肝纤维化是多种慢性肝病的关键病理过程,肝星状细胞(hepatic stellate cell,HSC)是肝纤维化发生、发展过程中产生细胞外基质(extracellular matrix,ECM)的主要细胞[1]。HSC位于窦周间隙内,在健康肝脏处于静止状态,细胞内含有储存视黄醇(维生素A)的脂滴[2]。当肝脏受到病毒感染、酒精中毒、药物毒性等损伤时,HSC表型和功能发生变化,可分泌多种细胞因子促进自身活化[3],且含有的视黄醇脂滴逐渐丢失[2]。发生急性或慢性肝损伤时,肝巨噬细胞(Kupffer细胞)、窦状内皮细胞、HSC等产生活性氧,并促进炎性细胞释放多种介质,进一步激活HSC而增加ECM沉积[4]。活化的HSC不仅可以通过旁分泌和自分泌途径分泌多种ECM,而且可以通过合成、释放大量组织金属蛋白酶抑制剂减少ECM降解,影响ECM的主要成分如胶原蛋白、层粘连蛋白的表达,最终使ECM在肝内过量积聚而导致肝纤维化[5]。
肝与脂质代谢密切相关,脂质代谢的变化可对肝脏的生理功能产生影响,甚至导致某些肝脏疾病的发生和发展。多种信号通路可参与调控HSC活化增殖,其中脂质代谢通路是重要参与机制,脂质代谢紊乱与HSC激活相关。肝组织内异常增加的脂质,特别是过氧化脂质、游离脂肪酸(free fatty acid,FFA)等可通过影响脂质代谢平衡和增强脂质过氧化反应,从而促进肝纤维化[2, 6]。虽然近年来相关研究较多,但脂质代谢和肝纤维化的具体关系尚不十分明确。本文将对脂质代谢与肝纤维化关系的研究进行综述,以期从肝脏脂质代谢通路的角度为预防和逆转肝纤维化提供新的参考。
1 肝内脂质代谢肝脏在调节脂肪生成、脂肪酸氧化和脂蛋白摄取及分泌等脂质代谢过程中发挥重要作用[7]。代谢综合征和全身能量代谢障碍时会导致肝脏内脂质储积并发生肝脂肪变性,例如非酒精性脂肪性肝病时可由于体内脂质平衡失调导致三酰甘油在肝细胞内严重储积,并可进展为非酒精性脂肪性肝炎(nonalcoholic steatohepatitis,NASH)、肝纤维化甚至肝硬化[8]。炎症和脂质代谢异常密切相关,炎性介质从脂质合成、分泌和氧化等方面影响着脂质功能的稳态[9]。已证明炎性趋化因子和细胞因子如单核细胞趋化蛋白1、肿瘤坏死因子(tumor necrosis factor,TNF)-α、白细胞介素(interleukin,IL)-6和IL-8的表达增加,均可引起胰岛素抵抗,并最终促成NASH[10-11]。此外,IL-6、IL-10及TNF等可能通过影响3-羟基-3-甲基戊二酰辅酶A还原酶基因的表达,调节肝细胞载脂蛋白的表达和分泌[9]。肝脏炎症是由脂肪细胞、肝巨噬细胞和促炎性细胞因子和趋化因子共同作用引起的,并且这些细胞可以与肝巨噬细胞、内皮细胞和免疫细胞共同作用促进HSC活化,从而调节ECM的含量,进而促进肝纤维化形成[10, 12]。
肝内脂质代谢过程在不同核受体、转录因子的共同作用下维持着肝细胞内脂质动态平衡,主要包括过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor,PPAR)、固醇调节元件结合蛋白(sterol regulatory element binding protein,SREBP)、肝X受体(liver X receptor,LXR)等[13]。表 1列出了与脂质代谢相关的促进或抑制HSC活化或纤维化的指标。
2 肝内脂质代谢与肝纤维化
脂肪酸代谢失调可导致肝脂肪变性、脂肪性肝炎和肝硬化[30]。PPAR被称作脂肪酸感受器,主要参与脂肪酸的代谢。PPAR包括3种亚型:PPARα、PPARβ和PPARγ。3种PPAR亚型均在T淋巴细胞中表达并参与代谢调节和炎症,且PPAR可能通过调节脂质代谢调节T淋巴细胞分化[14]。研究表明,PPARγ在抑制肝HSC活化中发挥关键作用,脂肪细胞衍生的激素瘦素通过δ样同系物1途径减少PPARγ2表达[20]。此外,用合成的PPAR配体不仅在体外或体内处理活化的HSC可抑制HSC活性,而且用于试治疗肝纤维化动物模型时可以减缓纤维化的进展甚至逆转已经形成的纤维化[21]。
SREBP-1C是控制肝脏脂质代谢的另一主要转录因子,并在肝脂肪变性中发挥重要作用。其通过促进下游靶基因,包括脂肪酸合成酶、硬脂酰辅酶A去饱和酶1和乙酰辅酶A羧化酶1参与三酰甘油合成。抑制SREBP-1C介导的脂肪合成与由PPARα介导FFA β-氧化的激活同样是NASH治疗的重要分子靶点[11]。研究表明,miR-185模拟物可抑制HSC中SREBP-1C的表达和增加Ⅰ型胶原(typeⅠcollagen,COL1A1)、α平滑肌肌动蛋白水平,促进肝纤维化的发生、发展[22]。
此外,在肝脏中高表达的长链脂酰辅酶A合成酶1(acyl-coenzyme A synthetase long-chain 1,ACSL1)为脂类合成代谢和脂肪酸分解代谢所必需。ACSL1活性下降可减少肝细胞或肝脏内三酰甘油的合成和脂肪酸的β-氧化[27]。另外,miR-34a通过靶向ACSL1和影响脂肪酸代谢、β-氧化参与肝纤维化过程[28],这可能有望成为治疗肝纤维化新的分子靶点。
3 肝内固醇代谢与肝纤维化近年研究表明,肝脏内的游离胆固醇是一种脂质毒性分子,可能直接毒性损伤细胞或者以促炎或促纤维化的方式发挥作用,对人类NASH的发展至关重要[17]。在动物实验中也观察到,饲喂高胆固醇饮食12周后,仓鼠肝组织可发生脂肪变性和纤维化[18]。LXR是一类配体依赖序列特异的核转录因子,包括LXRα和LXRβ 2个亚型,是连接脂质代谢、炎症和细胞免疫功能的关键信号转导分子。LXR不仅可以调节胆固醇代谢,也可调节广谱免疫应答、炎症和纤维化[15]。LXRα表达增高可增加肝脂质积聚、脂肪变性以及肝脏中的炎症和纤维变性程度[6]。LXRβ可通过调节细胞内胆固醇的含量影响抗原特异性免疫反应,从而抑制T淋巴细胞增殖[14]。清道夫受体B类Ⅰ型(scavenger receptor class B typeⅠ,SR-BⅠ)是一种由清道夫受体B类成员1基因编码的蛋白质,其可减少肝内胆固醇和胆固醇酯的含量。SR-BⅠ受PPAR、LXR和SREBP等多种核受体和转录因子调控,而这些核因子及相关分子可通过影响炎症及脂质代谢等参与肝纤维化过程[29]。在治疗方面,他汀类药物是已知的胆固醇代谢的阻断剂。辛伐他汀通过增加内皮一氧化氮合酶表达抑制HSC活化和肝纤维化[24]。此外,他汀类药物也可以通过激活转录因子Kruppel样因子2增强抗纤维化作用[23]。另外,固醇类衍生物维生素D的活性形式,即1, 25(OH)2D3在肝脏中也具有抗纤维化作用,其可能通过抑制HSC活化而发挥作用[26]。
