第二军医大学学报  2018, Vol. 39 Issue (5): 535-537   PDF    
干扰素调节因子8抑制辅助性T淋巴细胞17分化在白塞病发病机制中的作用
林晨红, 管剑龙     
复旦大学附属华东医院免疫风湿科, 上海 200040
摘要: 白塞病是一种主要表现为复发性口腔溃疡、生殖器溃疡、眼炎和皮肤损害的慢性系统性血管炎。白塞病发病机制尚不明确,可能是遗传易感个体在感染或环境等因素触发下发生的自身免疫性疾病,辅助性T淋巴细胞17(Th17)在白塞病发病过程中有重要作用。干扰素调节因子8(IRF8)可抑制Th17分化,从而抑制Th17及白细胞介素17产生的炎性反应。基因组学研究提示,IRF8相关单核苷酸多态性位点是白塞病的风险基因位点。近年来,IRF8抑制Th17分化在白塞病发病机制中的作用已经成为研究热点。
关键词: 白塞病     Th 17细胞     干扰素调节因子8     白细胞介素17     单核苷酸多态性    
Role of interferon regulatory factor 8 inhibiting helper T cell 17 differentiation in pathogenesis of Behçet's disease
LIN Chen-hong, GUAN Jian-long     
Department of Immunology and Rheumatology, Huadong Hospital, Fudan University, Shanghai 200040, China
Supported by Second Batch Program of Joint Effort for Tackling Major Disease of Shanghai Health System (2014ZYJB0010) and Clinical Science Innovation Program of Shanghai Shenkang Hospital Development Center (SHDC12017129).
Abstract: Behçet's disease (BD) is a chronic systemic vasculitis that mainly characterized by recurrent oral ulcers, genital ulcers, uveitis and skin lesions. The pathogenesis of BD is still unknown. BD is considered to be an autoimmune disease triggered by infection or environmental factors in genetically susceptible individuals. Helper T cell 17 (Th17) play an important role in the pathogenesis of BD. Interferon regulatory factor 8 (IRF8) inhibits Th17 differentiation, thereby inhibiting the inflammation induced by Th17 and interleukin 17. Genomic studies suggest that IRF8-associated single nucleotide polymorphisms (SNPs) are risk loci of BD. In recent years, role of IRF8 inhibiting Th17 differentiation in the pathogenesis of BD has become a research focus.
Key words: Behçet's disease     Th17 cells     interferon regulatory factor 8     interleukin 17     single nucleotide polymorphism    

白塞病(Behçet disease,BD)又称丝绸之路病,是一种以复发性口腔溃疡为首发、逐渐伴发外阴溃疡、结节性红斑等皮肤黏膜病变为基本特征,可能选择性发生眼炎、胃肠道溃疡、主动脉瓣反流、静脉血栓、动脉狭窄、动脉瘤、关节炎或血细胞减少症等1~2个寡器官损害的变异性血管炎。主要致残:失明,主要死因:神经损害、动脉瘤、肠穿孔[1]。BD是免疫细胞引起局部组织损伤的一种炎性疾病,尤其是CD4+ T淋巴细胞。作为一类新型CD4+ T淋巴细胞亚群,辅助性T淋巴细胞(helper T cell,Th)17在BD发病过程中有重要作用[2]。干扰素调节因子(interferon regulatory factor,IRF)家族对免疫细胞发育、分化和存活的调节至关重要,该家族成员IRF8可抑制Th17分化。IRF8调控Th17及其相关细胞因子产生的炎性效应在BD中的作用逐渐受到关注。

