第二军医大学学报  2018, Vol. 39 Issue (6): 646-650   PDF    
钙泄漏发生机制及其与心房颤动作用关系的研究进展
申华1, 奚望1, 王擎1, 高阳1, 李妙龄2, 王志农1     
1. 海军军医大学(第二军医大学)长征医院胸心外科, 上海 200003;
2. 西南医科大学心血管医学研究所, 泸州 646000
摘要: 钙离子作为一种普遍存在的信使参与了各种细胞的病理生理过程。钙信号与心肌细胞的收缩性和兴奋性相关,心房肌细胞钙稳态异常是心房颤动发生的重要机制之一,肌浆网钙通道2型雷尼丁受体(ryanodine receptor2,RyR2)稳定性下降导致的钙泄漏是钙稳态异常的重要原因。钙泄漏包括钙火花、钙波,可引发异常除极活动甚至动作电位,在心房病理改变基质的基础上诱发心房颤动。本文主要总结了钙泄漏的表现形式、影响因素及其在心房颤动发生和发展中的作用。
关键词: 2型雷尼丁受体     钙泄漏     钙火花     钙波     心房颤动    
Mechanism of calcium leak and its relationship with atrial fibrillation: research progress
SHEN Hua1, XI Wang1, WANG Qing1, GAO Yang1, LI Miao-ling2, WANG Zhi-nong1     
1. Department of Cardiothoracic Surgery, Changzheng Hospital, Navy Medical University(Second Military Medical University), Shanghai 200003, China;
2. Institute of Cardiovasology, Southwest Medical University, Luzhou 646000, Sichuan, China
Supported by National Natural Science Foundation of China (81670299), Natural Science Foundation of Shanghai (16ZR1437100), and Open Fund Research Project of Ministry of Education Key Laboratory (KeyME-2014-05).
Abstract: Calcium as a ubiquitous messenger participates in the pathophysiology progresses of various cells. Synchronized calcium signaling transduction is related to normal cardiac myocyte excitation-contraction coupling and beating rhythm. Calcium homeostasis abnormality in atrial myocyte is an important influencing mechanism of atrial fibrillation (AF), and it is mostly resulted from calcium leak caused by destabilization of sarcoplasmic reticulum calcium release channel ryanodine receptor 2 (RyR2). Calcium leaks, including calcium sparks and calcium waves, can trigger extra depolarization and even action potential, and cause AF on the basis of atrial pathology altering matrices. In this review, we summarized the manifestations and influencing factors of calcium leak, and its potential role in the development and progress of AF.
Key words: ryanodine receptor 2     calcium leak     calcium spark     calcium wave     atrial fibrillation    

协调一致的肌浆网(sarcoplasmic reticulum,SR)钙释放对心肌细胞正常兴奋收缩偶联(excitation-contraction coupling,ECC)具有关键作用,理想情况下在心脏舒张期SR的钙释放通道应处于完全关闭状态[1-2]。然而,心肌细胞内会出现其他SR钙释放事件,称为钙泄漏(calcium leak),主要包括钙火花(calcium sparks)、钙波(calcium waves)和难以检测的比钙火花更小的钙释放事件等[3]。钙泄漏增多可能会导致很多疾病的发生,如心房颤动(atrial fibrillation, AF)[4-6]、心力衰竭(heart failure, HF)[7]。目前认为,心房肌细胞钙泄漏是AF发生和维持的重要因素之一,2型雷尼丁受体(ryanodine receptor 2,RyR2)是SR上最主要的钙释放通道,磷酸化[6, 8]、氧化修饰[6]、自身空间排列结构的改变[9]、自身突变[6]和线粒体功能[10]等的影响均会导致钙泄漏,而晚钠通道同钠钙交换蛋白(Na+-Ca2+ exchanger 1,NCX1)的功能偶联也可以诱发舒张期的钙泄漏,最终导致AF的发生和维持[11]