4 肝内磷脂代谢与肝纤维化鞘氨醇-1-磷酸(sphingosine-1-phosphate,S1P)是一个生物活性信号分子,参与肝细胞中棕榈酸合成,其释放到细胞外环境中可与S1P3受体结合导致HSC活化[19]。此外,卵磷脂复合物水飞蓟宾能明显减轻大鼠肝组织的纤维化程度,并抑制胶原表达[25]。溶血磷脂酸(lysobisphosphatidic acid,LPA)是迄今发现的一个相对分子质量最小、结构最简单的磷脂。研究表明,LPA及其受体可通过调节细胞收缩张力而导致ECM产生增加[31]。自体毒素(autotaxin,ATX)是产生循环LPA的一个关键酶,抑制ATX可以抗纤维化,有望成为多种慢性肝脏疾病包括NASH新的治疗途径[16]。
5 小结脂质代谢紊乱是许多慢性肝脏疾病的病理基础之一,且肝脂肪变性可进展为肝纤维化、对患者健康造成威胁。随着研究者对脂质代谢的深入研究,近年有报道证实其在肝纤维化过程中发挥重要作用。目前脂质代谢与肝纤维化关系中相关信号通路及其作用的详细方式还尚未完全了解,仍需进一步研究和探索。通过干预某些脂质代谢途径可影响肝纤维化进程,为探寻防治肝纤维化新途径提供了新的视角。
[1] | FRIEDMAN S L. Liver fibrosis-from bench to bedside[J]. J Hepatol, 2003, 38(Suppl 1): S38–S53. |
[2] | MOLENAAR M R, VAANDRAGER A B, HELMS J B. Some lipid droplets are more equal than others: different metabolic lipid droplet pools in hepatic stellate cells[J/OL]. Lipid Insights, 2017, 10: 1178635317747281. doi: 10.1177/1178635317747281. https://dspace.library.uu.nl/handle/1874/360999 |
[3] | SENOO H, YOSHIKAWA K, MORⅡ M, MIURA M, IMAI K, MEIAKI Y. Hepatic stellate cell (vitamin A-storing cell) and its relative-past, present and future[J]. Cell Biol Int, 2010, 34: 1247–1272. DOI: 10.1042/CBI20100321 |
[4] | GANDHI C R. Oxidative stress and hepatic stellate cells:a paradoxical relationship[J]. Trends Cell Mol Biol, 2012, 7: 1–10. |
[5] | 陈琴, 陈连云, 金欢欢, 张峰, 陆茵, 郑仕中. 肝脏树突状细胞在肝纤维化中的作用[J]. 中国药理学通报, 2015, 31: 1053–1056. DOI: 10.3969/j.issn.1001-1978.2015.08.005 |
[6] | CERNEA S, CAHN A, RAZ I. Pharmacological management of nonalcoholic fatty liver disease in type 2 diabetes[J]. Expert Rev Clin Pharmacol, 2017, 10: 535–547. DOI: 10.1080/17512433.2017.1300059 |
[7] | YANG X, FU Y, HU F, LUO X, HU J, WANG G. PIK3R3 regulates PPARα expression to stimulate fatty acid β-oxidation and decrease hepatosteatosis[J/OL]. Exp Mol Med, 2018, 50: e431. doi: 10.1038/emm.2017.243. https://www.researchgate.net/publication/322608312_PIK3R3_regulates_PPARa_expression_to_stimulate_fatty_acid_b-oxidation_and_decrease_hepatosteatosis |
[8] | ANGRISH M M, KAISER J P, McQUEEN C A, CHORLEY B N. Tipping the balance:hepatotoxicity and the 4 apical key events of hepatic steatosis[J]. Toxicol Sci, 2016, 150: 261–268. DOI: 10.1093/toxsci/kfw018 |