1 Th17在BD炎症调节中起重要作用

Th17是一类有别于Th1和Th2的CD4+ T淋巴细胞亚群,通过分泌白细胞介素(interleukin,IL)-17A、IL-17F、IL-21、肿瘤坏死因子(tumor necrosis factor,TNF)-α和IL-22在多种自身免疫性疾病中发挥重要作用[3]。CD4+ T淋巴细胞在IL-6、转化生长因子β(transforming growth factor β,TGF-β)存在条件下分化为Th17,IL-23则在随后的Th17扩增和维持中起重要作用;Th17分化的主要转录因子为维甲酸相关孤儿核受体(retinoid acid-related orphan nuclear receptor γt,RORγt),RORγt通过诱导编码IL-17基因表达而发挥Th17的促炎作用。另外,CD4+ T淋巴细胞在TGF-β单独作用下分化为调节性T淋巴细胞(regulatory T cell,Treg),Treg通过叉头状转录因子p3(forkhead transcription factor p3,Foxp3)发挥抑制效应性T淋巴细胞的作用[4]。Treg可分为天然型和诱导型Treg,前者来源于胸腺,后者则由外周淋巴结经TGF-β刺激产生,两者均表达Foxp3;天然型Treg表达较不稳定,在炎性状态下可转化为Th17,而诱导型Treg则稳定表达,在免疫抑制中起主要作用[5]。Th17与Treg在免疫调节中的作用截然相反,因而,维持Th17/Treg平衡在自身免疫性疾病中至关重要。

Hamzaoui等[6]报道,活动性BD患者外周血Th17比例及IL-17A分泌增加。Geri等[7]研究45例BD患者(25例活动期和20例缓解期)以及20名健康对照的资料进行分析发现,活动性BD患者Th17增加,同时Foxp3+ Treg减少;分选健康对照CD4+ T淋巴细胞并加入活动性BD患者血清后发现,IL-17A的分泌显著增加,而Foxp3表达显著下降;该研究还发现,中枢神经系统受累的活动性BD患者脑脊液、炎性浸润脑实质和颅内静脉中T淋巴细胞IL-21和IL-17A表达增加。Sugita等[8]发现,有葡萄膜炎的活动性BD患者泪液中干扰素(interferon,IFN)-γ、IL-2、TNF-α、IL-6和IL-17水平显著升高,而英夫利昔单克隆抗体(抗TNF-α单克隆抗体)治疗者泪液中不含相应细胞因子;BD患者的极化Th17高表达IL-17和RORγt,而接受英夫利昔单克隆抗体治疗者的Th17中IL-17和RORγt表达水平降低。可见Th17及其相关细胞因子在BD炎症调节中起重要作用。

2 IRF8调控Th17分化参与自身免疫炎症调节

IRF8亦称干扰素共同序列结合蛋白,包含N末端DNA结合结构域和C末端调节结构域,使其能够与其他转录调节子相互作用从而发挥作用[9]。IRF8由B淋巴细胞、树突状细胞(dendritic cell,DC)、巨噬细胞和活化的T淋巴细胞表达,并在固有免疫和适应性免疫方面发挥多种作用[10]。IRF8在骨髓细胞分化中起关键作用,可促进单核细胞向粒细胞分化。同时,IRF8也是DC发育、分化和效应等的关键调节因素[9, 11]。IFN-γ通过激活信号转导及转录激活因子1上调T淋巴细胞表达IRF8,IRF8结合IL-12启动子干扰素刺激性反应原件,参与IL-12 p40亚单位表达,并触发抗原呈递细胞(antigen-presenting cell,APC)表达IL-12和IL-23,进而促进Th17分化[12]。近年来,IRF8对Th17分化的影响在一些自身免疫性疾病中逐渐受到关注。

Ouyang等[13]采用结肠炎小鼠模型,发现IRF8可通过直接与RORγt启动子片段结合抑制Th17分化。Yoshida等[14]在多发性硬化动物模型实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis,EAE)中研究发现,IRF8在APC(巨噬细胞、DC和小胶质细胞)中表达但不在T淋巴细胞中表达可加重EAE,IRF8基因敲除小鼠对EAE具有保护作用;IRF8通过增强APC中整合素的表达激活TGF-β信号,同时刺激IL-12和IL-23产生,促进Th17分化,加重神经炎症。Kim等[15]靶向敲除小鼠CD4+ T淋巴细胞和视网膜细胞的IRF8基因,研究小鼠实验性自身免疫性葡萄膜炎(experimental autoimmune uveitis,EAU)的发生、发展及病理改变,结果发现,CD4+ T淋巴细胞IRF8基因敲除小鼠EAU加重,且炎症加重与Th17增加相关,而视网膜细胞IRF8缺失则在EAU中表现为保护作用,由此推测IRF8在宿主免疫中的作用存在多样性和组织特异性。