1 钙泄漏的主要表现形式 1.1 钙火花

钙火花是激光共聚焦显微镜下观测到的局部自发性SR钙释放事件,是最明显和广泛认可的舒张期钙泄漏[12]。钙火花是由某一簇RyR2通道随机开放导致的,通常局限于一个接头间隙(junctional cleft)内,相邻接头处(横向距离0.5~1.0 μm,纵向距离约2 μm)的局部钙离子浓度受钙扩散及SR摄钙的影响,难以继续激活钙释放,进而诱发钙波[13]

1.2 钙波

钙火花通常难以在细胞内传导扩散,然而在某些情况下,如细胞质Ca2+浓度或SR Ca2+浓度过高、RyR2通道过度敏感时,某一接头处的钙火花可以激活周边相邻接头出现钙火花样的钙释放,从而产生全细胞内的钙波[14]。钙波是指心肌细胞内Ca2+负荷增高、细胞内Ca2+在局部自发性释放增加并伴传导的现象,其特点是在激光共聚焦显微镜下可见心肌细胞内Ca2+在某个区域瞬时性增高,并快速在细胞内传播[14]。钙火花和钙波是心肌细胞钙泄漏的基本表现形式[1, 3, 15]

1.3 非钙火花介导的钙泄漏

钙泄漏既包括钙火花或爆发式的钙波,也包括无形的钙泄漏[16-17]。有学者通过定量分析心肌细胞SR钙泄漏的不同成分,发现一部分RyR2介导的钙泄漏形式并非钙火花,可被丁卡因、钌红以及高浓度Mg2+阻断,即共聚焦显微镜难以观测到结果,但RyR2通道开放仍然存在[18-19]。研究发现,该形式的钙泄漏通常是由单个RyR2通道开放导致,亦称为钙夸克(calcium quark);或是数个RyR2通道开放但不足以诱发出一个完整的钙火花[20]

2 钙泄漏的主要影响因素 2.1 细胞质Ca2+浓度

可被细胞质内Ca2+激活是RyR2通道最基本的特性之一。平面脂质膜系统是定量检测RyR2通道性质的重要手段。实验表明,RyR2的开放概率受细胞质Ca2+浓度的调节[21]。50 nmol/L的细胞质Ca2+可降低钙泄漏,且几乎检测不到钙火花的发生,提高浓度至50~250 nmol/L可增加钙泄漏,可见钙火花和非钙火花形式钙泄漏均增多;而继续增加至350 nmol/L可诱发钙波,导致SR内Ca2+快速排空;该调节机制并不依赖于钙离子/钙调蛋白依赖性激酶Ⅱ(Ca2+-calmodulin-dependent protein kinaseⅡ,CaMKⅡ),而是直接调节RyR2通道活性[21]

影响细胞质Ca2+最终浓度的因素很多,包括细胞质Mg2+、ATP、pH以及SR腔内的Ca2+浓度等[22-23]。Ca2+浓度越高,越容易导致RyR2钙泄漏,使病情进一步恶化,该机制在临床HF和AF患者心肌标本中已经得到证实[4, 24]

2.2 SR Ca2+浓度

细胞质条件固定时,RyR2的开放概率对于SR腔内的Ca2+浓度十分敏感,高于生理浓度0.4~2.0 mmol/L的SR Ca2+浓度可以增加RyR2的开放概率。SR Ca2+浓度调节RyR2的开放概率的分子机制尚不明确。Györke等[25]发现,集钙蛋白(calsequestrin,CSQ)可以与junctin/triadin等直接结合形成复合体,经变构作用影响RyR2。心肌细胞SR肌浆网-内质网钙离子转运ATP酶(sacro-endoplasmic reticulum calcium transport ATPase,SERCA)在心肌细胞SR钙稳态的调节中发挥重要作用。研究发现SERCA2过表达小鼠模型中SR摄钙和钙瞬变增多,钙泄漏未见显著改变;而在过表达SERCA负性调节蛋白sarcolipin的小鼠中,SR摄钙及钙瞬变均减少,钙泄漏同样未见显著改变,可见选择性调节SERCA可以调节SR钙含量,且不影响钙泄漏[25]