[9] | 秦爱梅, 武彩娥, 张希彦. 炎症介质对脂质代谢的影响[J]. 中华老年心脑血管病杂志, 2012, 14: 998–1000. DOI: 10.3969/j.issn.1009-0126.2012.09.031 |
[10] | MANNE V, HANDA P. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis[J]. Clin Liver Dis, 2018, 22: 23–37. DOI: 10.1016/j.cld.2017.08.007 |
[11] | ZHANG J, ZHANG H, DENG X, ZHANG N, LIU B, XIN S, et al. Baicalin attenuates non-alcoholic steatohepatitis by suppressing key regulators of lipid metabolism, inflammation and fibrosis in mice[J]. Life Sci, 2018, 192: 46–54. DOI: 10.1016/j.lfs.2017.11.027 |
[12] | SEKI E, SCHWABE R F. Hepatic inflammation and fibrosis:functional links and key pathways[J]. Hepatology, 2015, 61: 1066–1079. DOI: 10.1002/hep.v61.3 |
[13] | ⅡZUKA K, BRUICK R K, LIANG G, HORTON J D, UYEDA K. Deficiency of carbohydrate response elementbinding protein (ChREBP) reduces lipogenesis as well as glycolysis[J]. Proc Natl Acad Sci USA, 2004, 101: 7281–7286. DOI: 10.1073/pnas.0401516101 |
[14] | ROBINSON G A, WADDINGTON K E, PINEDATORRA I, JURY E C. Transcriptional regulation of T-cell lipid metabolism: implications for plasma membrane lipid rafts and T-cell function[J/OL]. Front Immunol, 2017, 8: 1636. doi: 10.3389/fimmu.2017.01636. http://cn.bing.com/academic/profile?id=23c15d156f5c2654af2ce67de7d886ee&encoded=0&v=paper_preview&mkt=zh-cn |
[15] | SCHULMAN I G. Liver X receptors link lipid metabolism and inflammation[J]. FEBS Lett, 2017, 591: 2978–2991. DOI: 10.1002/1873-3468.12702 |
[16] | BAIN G, SHANNON K E, HUANG F, DARLINGTON J, GOULET L, PRODANOVICH P, et al. Selective inhibition of autotaxin is efficacious in mouse models of liver fibrosis[J]. J Pharmacol Exp Ther, 2017, 360: 1–13. |
[17] | IOANNOU G N. The role of cholesterol in the pathogenesis of NASH[J]. Trends Endocrinol Metab, 2016, 27: 84–95. DOI: 10.1016/j.tem.2015.11.008 |
[18] | MIYAOKA Y, JIN D, TASHIRO K, MASUBUCHI S, OZEKI M, HIROKAWA F, et al. A novel hamster nonalcoholic steatohepatitis model induced by a high-fat and high-cholesterol diet[J]. Exp Anim, 2018, 67: 239–247. DOI: 10.1538/expanim.17-0126 |
[19] | CHEN X, GU X, ZHANG H. Sidt2 regulates hepatocellular lipid metabolism through autophagy[J]. J Lipid Res, 2018, 59: 404–415. DOI: 10.1194/jlr.M073817 |
[20] | CHENG Y, ZHU X, CHENG F, JI L, ZHOU Y. Delta-like homolog1/GATA binding protein 2 axis mediates leptin inhibition of PPARγ2 expression in hepatic stellate cells in vitro[J]. Life Sci, 2018, 192: 183–189. DOI: 10.1016/j.lfs.2017.11.050 |
[21] | HAZRA S, XIONG S, WANG J, RIPPE R A, KRISHNA V, CHATTERJEE K, et al. Peroxisome proliferatoractivated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells[J]. J Biol Chem, 2004, 279: 11392–11401. DOI: 10.1074/jbc.M310284200 |