3 IRF8调控Th17分化参与BD的炎症调节

近年基因组学研究提示,IRF8参与BD的发生和发展。Takeuchi等[16]对1 900例来自土耳其的BD患者和1 799名健康对照进行基因芯片检测发现,IRF8单核苷酸多态性(single nucleotide polymorphism,SNP)位点rs11117433、rs142105922和rs7203487为BD的风险位点。Jiang等[17]使用聚合酶链反应-限制性片段长度多态性技术检测中国汉族人群发现,IRF8附近的2个SNP(rs17445836 GG和rs11642873 AA)与BD存在显著关联;SNP功能研究提示,携带rs17445836 GG基因型者IRF8IFN-γ的mRNA表达增加,IL-10产生则减少,携带rs11642873 AA基因型的个体IRF8表达增加而IFN-γ和IL-10则减少。Tian等[18]研究发现,向活动性BD患者CD4+ T淋巴细胞中加入维生素D3(vitamin D3,VitD3)可抑制Th17分化,上调IRF8表达,而反转录CD4+T淋巴细胞中的IRF8特异性RNA后,VitD3对Th17分化的抑制作用显著降低,由此推测VitD3通过IRF8途径抑制Th17分化。Qiu等[19]评估眼BD患者DC中的IRF8甲基化程度,发现活动性眼BD患者IRF8 mRNA表达减少,甲基化水平升高,Th1和Th17数量增加,IL-6、IL-1β、IL-23、IL-12、IL-17和IFN-γ浓度升高,而去甲基化处理后IRF8 mRNA表达增加,甲基化水平降低,Th1和Th17数量及相应细胞因子浓度下降,提示IRF8过度甲基化使Th17分化增加可能参与了眼BD。

IRF8抑制Th17分化在BD发病中的作用机制尚不明确。Ouyang等[13]在结肠炎模型中验证了IRF8-RORγt信号通路是IRF8抑制Th17分化的分子机制。Takeuchi等[16]用基因芯片检测BD患者风险基因后进行的一项meta分析显示,IRF8相关SNP为炎症性肠病与BD共同的易感基因位点。由此推测,IRF8-RORγt信号通路可能是IRF8在BD炎症中调控Th17分化的潜在分子机制。

4 展望

BD发病机制尚未明确,但Th17及其相关细胞因子参与了BD的发生和发展。研究提示,IRF8相关SNP位点为BD的风险位点,其可能通过活化IRF8-RORγt信号通路抑制Th17分化,进而在BD炎症调节中发挥作用,这一推测亟待进一步临床及基础实验验证。探索IRF8抑制Th17分化的分子机制可能为BD临床治疗提供新思路。

