第二军医大学学报  2018, Vol. 39 Issue (3): 297-301   PDF    
缺氧与糖、脂肪代谢在类风湿关节炎发病中的作用
李婷, 殷健, 徐沪济     
海军军医大学(第二军医大学)长征医院风湿免疫科, 上海 200003
摘要: 类风湿关节炎(rheumatoid arthritis,RA)是一种以关节滑膜慢性炎症为主要特征的自身免疫性疾病。该病致病机制不明,长期以来,RA发病机制的研究集中在炎症及免疫反应方面。近年研究发现,代谢与免疫密切相关。缺氧及糖、脂肪的代谢异常可影响免疫细胞的发育、分化和功能,从而导致自身免疫性疾病的发生。近年来,越来越多的研究关注代谢途径在免疫和RA发病中的作用,以期从不同的角度探讨RA的发病机制并为RA的治疗提供新的思路。本文复习了近年来相关文献,回顾缺氧及糖、脂肪代谢在免疫和RA发病中的作用。
关键词: 类风湿关节炎     缺氧     葡萄糖代谢     脂肪代谢     炎症     免疫反应    
Role of hypoxia, glucose metabolism and fat metabolism in pathogenesis of rheumatoid arthritis: an update
LI Ting, YIN Jian, XU Hu-ji     
Department of Rheumatology and Immunology, Changzheng Hospital, Navy Medical University(Second Military Medical University), Shanghai 200003, China
Abstract: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovial membrane inflammation. The pathogenesis of RA is unknown, and the related researches mainly focus on inflammation and immune response. Recent researches have found that metabolism is closely related to immunity. Besides, hypoxia and metabolic disorders of glucose and fat can also affect the development, differentiation and function of immune cells, and then lead to occurrence of autoimmune diseases. In recent years, more and more studies have focused on the role of metabolic pathways in the immunity and pathogenesis of RA, in order to explore the pathogenesis of RA from different perspectives and to provide new ideas for the treatment of RA. In this review, we summarized the role of hypoxia, glucose metabolism and fat metabolism in immunity and pathogenesis of RA.
Key words: rheumatoid arthritis     hypoxia     glucose metabolism     lipometabolism     inflammation     immunological reaction    

类风湿关节炎(rheumatoid arthritis,RA)是一种以关节滑膜慢性炎症为主要特征的系统性自身免疫性疾病。该病患病率高、致残率高,患者的预期寿命缩短10~15年[1]。炎症和免疫异常在RA发病机制中的重要性已经被充分研究和认识。研究发现,代谢途径与免疫异常密切相关。一项对全球约3万例RA患者进行的大规模RA相关基因研究发现,多种基因参与RA的发病[2]。已有越来越多的研究证实代谢途径与炎性反应和免疫细胞的发育分化密切相关,从而参与RA的发病过程[3-4]。本文从缺氧及糖、脂肪代谢3个方面回顾相关文献,阐释代谢途径的异常在RA发病过程中的作用,以及对炎症和免疫反应的影响。

1 缺氧在RA发病中的作用

缺氧诱导因子(hypoxia inducible factor,HIF)是普遍存在于人和哺乳动物体内的一种转录因子,在细胞的增殖和存活、血管新生、肿瘤侵袭和转移等过程中具有重要作用。缺氧条件下HIF激活后可调节相应基因的表达,影响细胞的代谢、凋亡过程,并促进局部缺氧组织血管新生,增加局部的供氧、改善缺氧[5-6]。RA患者关节腔内滑膜细胞大量增殖,小血管周围聚集了大量炎性细胞,局部耗氧量增多,造成关节腔缺氧,从而导致炎性反应加剧及局部充血[7-9]。缺氧还可导致一系列趋化因子如CXCL8、CCL20,促炎性因子如白细胞介素(interleukin,IL)-6、基质金属蛋白酶(matrix metalloprotease,MMP)的表达,导致炎性细胞的聚集和关节局部骨质破坏[10-11]。此外,IL-1β和肿瘤坏死因子(tumor necrosis factor,TNF)等促炎因子可通过激活MAPK和PI3K信号通路增加HIF的表达,形成缺氧和炎症的恶性循环[12]。RA滑膜成纤维细胞(rheumatoid arthritis synovial fibroblast,RASF)在RA关节滑膜组织中大量增殖。研究发现,RASF过表达HIF-1时,可通过细胞-细胞间的接触,抑制T细胞的凋亡,导致T细胞的增殖和促进炎性反应,而不断增殖的T细胞又可进一步激活RASF,从而形成RASF-T细胞间的正反馈循环[13]