[22] | LI B B, LI D L, CHEN C, LIU B H, XIA C Y, WU H J, et al. Potentials of the elevated circulating miR-185 level as a biomarker for early diagnosis of HBV-related liver fibrosis[J/OL]. Sci Rep, 2016, 6: 34157. doi: 10.1038/srep34157. |
[23] | MARRONE G, MAESO-DÍAZ R, GARCÍA-CARDENA G, ABRALDES J G, GARCÍA-PAGÁN J C, BOSCH J, et al. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers:behind the molecular mechanisms of statins[J]. Gut, 2015, 64: 1434–1443. DOI: 10.1136/gutjnl-2014-308338 |
[24] | WEI W, ZHAO C, ZHOU J, ZHEN Z, WANG Y, SHEN C. Simvastatin ameliorates liver fibrosis via mediating nitric oxide synthase in rats with non-alcoholic steatohepatitisrelated liver fibrosis[J/OL]. PLoS One, 2013, 8: e76538. doi: 10.1371/journal.pone.0076538. https://www.researchgate.net/profile/Ya-Dong_Wang/publication/257465021_Simvastatin_Ameliorates_Liver_Fibrosis_via_Mediating_Nitric_Oxide_Synthase_in_Rats_with_Non-Alcoholic_Steatohepatitis-Related_Liver_Fibrosis/links/00b7d530b560d518df000000.pdf?origin=publication_list |
[25] | 朱跃科, 段钟平, 朱继东, 王宝恩, 刘芳, 谢贤春. 水飞蓟宾卵磷脂复合物对肝纤维化大鼠肝脏中胶原表达的影响[J]. 中国临床药理学与治疗学, 2006, 11: 1380–1384. DOI: 10.3969/j.issn.1009-2501.2006.12.013 |
[26] | BAE M, PARK Y K, LEE J Y. Food components with antifibrotic activity and implications in prevention of liver disease[J]. J Nutr Biochem, 2018, 55: 1–11. DOI: 10.1016/j.jnutbio.2017.11.003 |
[27] | YAN G, LI X, PENG Y, LONG B, FAN Q, WANG Z, et al. The fatty acid β-oxidation pathway is activated by leucine deprivation in HepG2 cells: a comparative proteomics study[J/OL]. Sci Rep, 2017, 7: 1914. doi: 10.1038/s41598-017-02131-2. |
[28] | YAN G, LI B, XIN X, XU M, JI G, YU H. MicroRNA-34a promotes hepatic stellate cell activation via targeting ACSL1[J]. Med Sci Monit, 2015, 21: 3008–3015. DOI: 10.12659/MSM.894000 |
[29] | WANG L, JIA X J, JIANG H J, DU Y, YANG F, SI S Y, et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition[J]. Mol Cell Biol, 2013, 33: 1956–1964. DOI: 10.1128/MCB.01580-12 |
[30] | RINELLA M E. Nonalcoholic fatty liver disease:a systematic review[J]. JAMA, 2015, 313: 2263–2273. DOI: 10.1001/jama.2015.5370 |
[31] | HO L T Y, SKIBA N, ULLMER C, RAO P V. Lysophosphatidic acid induces ECM production via activation of the mechanosensitive YAP/TAZ transcriptional pathway in trabecular meshwork cells[J]. Invest Ophthalmol Vis Sci, 2018, 59: 1969–1984. DOI: 10.1167/iovs.17-23702 |