIGEMOTO-KURODA T, OH J Y, KIM D K, JEONG H J, PARK S Y, LEE H J, et al. MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models:type 1 diabetes and uveoretinitis[J]. Stem Cell Reports, 2017, 8: 1214-1225. DOI:10.1016/j.stemcr.2017.04.008
[42]
辛毅, 李娜, 黄然然, 崔巍, 刘飒, 王超, 等. 人脐带间充质干细胞外泌体对高糖诱导脐静脉内皮细胞功能的影响[J]. 中华实用儿科临床杂志, 2017, 32: 220-225. DOI:10.3760/cma.j.issn.2095-428X.2017.03.014
[43]
陈榕, 夏中元, 孟庆涛, 魏晓冬. 氧化应激过程中信号转导通路的研究进展[J]. 山东医药, 2015, 55: 98-100.
[44]
DU W, ZHANG K, ZHANG S, WANG R, NIE Y, TAO H, et al. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer[J]. Biomaterials, 2017, 133: 70-81. DOI:10.1016/j.biomaterials.2017.04.030
[45]
LIANG X, ZHANG L, WANG S, HAN Q, ZHAO R C. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci, 2016, 129: 2182-2189. DOI:10.1242/jcs.170373
[46]
CRISTANI M, SPECIALE A, SAIJA A, GANGEMI S, MINCIULLO P L, CIMINO F. Circulating advanced oxidation protein products as oxidative stress biomarkers and progression mediators in pathological conditions related to inflammation and immune dysregulation[J]. Curr Med Chem, 2016, 23: 3862-3882. DOI:10.2174/0929867323666160902154748
[47]
ZHANG B, YIN Y, LAI R C, TAN S S, CHOO A B, LIM S K. Mesenchymal stem cells secrete immunologically active exosomes[J]. Stem Cells Dev, 2014, 23: 1233-1244. DOI:10.1089/scd.2013.0479
[48]
WANG L, GU Z, ZHAO X, YANG N, WANG F, DENG A, et al. Extracellular vesicles released from human umbilical cord-derived mesenchymal stromal cells prevent life-threatening acute graft-versus-host disease in a mouse model of allogeneic hematopoietic stem cell transplantation[J]. Stem Cells Dev, 2016, 25: 1874-1883. DOI:10.1089/scd.2016.0107
[49]
DAS A, GANESH K, KHANNA S, SEN C K, ROY S. Engulfment of apoptotic cells by macrophages:a role of microRNA-21 in the resolution of wound inflammation[J]. J Immunol, 2014, 192: 1120-1129. DOI:10.4049/jimmunol.1300613
[50]
SABA R, SORENSEN D L, BOOTH S A. MicroRNA-146a: a dominant, negative regulator of the innate immune response[J/OL]. Front Immunol, 2014, 5: 578. doi: 10.3389/fimmu.2014.00578.
[51]
CAO D, BIAN J, HUA Z C, MA L, CHEN W, ZHANG X, et al. Modulation of TNF-α mRNA stability by human antigen R and miR181s in sepsis-induced immunoparalysis[J]. EMBO Mol Med, 2015, 7: 140-157. DOI:10.15252/emmm.201404797
[52]
MAROTE A, TEIXEIRA F G, MENDES-PINHEIRO B, SALGADO A J. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential[J/OL]. Front Pharmacol, 2016, 7: 231. doi: 10.3389/fphar.2016.00231.