第二军医大学学报  2018, Vol. 39 Issue (4): 417-421   PDF    
视网膜黄斑区神经节细胞复合体厚度检测的研究进展
张红军, 赵世红     
海军军医大学(第二军医大学)长海医院眼科, 上海 200433
摘要: 视网膜神经节细胞与视功能密切相关。大多致盲性眼病如原发性青光眼、视神经炎、糖尿病性视网膜病变、萎缩型年龄相关性黄斑变性等均存在视网膜神经节细胞凋亡及其轴突的损害。神经节细胞主要存在于黄斑区的视网膜神经纤维层、神经节细胞层、内丛状层结构中,此3层结构统称为视网膜神经节细胞复合体,其厚度变化可用于反映视网膜神经节细胞状况。研究发现视网膜神经节细胞受损会出现神经节细胞复合体厚度变薄,因此观察视网膜神经节细胞复合体厚度变化对诊断相关眼病、了解病情严重程度及判断预后有重要意义。本文就视网膜黄斑区神经节细胞复合体厚度检测在多种眼病中的研究进展进行综述,为相关眼病的早期诊断、防治及判断预后提供帮助。
关键词: 视网膜神经节细胞     黄斑     原发性青光眼     视神经炎     糖尿病性视网膜病变     年龄相关性黄斑变性    
Progress in the detection of macular ganglion cell complex thickness
ZHANG Hong-jun, ZHAO Shi-hong     
Department of Ophthalmology, Changhai Hospital, Navy Medical University(Second Military Medical University), Shanghai 200433, China
Abstract: Retinal ganglion cells are closely related to visual function. Retinal ganglion cell apoptosis and axonal injury can be found in many blinding eye diseases, such as primary glaucoma, optic neuritis, diabetic retinopathy, and atrophic age-related macular degeneration. Ganglion cells mainly exist in the retinal nerve fiber layer, the ganglion cell layer and the inner plexiform layer of the macular area. These three structures are collectively referred to as the retinal ganglion cell complex, and change of the thickness reflects the state of the retinal ganglion cell. It has been reported that ganglion cell complex thickness is thinner in the injured retinal ganglion cells. Therefore it is important to detected thickness of retinal ganglion cell complex in the diagnosis of ocular disease and the evaluation of its severity and prognosis. In this paper, we reviewed the recent progress in the detection of retinal ganglion cell complex thickness in various eye diseases to assist the early diagnosis, treatment and evaluating prognosis of associated ophthalmopathy.
Key words: retinal ganglion cell     macula lutea     primary glaucoma     optic neuritis     diabetic retinopathy     age-related macular degeneration    

视网膜黄斑区神经节细胞复合体(macular ganglion cell complex,mGCC)由视网膜神经纤维层(retinal nerve fiber layer,RNFL)、神经节细胞(retinal ganglion cell,RGC)层、内丛状层3层构成,分别代表RGC的轴突、胞体和树突。RGC主要存在于黄斑区内层视网膜中,光学相干断层扫描术(optical coherence tomography,OCT)具有高灵敏度、高分辨率等优点,可用于对mGCC的精确测量,因此OCT扫描对黄斑区的评定成为RGC评估的重要依据。因青光眼病理学改变主要是RGC凋亡及其轴突损害,目前临床已将mGCC评估广泛用于早期青光眼诊断[1]。然而研究发现诸多致盲性眼病可引起RGC及其轴突的丢失,继而引起mGCC厚度改变,且研究证实,RGC变化与疾病病程、严重程度及视功能等相关,因此本文对mGCC厚度检测在眼部疾病中的研究进展进行综述,以期帮助眼部疾病的早期诊断、治疗及判断预后。