参考文献
[1] 管剑龙. 白塞病临床诊治现状与几点认识[J]. 内科理论与实践, 2016, 11: 347–351.
[2] ZEIDAN M J, SAADOUN D, GARRIDO M, KLATZMANN D, SIX A, CACOUB P. Behçet's disease physiopathology: a contemporary review[J/OL]. Auto Immun Highlights, 2016, 7: 4. doi: 10.1007/s13317-016-0074-1. https://link.springer.com/article/10.1007%2Fs13317-016-0074-1
[3] MARWAHA A K, LEUNG N J, McMURCHY A N, LEVINGS M K. Th17 cells in autoimmunity and immunodeficiency: protective or pathogenic?[J/OL]. Front Immunol, 2012, 3: 129. doi: 10.3389/fimmu.2012.00129. http://cn.bing.com/academic/profile?id=47e16588c1cbc4ee1f0a8c758c55c4d0&encoded=0&v=paper_preview&mkt=zh-cn
[4] ZHENG S G. Regulatory T cells vs Th17:differentiation of Th17 versus Treg, are the mutually exclusive?[J]. Am J Clin Exp Immunol, 2013, 2: 94–106.
[5] YADAV M, STEPHAN S, BLUESTONE J A. Peripherally induced Tregs-role in immune homeostasis and autoimmunity[J/OL]. Front Immunol, 2013, 4: 232. doi: 10.3389/fimmu.2013.00232. http://cn.bing.com/academic/profile?id=5328ce2595fb848032c139008cb44672&encoded=0&v=paper_preview&mkt=zh-cn
[6] HAMZAOUI K, BOUALI E, GHORBEL I, KHANFIR M, HOUMAN H, HAMZAOUI A. Expression of Th-17 and RORγt mRNA in Behçet's disease[J]. Med Sci Monit, 2011, 17: CR227–CR234.
[7] GERI G, TERRIER B, ROSENZWAJG M, WECHSLER B, TOUZOT M, SEILHEAN D, et al. Critical role of IL-21 in modulating Th17 and regulatory T cells in Behçet disease[J]. J Allergy Clin Immunol, 2011, 128: 655–664. DOI: 10.1016/j.jaci.2011.05.029
[8] SUGITA S, KAWAZOE Y, IMAI A, YAMADA Y, HORIE S, MOCHIZUKI M. Inhibition of Th17 differentiation by anti-TNF-α therapy in uveitis patients with Behçet's disease[J/OL]. Arthritis Res Ther, 2012, 14: R99. doi: 10.1186/ar3824. https://link.springer.com/article/10.1186/ar3824
[9] TAMURA T, KUROTAKI D, KOIZUMI S. Regulation of myelopoiesis by the transcription factor IRF8[J]. Int J Hematol, 2015, 101: 342–351. DOI: 10.1007/s12185-015-1761-9
[10] MANCINO A, NATOLI G. Specificity and function of IRF family transcription factors:insights from genomics[J]. J Interferon Cytokine Res, 2016, 36: 462–469. DOI: 10.1089/jir.2016.0004
[11] PELKA K, LATZ E. IRF5, IRF8, and IRF7 in human pDCs-the good, the bad, and the insignificant?[J]. Eur J Immunol, 2013, 43: 1693–1697. DOI: 10.1002/eji.201343739
[12] SINGH H, GLASMACHER E, CHANG A B, VANDER LUGT B. The molecular choreography of IRF4 and IRF8 with immune system partners[J]. Cold Spring Harb Symp Quant Biol, 2013, 78: 101–104. DOI: 10.1101/sqb.2013.78.020305
[13] OUYANG X, ZHANG R, YANG J, LI Q, QIN L, ZHU C, et al. Transcription factor IRF8 directs a silencing programme for TH17 cell differentiation[J/OL]. Nat Commun, 2011, 2: 314. doi: 10.1038/ncomms1311. http://cn.bing.com/academic/profile?id=f33cd17c084b81c80e313bc1aa50cf84&encoded=0&v=paper_preview&mkt=zh-cn
[14] YOSHIDA Y, YOSHIMI R, YOSHⅡ H, KIM D, DEY A, XIONG H, et al. The transcription factor IRF8 activates integrin-mediated TGF-β signaling and promotes neuroinflammation[J]. Immunity, 2014, 40: 187–198. DOI: 10.1016/j.immuni.2013.11.022
[15] KIM S H, BURTON J, YU C R, SUN L, HE C, WANG H, et al. Dual function of the IRF8 transcription factor in autoimmune uveitis:loss of IRF8 in T cells exacerbates uveitis, whereas IRF8 deletion in the retina confers protection[J]. J Immunol, 2015, 195: 1480–1488. DOI: 10.4049/jimmunol.1500653
[16] TAKEUCHI M, MIZUKI N, MEGURO A, OMBRELLO M J, KIRINO Y, SATORIUS C, et al. Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behçet's disease susceptibility[J]. Nat Genet, 2017, 49: 438–443. DOI: 10.1038/ng.3786
[17] JIANG Y, WANG H, YU H, LI L, XU D, HOU S, et al. Two genetic variations in the IRF8 region are associated with Behçet's disease in Han Chinese[J/OL]. Sci Rep, 2016, 6: 19651. doi: 10.1038/srep19651. http://europepmc.org/articles/PMC4726413
[18] TIAN Y, WANG C, YE Z, XIAO X, KIJLSTRA A, YANG P. Effect of 1, 25-dihydroxyvitamin D3 on Th17 and Th1 response in patients with Behçet's disease[J]. Invest Ophthalmol Vis Sci, 2012, 53: 6434–6441. DOI: 10.1167/iovs.12-10398
[19] QIU Y, ZHU Y, YU H, YI S, SU W, CAO Q, et al. Ocular Behçet's disease is associated with aberrant methylation of interferon regulatory factor 8(IRF8) in monocyte-derived dendritic cells[J]. Oncotarget, 2017, 8: 51277–51287.