2.3 RyR2大分子复合体功能异常

RyR是一个体积较大的大分子复合体,包括4个RyR2单体以及他克莫司结合蛋白12/12.6(FK506 binding protein-12/12.6,FKBP 12.6)[26]、钙调蛋白(calmodulin,CaM)、蛋白激酶A(protein kinase A,PKA)[11]、CaMKⅡ[11]、磷脂酶1、磷脂酶2A[27]、亲联蛋白2(junctophilin-2,JPH2)[28]等分子,这些分子均可影响RyR2介导的钙泄漏。CaM、FKBP12.6和JPH2等蛋白与RyR2结合可抑制其通道开放,其中CaM可使钙火花发生率降低约70%[29],而开关蛋白FKBP12.6降低了18%的钙火花发生率[30]JPH2基因突变或其蛋白表达降低均可增加钙火花的发生率[28, 31]。研究发现,心肌肥大患者心肌中CaMKⅡ和PKA均可导致RyR2蛋白磷酸化,但与正常对照患者差异无统计学意义,抑制这些蛋白激酶可减少钙泄漏;相较于心肌肥大患者,HF患者心肌细胞钙泄漏增加近2倍,CaMKⅡ导致的RyR2磷酸化也增加,但PKA的磷酸化作用未见显著改变[30]。受制于疾病种类和发展阶段的复杂性,目前调节RyR2功能活性的具体激酶作用尚未有定论。此外,RyR2通道自身点突变是导致心律失常疾病,如儿茶酚胺引起的多形性室性心动过速(catecholamine-induced polymorphic ventricular tachycardia,CPVT)的重要机制之一[32]。研究发现目前已知最严重的CPVT相关点突变K4750Q可通过降低细胞质Ca2+浓度激活RyR2通道阈值、抑制细胞质Ca2+/Mg2+介导的RyR2通道失活以及降低SR Ca2+浓度激活RyR2通道阈值等机制诱发钙泄漏[32]

3 钙泄漏与AF

心房肌细胞钙稳态异常是AF发生的重要机制之一,SR钙通道RyR2稳定性下降导致的钙泄漏是钙稳态异常的重要原因。心肌细胞SR RyR2是最主要的钙释放通道,在心肌的舒张期应保持理想的关闭状态,其对细胞内钙稳态具有重要作用[33]。舒张期RyR2异常开放会导致钙泄漏增多,产生钙火花以及钙波等自发性钙释放事件,从而导致细胞质Ca2+浓度异常升高,影响心肌细胞的钙稳态[33]。在这种情况下,Ca2+通过细胞膜上的NCX1外排,与细胞外的Na+以1:3的比例进行交换,进而产生异常的净内向阳离子移动即瞬时内向电流(transient inward current,Iti),导致心肌细胞延迟后除极(delayed after depolarization,DAD)。一旦达到心肌细胞兴奋的阈值,即可诱发自发性动作电位和心肌局部的异位电触发活动,而局部电活动可进展为折返环(reentrant circuit)维持AF[33]

前期动物模型及患者来源标本的研究提示,RyR2通道功能异常和SR自发钙泄漏事件发生率增高等致心律失常性的异常电触发活动是AF发生的可能机制。研究发现,阵发性AF患者的发病机制包括SERCA2a活性增强导致的SR钙含量增多和RyR2蛋白表达水平及开放率增加[33],如miR-106b-25缺乏可导致RyR2蛋白表达水平的增加,最终增加AF的风险[5]。此外,JPH2是新发现的位于心肌横管与SR膜之间的膜偶联蛋白,研究发现JPH2-E169K突变的肥厚性心肌病患者由于RyR2与JPH2的结合减少、RyR2释放钙火花和钙泄漏增多,可出现阵发性AF的临床表现[30]