1 原发性青光眼与mGCC

原发性青光眼作为目前全球不可逆致盲性眼病的首位,严重威胁人类视觉健康,以病理性眼压增高、特征性视神经萎缩和视野缺损为共同特征。目前mGCC相关研究主要集中在原发性开角型青光眼方面。研究发现原发性开角型青光眼患者在出现视盘周围视网膜神经纤维层(retinal nerve fiber layer,RNFL)和视野损害之前已存在RGC损害,出现对比敏感度障碍和色觉障碍[2]。黄斑区是RGC分布最密集区域,而且是视觉敏锐部位,因此评估mGCC厚度的改变较评估视盘周围RNFL厚度更有意义[3]。青光眼发病过程中,RGC首先受到损害,导致其进一步凋亡和坏死[4-5]。Greenfield等[6]研究表明,在青光眼患者中黄斑厚度的变薄与RGC的丢失有关。Ganekal[7]通过比较可疑青光眼与原发性开角型青光眼患者的mGCC厚度和RNFL厚度发现,在可疑青光眼患者中,38%的患眼存在mGCC厚度变薄,13%的患眼存在RNFL厚度变薄;在原发性开角型青光眼患者中,98%的患眼存在mGCC厚度变薄,90%的患眼存在RNFL厚度变薄。因此可以通过mGCC厚度变化监测RGC的受损程度,从而为早期发现青光眼的诊断提供依据。最新研究发现,应用OCT扫描黄斑区范围越大,对青光眼早期诊断越准确[8]。Kim等[9]采用傅里叶OCT研究51例正常眼压性青光眼患者、52例原发性开角型青光眼患者和58例正常健康体检者的mGCC厚度时发现,mGCC平均厚度在正常眼压性青光眼和原发性开角型青光眼患者中的差异有统计学意义(P=0.001),正常眼压性青光眼mGCC的损害较原发性开角型青光眼更局限化。Na等[10]采用傅里叶OCT(RTVue-100 OCT)研究发现mGCC厚度和黄斑区RNFL厚度与原发性开角型青光眼有关,且前者的相关性大于后者,更适合用于了解青光眼患者黄斑结构变化与功能损失,以及了解青光眼的病情进展。因此,随着我们对mGCC认识的深入,在临床诊疗中,对于青光眼患者除检查视盘周围RNFL厚度外,还需注意mGCC厚度变化情况,以发现早期病变。

2 视神经炎与mGCC

视神经炎是指视神经的各种炎性病变,有特发性、感染性、自身免疫性等病因。最常见的视神经炎类型为经典多发性硬化相关性视神经炎、视神经脊髓炎相关性视神经炎、其他中枢神经系统脱髓鞘疾病相关性视神经炎[11]。视神经炎恢复情况通常取决于视神经萎缩量[12]。对视觉通路肿瘤的研究发现,RNFL变化与视野变化呈正相关[13]。然而,研究发现视盘周围RNFL与局部RGC密度不一致,RNFL是由RGC的轴突发出纤维所构成,RGC的胞体集中分布于黄斑区。这表明对mGCC厚度的测量可能比分析RNFL厚度对某些视神经疾病的检测更有意义[14]。大量研究证明OCT可以用于检测视神经疾病的RGC的轴突损失[15-16]。Ratchford等[17]通过对26例既往发生过视神经炎的视神经脊髓炎谱系疾病患者、17例长节段横贯性脊髓炎患者、378例复发―缓解型多发性硬化患者及77例健康体检者行OCT及视功能测试发现,在多发性硬化相关性视神经炎和视神经脊髓炎相关性视神经炎患者中均存在RGC胞体和轴突的丢失,在视神经炎患者中,在排除多发性硬化后,若同时存在RNFL损失(>15 μm)即可考虑视神经脊髓炎相关性视神经炎。因此对于视神经脊髓炎患者行mGCC厚度检测可间接反映RGC胞体和轴突损害情况,对视神经脊髓炎诊断及鉴别诊断具有重要意义。Tian等[18]对118例视神经炎患者研究发现,与对照组相比,多发性硬化相关性视神经炎、孤立性视神经炎、视神经脊髓炎相关性视神经炎患者的mGCC厚度均变薄(分别为24.2、28.5、28.5 μm;P均<0.01),且孤立性视神经炎和视神经脊髓炎相关性视神经炎患者的mGCC厚度差异无统计学意义(P=0.725);另外研究还发现视神经脊髓炎相关性视神经炎和复发性孤立性视神经炎较脱髓鞘性视神经炎的RNFL和mGCC厚度变薄更明显。由于视盘水肿的原因,导致RNFL厚度的测量误差比较大,因此可以应用mGCC厚度检测来评估视神经炎患者的预后。在临床诊疗中,应监测mGCC厚度变化以对视神经炎患者的诊断及预后作出判断。