目前研究认为,慢性AF或长程持续性AF患者的发病机制可能与PKA和CaMKⅡ分别作用于RyR2的S2808和S2814位点导致RyR2超磷酸化[34],从而增大了RyR2通道的开放概率有关。磷酸酶活性的调节异常,如磷酸酶抑制剂1(phosphatase inhibitor 1,PPI-1)的功能异常也可能导致心律失常患者的RyR2超磷酸化[35]。此外,线粒体氧化应激会导致RyR2通道被氧化,钙泄漏增多,进而导致心律失常的发生,而针对线粒体的抗氧化剂可减轻这一现象[36]。Li等[4]研究发现,钙泄漏在AF中的作用不仅限于诱发心房肌细胞异常电活动,亦可经由钙调磷酸酶/活化T淋巴细胞核因子等钙依赖结构重构机制,参与AF异常基质的生成,如心房扩大、传导障碍、心肌肥厚等,进而导致AF的进展。近期研究发现,晚钠通道可以通过激活CaMKⅡ和PKA参与心房肌细胞的钙稳态异常,抑制晚钠电流可减少患者心房肌细胞钙泄漏[11]。之后研究证实CaMKⅡ主要参与经RyR2的钙泄漏,而PKA参与增强心房肌细胞的SR摄钙,可能是通过磷酸化受磷蛋白(phospholamban,PLN)“去抑制”PLN/SERCA2a通路发挥作用,提示CaMKⅡ及PKA的共同激活参与了钙稳态异常的形成与维持,是AF发生的重要机制之一。

4 小结

大量临床和动物实验研究表明,RyR2活性异常和钙泄漏增加可导致DAD及异常电触发活动,但由于AF临床发展阶段和AF动物模型的不同,心房肌细胞钙泄漏的具体机制各有不同。因此,进一步研究单个RyR2通道的特性、RyR2通道的翻译后调节机制、细胞水平DAD的检测,以及不同AF发展阶段患者心肌标本的生物学改变,对于阐明AF发生、发展的分子机制非常重要。而研发针对RyR2通道功能异常的药物有望从钙稳态异常的临床治疗思路出发,抑制钙泄漏诱发的电活动异常及其导致的折返基质等心房结构重构,临床应用前景良好。