3 糖尿病性视网膜病变(diabetic retinopathy,DR)与mGCC

在劳动年龄人口中,DR是导致视力损害和失明的主要原因之一[19]。DR主要表现为血―视网膜屏障的破坏和新生血管形成,早期病变以血管通透性增加为特征,中期病变则以血管闭塞为特征,晚期病变以视网膜及视盘新生血管形成、纤维血管膜增生及出血为特征。研究发现,糖尿病患者在出现渗出及微血管瘤之前已出现视网膜结构改变、RGC受损及凋亡,导致视功能下降[20]。Van Dijk等[21]应用频域OCT,采用自动分割算法对伴有DR的1型糖尿病患者进行研究也发现视网膜黄斑区变薄是因RGC的丢失,且RGC的丢失主要位于黄斑区内部,而RNFL的丢失主要位于黄斑区外部,因此对糖尿病患者行mGCC厚度检测可间接反映RGC受损情况。Asefzadeh等[22]通过对92例不伴有DR的糖尿病患者和24例轻度DR患者行黄斑厚度扫描发现,糖尿病病程与视网膜黄斑区厚度呈反比,进一步表明糖尿病患者存在神经退行性改变。Lima等[23]发现,与对照组相比,糖尿病患者的黄斑区内层视网膜平均厚度明显变薄(91.8 μm vs 96.2 μm,P=0.04)。因此对于糖尿病患者除关注血糖外,还需要监测mGCC厚度变化,以早期发现视网膜改变,早期干预和治疗。

4 萎缩型年龄相关性黄斑变性(age-related macular degeneration,AMD)与mGCC

AMD主要表现为进行性视力损害,严重影响老年人的生存质量[24],临床上将其分为萎缩型和渗出型2种类型。其病变主要累及视网膜外层、视网膜色素上皮层、Bruch膜和脉络膜等组织。萎缩型AMD主要表现有玻璃膜疣和视网膜色素上皮异常改变,光感受器细胞可有不同程度的变性减少。视网膜光感受器细胞将光刺激转化为神经冲动至RGC,再传至RGC的轴突形成神经纤维,最终到达视皮质。AMD对视网膜外层的影响因神经通路的传导,引起视网膜内层对感光细胞的损害做出反应。通过评估萎缩型AMD患者的mGCC厚度发现,伴有黄斑变性患者的mGCC厚度变薄,与对照组比较差异有统计学意义[(71.53±16.53)μm vs (81.46±4.90)μm,P<0.05][25-26]。Lee和Yu[27]采用OCT检测系统的自动分割算法对黄斑区神经节细胞内丛状层(ganglion cell-inner plexiform layer,GCIPL)的分析发现,在萎缩型AMD患者中GCIPL厚度变薄,且玻璃膜疣数量的多少与其呈反比。对于萎缩型AMD对黄斑区RGC内丛状层的损伤机制,Ramírez等[28]认为是由于神经变性和突触结构改变引起RGC损害,Villegas-Pérez等[29]认为RGC损害是由视网膜微血管异常引起,也有人认为是由于玻璃膜疣机械性牵拉引起RGC损害[26]。因此,对于萎缩型AMD患者应行mGCC厚度检测,以便观察RGC的损害程度。

5 其他视网膜疾病与mGCC

视网膜色素变性是一组以进行性感光细胞及色素上皮功能丧失为共同表现的遗传性视网膜变性疾病,临床上主要以夜盲、进行性视野缺损、眼底骨细胞样改变为特征。视网膜色素变性一直被认为是光感受器功能异常性疾病,Saha等[30]通过免疫细胞化学标记法量化小鼠的RGC密度变化,发现光感受器丢失后,周边RGC密度降低,因此他们认为遗传性视网膜变性与光感受器的丢失和内层视网膜的形态及功能改变有关,表明视网膜色素变性患者可能存在mGCC厚度异常。Jones等[31]和Toto等[32]研究认为其可能与视网膜和脉络膜的血流减少有关,外层视网膜受损害可能导致内层视网膜紊乱及RGC凋亡,从而引起mGCC厚度变薄。近视性黄斑病变是由于眼轴进行性拉长,眼底出现豹纹状眼底、后巩膜葡萄肿、视网膜色素上皮层和脉络膜毛细血管层萎缩等退行性变化。Sezgin Akcay等[33]研究近视对mGCC厚度的影响时发现,低、中度近视患者的平均、上方及下方mGCC厚度明显高于高度近视患者,同时还发现中、高度近视患者的mGCC厚度与眼轴呈反比。Takeyama等[34]研究也发现mGCC厚度受眼轴长度影响。另有关视网膜分支静脉阻塞对mGCC影响的研究发现,mGCC厚度显著降低,预示视网膜RGC受损,提示神经保护在视网膜分支静脉阻塞治疗中需要得到重视[35]

6 小结

综上所述,许多致盲性眼病确实存在RGC的损害,出现mGCC厚度变薄,而且mGCC厚度检测可为原发性开角型青光眼的早期诊断提供帮助,且较RNFL厚度检测的敏感度更高,可为鉴别经典多发性硬化相关性视神经炎和视神经脊髓炎相关性视神经炎提供依据及为视神经炎患者的预后评估提供一个有效指标。由于患者在出现临床可见的DR之前已出现RGC的损害,导致mGCC厚度变薄,因此检测mGCC厚度变化可用于指导DR的早期防治。萎缩型AMD中玻璃膜疣的大小与mGCC厚度变薄有关,可能是由玻璃膜疣的机械性牵拉引起。总之,监测mGCC厚度变化,发现RGC损害,有利于相关眼病的诊断、防治及判断预后。