参考文献
[1] BERS D M. Cardiac sarcoplasmic reticulum calcium leak:basis and roles in cardiac dysfunction[J]. Annu Rev Physiol, 2014, 76: 107–127. DOI: 10.1146/annurev-physiol-020911-153308
[2] WESCOTT A P, JAFRI M S, LEDERER W J, WILLIAMS G S. Ryanodine receptor sensitivity governs the stability and synchrony of local calcium release during cardiac excitation-contraction coupling[J]. J Mol Cell Cardiol, 2016, 92: 82–92. DOI: 10.1016/j.yjmcc.2016.01.024
[3] RUEDA A, DE ALBA-AGUAYO D R, VALDIVIA H H. [Ryanodine receptor, calcium leak and arrhythmias][J]. Arch Cardiol Mex, 2014, 84: 191–201.
[4] LI N, CHIANG D Y, WANG S, WANG Q, SUN L, VOIGT N, et al. Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model[J]. Circulation, 2014, 129: 1276–1285. DOI: 10.1161/CIRCULATIONAHA.113.006611
[5] CHIANG D Y, KONGCHAN N, BEAVERS D L, ALSINA K M, VOIGT N, NEILSON J R, et al. Loss of microRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and calcium release[J]. Circ Arrhythm Electrophysiol, 2014, 7: 1214–1222. DOI: 10.1161/CIRCEP.114.001973
[6] GUO X, YUAN S, LIU Z, FANG Q. Oxidation- and CaMKⅡ-mediated sarcoplasmic reticulum Ca2+ leak triggers atrial fibrillation in aging[J]. J Cardiovasc Electrophysiol, 2014, 25: 645–652. DOI: 10.1111/jce.2014.25.issue-6
[7] HOEKER G S, HANAFY M A, OSTER R A, BERS D M, POGWIZD S M. Reduced arrhythmia inducibility with calcium/calmodulin-dependent protein kinase Ⅱ inhibition in heart failure rabbits[J]. J Cardiovasc Pharmacol, 2016, 67: 260–265. DOI: 10.1097/FJC.0000000000000343
[8] MESUBI O O, ANDERSON M E. Atrial remodelling in atrial fibrillation:CaMKⅡ as a nodal proarrhythmic signal[J]. Cardiovasc Res, 2016, 109: 542–557. DOI: 10.1093/cvr/cvw002
[9] MACQUAIDE N, TUAN H T, HOTTA J, SEMPELS W, LENAERTS I, HOLEMANS P, et al. Ryanodine receptor cluster fragmentation and redistribution in persistent atrial fibrillation enhance calcium release[J]. Cardiovasc Res, 2015, 108: 387–398. DOI: 10.1093/cvr/cvv231
[10] JOSEPH L C, SUBRAMANYAM P, RADLICZ C, TRENT C M, IYER V, COLECRAFT H M, et al. Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia[J]. Heart Rhythm, 2016, 13: 1699–1706. DOI: 10.1016/j.hrthm.2016.05.002
[11] FISCHER T H, HERTING J, MASON F E, HARTMANN N, WATANABE S, NIKOLAEV V O, et al. Late INa increases diastolic SR-Ca2+-leak in atrial myocardium by activating PKA and CaMKⅡ[J]. Cardiovasc Res, 2015, 107: 184–196. DOI: 10.1093/cvr/cvv153
[12] CHENG H, LEDERER W J, CANNELL M B. Calcium sparks:elementary events underlying excitationcontraction coupling in heart muscle[J]. Science, 1993, 262: 740–744. DOI: 10.1126/science.8235594
[13] SATOH H, BLATTER L A, BERS D M. Effects of[Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes[J]. Am J Physiol, 1997, 272(2 Pt 2): H657–H668.
[14] STOKKE M K, BRISTON S J, JØLLE G F, MANZOOR I, LOUCH W E, OYEHAUG L, et al. Ca2+ wave probability is determined by the balance between SERCA2-dependent Ca2+ reuptake and threshold SR Ca2+ content[J]. Cardiovasc Res, 2011, 90: 503–512. DOI: 10.1093/cvr/cvr013
[15] WALKER M A, WILLIAMS G S, KOHL T, LEHNART S E, JAFRI M S, GREENSTEIN J L, et al. Superresolution modeling of calcium release in the heart[J]. Biophys J, 2014, 107: 3018–3029. DOI: 10.1016/j.bpj.2014.11.003
[16] LIPP P, NIGGLI E. Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in Guinea-pig cardiac myocytes[J]. J Physiol, 1998, 508: 801–809. DOI: 10.1111/tjp.1998.508.issue-3
[17] BROCHET D X, XIE W, YANG D, CHENG H, LEDERER W J. Quarky calcium release in the heart[J]. Circ Res, 2011, 108: 210–218. DOI: 10.1161/CIRCRESAHA.110.231258
[18] SANTIAGO D J, CURRAN J W, BERS D M, LEDERER W J, STERN M D, RIOS E, et al. Ca sparks do not explain all ryanodine receptor-mediated SR Ca leak in mouse ventricular myocytes[J]. Biophys J, 2010, 98: 2111–2120. DOI: 10.1016/j.bpj.2010.01.042
[19] ZIMA A V, BOVO E, BERS D M, BLATTER L A. Ca2+ spark-dependent and -independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes[J]. J Physiol, 2010, 588(Pt 23): 4743–4757.
[20] BROCHET D X, YANG D, CHENG H, LEDERER W J. Elementary calcium release events from the sarcoplasmic reticulum in the heart[J]. Adv Exp Med Biol, 2012, 740: 499–509. DOI: 10.1007/978-94-007-2888-2
[21] MEISSNER G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors[J]. Annu Rev Physiol, 1994, 56: 485–508. DOI: 10.1146/annurev.ph.56.030194.002413
[22] XU L, MANN G, MEISSNER G. Regulation of cardiac Ca2+ release channel (ryanodine receptor) by Ca2+, H+, Mg2+, and adenine nucleotides under normal and simulated ischemic conditions[J]. Circ Res, 1996, 79: 1100–1109. DOI: 10.1161/01.RES.79.6.1100
[23] MEISSNER G. Regulation of mammalian ryanodine receptors[J]. Front Biosci, 2002, 7: d2072–d2080. DOI: 10.2741/A899
[24] XU L, MEISSNER G. Regulation of cardiac muscle Ca2+ release channel by sarcoplasmic reticulum lumenal Ca2+[J]. Biophys J, 1998, 75: 2302–2312. DOI: 10.1016/S0006-3495(98)77674-X
[25] GYÖRKE I, HESTER N, JONES L R, GYÖRKE S. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium[J]. Biophys J, 2004, 86: 2121–2128. DOI: 10.1016/S0006-3495(04)74271-X
[26] CHENG Y S, DAI D Z, DAI Y, ZHU D D, LIU B C. Exogenous hydrogen sulphide ameliorates diabetic cardiomyopathy in rats by reversing disordered calciumhandling system in sarcoplasmic reticulum[J]. J Pharm Pharmacol, 2016, 68: 379–388. DOI: 10.1111/jphp.2016.68.issue-3
[27] ABDI A, MAZZOCCO C, LÉGERON F P, YVERT B, MACREZ N, MOREL J L. TRPP2 modulates ryanodineand inositol-1, 4, 5-trisphosphate receptors-dependent Ca2+ signals in opposite ways in cerebral arteries[J]. Cell Calcium, 2015, 58: 467–475. DOI: 10.1016/j.ceca.2015.07.003
[28] BEAVERS D L, WANG W, ATHER S, VOIGT N, GARBINO A, DIXIT S S, et al. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization[J]. J Am Coll Cardiol, 2013, 62: 2010–2019. DOI: 10.1016/j.jacc.2013.06.052
[29] WU X, BERS D M. Free and bound intracellular calmodulin measurements in cardiac myocytes[J]. Cell Calcium, 2007, 41: 353–364. DOI: 10.1016/j.ceca.2006.07.011
[30] GUO T, CORNEA R L, HUKE S, CAMORS E, YANG Y, PICHT E, et al. Kinetics of FKBP12.6 binding to ryanodine receptors in permeabilized cardiac myocytes and effects on Ca sparks[J]. Circ Res, 2010, 106: 1743–1752. DOI: 10.1161/CIRCRESAHA.110.219816
[31] AI X, CURRAN J W, SHANNON T R, BERS D M, POGWIZD S M. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure[J]. Circ Res, 2005, 97: 1314–1322. DOI: 10.1161/01.RES.0000194329.41863.89
[32] UEHARA A, MURAYAMA T, YASUKOCHI M, FILL M, HORIE M, OKAMOTO T, et al. Extensive Ca2+ leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca2+ hypersensitivity[J]. J Gen Physiol, 2017, 149: 199–218. DOI: 10.1085/jgp.201611624
[33] VOIGT N, HEIJMAN J, WANG Q, CHIANG D Y, LI N, KARCK M, et al. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation[J]. Circulation, 2014, 129: 145–156. DOI: 10.1161/CIRCULATIONAHA.113.006641
[34] NEEF S, DYBKOVA N, SOSSALLA S, ORT K R, FLUSCHNIK N, NEUMANN K, et al. CaMKⅡ- dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation[J]. Circ Res, 2010, 106: 1134–1144. DOI: 10.1161/CIRCRESAHA.109.203836
[35] CHIANG D Y, LEBESGUE N, BEAVERS D L, ALSINA K M, DAMEN J M, VOIGT N, et al. Alterations in the interactome of serine/threonine protein phosphatase type- 1 in atrial fibrillation patients[J]. J Am Coll Cardiol, 2015, 65: 163–173. DOI: 10.1016/j.jacc.2014.10.042
[36] JOSEPH L C, SUBRAMANYAM P, RADLICZ C, TRENT C M, IYER V, COLECRAFT H M, et al. Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia[J]. Heart Rhythm, 2016, 13: 1699–1706. DOI: 10.1016/j.hrthm.2016.05.002