参考文献
[1] 赵军, 徐漫, 周颖. OCT测量黄斑区GCC与视盘周围RNFL厚度在早期青光眼诊断中的应用[J]. 国际眼科杂志, 2017, 17: 1289–1292. DOI: 10.3980/j.issn.1672-5123.2017.7.23
[2] HEGAZY A I, ZEDAN R H, MACKY T A, ESMAT S M. Retinal ganglion cell complex changes using spectral domain optical coherence tomography in diabetic patients without retinopathy[J]. Int J Ophthalmol, 2017, 10: 427–432.
[3] TAN O, LI G, LU A T, VARMA R, HUANG D; Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis[J]. Ophthalmology, 2008, 115: 949–956. DOI: 10.1016/j.ophtha.2007.08.011
[4] GARWAY-HEATH D F, CAPRIOLI J, FITZKE F W, HITCHINGS R A. Scaling the hill of vision:the physiological relationship between light sensitivity and ganglion cell numbers[J]. Invest Ophthalmol Vis Sci, 2000, 41: 1774–1782.
[5] HARWERTH R S, CARTER-DAWSON L, SHEN F, SMITH E L 3rd, CRAWFORD M L. Ganglion cell losses underlying visual field defects from experimental glaucoma[J]. Invest Ophthalmol Vis Sci, 1999, 40: 2242–2250.
[6] GREENFIELD D S, BAGGA H, KNIGHTON R W. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography[J]. Arch Ophthalmol, 2003, 121: 41–46. DOI: 10.1001/archopht.121.1.41
[7] GANEKAL S. Ganglion cell complex scan in the early prediction of glaucoma[J]. Nepal J Ophthalmol, 2012, 4: 236–241.
[8] KIM H J, PARK K H, KIM Y K, JEOUNG J W. Evaluation of layer-by-layer segmented ganglion cell complex thickness for detecting early glaucoma according to different macular grids[J]. J Glaucoma, 2017, 26: 712–717. DOI: 10.1097/IJG.0000000000000709
[9] KIM N R, HONG S, KIM J H, RHO S S, SEONG G J, KIM C Y. Comparison of macular ganglion cell complex thickness by Fourier-domain OCT in normal tension glaucoma and primary open-angle glaucoma[J]. J Glaucoma, 2013, 22: 133–139. DOI: 10.1097/IJG.0b013e3182254cde
[10] NA J H, KOOK M S, LEE Y, YU S J, CHOI J. Detection of macular and circumpapillary structural loss in normal hemifield areas of glaucomatous eyes with localized visual field defects using spectral-domain optical coherence tomography[J]. Graefes Arch Clin Exp Ophthalmol, 2012, 250: 595–602. DOI: 10.1007/s00417-011-1864-9
[11] GAIER E D, BOUDREAULT K, RIZZO J F 3rd, FALARDEAU J, CESTARI D M. Atypical optic neuritis[J]. Cur Neurol Neurosci Rep, 2015, 15: 76. DOI: 10.1007/s11910-015-0598-1
[12] NAKANO E, HATA M, OISHI A, MIYAMOTO K, UJI A, FUJIMOTO M, et al. Quantitative comparison of disc rim color in optic nerve atrophy of compressive optic neuropathy and glaucomatous optic neuropathy[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254: 1–8. DOI: 10.1007/s00417-015-2978-2
[13] BANC A, STAN C, FLORIAN I S. Optical coherence tomography impacts the evaluation of visual pathway tumors[J]. Neurosurg Rev, 2016: 1–12. DOI: 10.1007/s10143-016-0772-1
[14] HORTON J C. Invited commentary:ganglion cell complex measurement in compressive optic neuropathy[J]. J Neuroophthalmol, 2017, 37: 13–15. DOI: 10.1097/WNO.0000000000000489
[15] SYC S B, SAIDHA S, NEWSOME S D, RATCHFORD J N, LEVY M, FORD E, et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis[J]. Brain, 2012, 135(Pt 2): 521–533.
[16] FERNANDES D B, RAZA A S, NOGUEIRA R G, WANG D, CALLEGARO D, HOOD D C, et al. Evaluation of inner retinal layers in patients with multiple sclerosis or neuromyelitis optica using optical coherence tomography[J]. Ophthalmology, 2013, 120: 387–394. DOI: 10.1016/j.ophtha.2012.07.066
[17] RATCHFORD J N, QUIGG M E, CONGER A, FROHMAN T, FROHMAN E, BALCER L J, et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies[J]. Neurology, 2009, 73: 302–308. DOI: 10.1212/WNL.0b013e3181af78b8
[18] TIAN G, LI Z, ZHAO G, FENG C, LI M, HUANG Y, et al. Evaluation of retinal nerve fiber layer and ganglion cell complex in patients with optic neuritis or neuromyelitis optica spectrum disorders using optical coherence tomography in a Chinese cohort[J]. J Ophthalmol, 2015, 2015: 832784. DOI: 10.1155/2015/832784
[19] ZHANG G, CHEN H, CHEN W, ZHANG M. Prevalence and risk factors for diabetic retinopathy in China:a multi-hospital-based cross-sectional study[J]. Br J Ophthalmol, 2017: 1591–1595.
[20] KURTENBACH A, FLÖGEL W, ERB C. Anomaloscope matches in patients with diabetes mellitus[J]. Graefes Arch Clin Exp Ophthalmol, 2002, 240: 79–84. DOI: 10.1007/s00417-001-0385-3
[21] VAN DIJK H W, VERBRAAK F D, KOK P H, GARVIN M K, SONKA M, LEE K, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes[J]. Invest Ophthalmol Vis Sci, 2010, 51: 3660–3665. DOI: 10.1167/iovs.09-5041
[22] ASEFZADEH B, FISCH B M, PARENTEAU C E, CAVALLERANO A A. Macular thickness and systemic markers for diabetes in individuals with no or mild diabetic retinopathy[J]. Clin Exp Ophthalmol, 2008, 36: 455–463. DOI: 10.1111/ceo.2008.36.issue-5
[23] LIMA V C, PRATA T S, PACHECO M A, HOSOUME M, UNONIUS N, DIMANTAS M, et al. Macular inner retinal layer thinning in diabetic patients without retinopathy measured by Fourier domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2010, 51: 341.
[24] KLAVER C C, ASSINK J J, VAN LEEUWEN R, WOLFS R C, VINGERLING J R, STIJNEN T, et al. Incidence and progression rates of age-related maculopathy:the Rotterdam Study[J]. Invest Ophthalmol Vis Sci, 2001, 42: 2237–2241.
[25] YENICE E, ŞENGÜN A, SOYUGELEN DEMIROK G, TURAÇLI E. Ganglion cell complex thickness in nonexudative age-related macular degeneration[J]. Eye (Lond), 2015, 29: 1076–1080. DOI: 10.1038/eye.2015.86
[26] RIMAYANTI U, KIUCHI Y, YAMANE K, LATIEF M A, MOCHIZUKI H, HIRATA J, et al. Inner retinal layer comparisons of eyes with exudative age-related macular degeneration and eyes with age-related macular degeneration and glaucoma[J]. Graefes Arch Clin Exp Ophthalmol, 2014, 252: 563–570. DOI: 10.1007/s00417-013-2496-z
[27] LEE E K, YU H G. Ganglion cell-inner plexiform layer and peripapillary retinal nerve fiber layer thicknesses in age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2015, 56: 3976–3983. DOI: 10.1167/iovs.15-17013
[28] RAMÍREZ J M, RAMÍREZ A I, SALAZAR J J, DE HOZ R, TRIVIÑO A. Changes of astrocytes in retinal ageing and age-related macular degeneration[J]. Exp Eye Res, 2001, 73: 601–615. DOI: 10.1006/exer.2001.1061
[29] VILLEGAS-PÉREZ M P, LAWRENCE J M, VIDAL-SANZ M, LAVAIL M M, LUND R D. Ganglion cell loss in RCS rat retina:a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium[J]. J Comp Neurol, 2015, 392: 58–77.
[30] SAHA S, GREFERATH U, VESSEY K A, GRAYDEN D B, BURKITTERICA A N, FLETCHER E L. Changes in ganglion cells during retinal degeneration[J]. Neuroscience, 2016, 329: 1–11. DOI: 10.1016/j.neuroscience.2016.04.032
[31] JONES B W, PFEIFFER R L, FERRELL W D, WATT C B, MARMOR M, MARC R E. Retinal remodeling in human retinitis pigmentosa[J]. Exp Eye Res, 2016, 150: 149–165. DOI: 10.1016/j.exer.2016.03.018
[32] TOTO L, BORRELLI E, MASTROPASQUA R, SENATORE A, DI ANTONIO L, DI NICOLA M, et al. Macular features in retinitis pigmentosa:correlations among ganglion cell complex thickness, capillary density, and macular function[J]. Invest Ophthalmol Vis Sci, 2016, 57: 6360–6366. DOI: 10.1167/iovs.16-20544
[33] SEZGIN AKCAY B I, GUNAY B O, KARDES E, UNLU C, ERGIN A. Evaluation of the ganglion cell complex and retinal nerve fiber layer in low, moderate, and high myopia:a study by RTVue spectral domain optical coherence tomography[J]. Semin Ophthalmol, 2016, 32: 682–688.
[34] TAKEYAMA A, KITA Y, KITA R, TOMITA G. Influence of axial length on ganglion cell complex (GCC) thickness and on GCC thickness to retinal thickness ratios in young adults[J]. Jpn J Ophthalmol, 2014, 58: 86–93. DOI: 10.1007/s10384-013-0292-2
[35] ALSHAREEF R A, BARTESELLI G, YOU Q, GOUD A, JABEEN A, RAO H L, et al. In vivo evaluation of retinal ganglion cells degeneration in eyes with branch retinal vein occlusion[J]. Br J Ophthalmol, 2016, 100: 1506–1510. DOI: 10.1136/bjophthalmol-2015-308106