2 糖代谢在RA发病中的作用

糖代谢不仅为机体提供能量,也影响人体的多种生理过程。糖代谢包括有氧代谢和糖酵解2种途径。RA关节腔内糖酵解过程活跃,糖酵解可通过抑制炎性细胞凋亡和促进关节腔新生血管的生成加重关节炎症[14]。p53对于诱导细胞凋亡具有重要作用,研究发现持续糖酵解的细胞对p53诱导的凋亡不敏感,细胞发生保护性自噬反应较多,细胞凋亡减少,说明糖酵解可抑制p53诱导的细胞凋亡,维持炎性细胞的分化和活性[15]。另一方面,糖酵解产生的能量很低,其主要的代谢产物是乳酸。乳酸堆积导致微环境呈酸性。酸性微环境可通过酸性敏感受体GPR65激活抗凋亡基因Bcl-2家族的表达,抑制细胞凋亡,从而使炎性细胞不断增殖[16]。6-磷酸果糖-2-激酶/果糖2,6-二磷酸酶3(6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3,PFKFB3)基因的激活可促进细胞发生糖酵解,研究发现,PFKFB3可促进新生血管的生成,抑制PFKFB3则可抑制血管新生,提示糖酵解与血管新生密切相关[17]。综上,糖酵解可导致RA患者关节滑膜增生,血管翳形成,最终导致炎症产生和骨质破坏。蛋白质糖基化是蛋白质翻译后的一种重要的加工过程。糖基化可通过改变免疫球蛋白G(immunoglobulin G,IgG)的属性影响免疫功能,在活动性RA患者中,可检测到抗环瓜氨酸肽抗体(anti-citrullinated peptide antibody,ACPA)和类风湿因子(rheumatoid factor,RF)等自身抗体发生糖基化修饰而表现出促炎活性[18]。糖蛋白是分支的寡糖链与多肽链共价相连所构成的复合糖,目前已有研究证实部分糖蛋白与RA的发病有关。骨桥蛋白(osteopontin,OPN)是一种从骨细胞外基质中分离出的磷酸化糖蛋白,在RA患者滑膜组织中检测到OPN水平上升[19]。OPN在胶原诱导关节炎大鼠模型关节骨质侵蚀中扮演重要角色,OPN缺陷的小鼠具有抵抗胶原诱导关节炎能力[20]。研究证实,OPN可通过抑制滑膜细胞的凋亡以及诱导软骨细胞的凋亡最终引起滑膜增生和软骨破坏[21]。此外,有研究证实RA患者外周血淋巴细胞P-糖蛋白的表达水平和疾病活动平行,改变病情抗风湿药疗效下降与P-糖蛋白表达水平增加有关[22]

3 脂肪代谢在RA发病中的作用

肥胖目前被认为是一种促炎状态,在许多肥胖的个体中可以检测到炎症相关标志物升高[23]。自从1994年瘦素(leptin)被发现以来,白色脂肪组织(white adipose tissue,WAT)的研究也逐渐引起了人们的关注[24]。研究发现WAT不仅是人体脂肪的储备,同时在维持机体稳态中起着重要作用。除瘦素外,人体的WAT还产生约50余种脂肪因子和其他分子,这些脂肪因子通过内分泌、旁分泌、自分泌等途径参与到人体的各种病理生理过程,包括炎症和免疫反应[23]。瘦素是由肥胖基因编码,由脂肪细胞分泌的相对分子质量为16 000的蛋白。瘦素既是一种激素,也是一种细胞因子。作为激素,瘦素调节进食和基础代谢,其在女性中的分泌高于男性。作为细胞因子,瘦素调节胸腺的稳态,并且与急性时相炎性因子如TNF、IL-1等的分泌密切相关[25]。长期摄入低能量饮食,血清中瘦素水平较低的人群体内炎性指标也较低。瘦素可促进Th1细胞的活性而抑制调节性T细胞(regulatory T cell, Treg)的增殖[26-27]。研究发现,在体外培养的初始CD4+ T细胞中加入瘦素,可显著增加初始CD4+ T细胞向Th17细胞的分化。在胶原诱导的关节炎(collagen-induced arthritis,CIA)大鼠模型膝关节腔内注射瘦素的大鼠更早出现关节炎,且程度更重。免疫荧光实验也证实关节腔内注射瘦素的CIA大鼠关节组织和淋巴结中Th17细胞显著增多[28]。但目前关于瘦素对RA关节是起到破坏还是保护作用仍无定论。人体内的脂联素(adiponectin)由244个氨基酸组成,由WAT分泌。脂联素与胶原Ⅷ、Ⅹ和补体C1q高度同源。RA患者血清中的脂联素水平与影像学骨侵蚀程度呈正相关[29]。实验证明,脂联素可促进成骨细胞分泌更多的IL-6等促炎因子,刺激破骨细胞分泌IL-8。基因分析发现,脂联素可使成骨细胞表达骨保护素减少,成骨素表达受到抑制。脂联素促进破骨细胞表达MMP,有利于基质的降解。对于外周血单个核细胞,脂联素可促进其分化为TRAP阳性细胞,这群细胞对细胞外基质具有明显的吸收活性[30]。抵抗素(resistin)是一类具有胰岛素抵抗功能的二聚体蛋白。脂肪细胞、巨噬细胞及单核细胞都可以分泌抵抗素。对RA患者血清中抵抗素水平的分析发现,RA患者血清中抵抗素水平较健康成人显著升高,在妊娠患者中,妊娠第3阶段的患者血清中抵抗素水平升高明显,且血清中抵抗素水平与RA患者C-反应蛋白(CRP)呈正相关[31]。在RA患者的关节腔中可以检测到抵抗素,而向小鼠的关节腔内注射抵抗素可诱发关节炎发生,可观察到注射局部的关节滑膜增生及血管翳形成[32-33]。内脏脂肪素(visfatin)是一种结构与胰岛素相似的脂肪因子,最先在肝脏和骨骼肌细胞中被发现,其cDNA序列与前B细胞克隆增强因子相似[34]。研究发现,血清中内脏脂肪素水平升高的RA患者病情进展更迅速,内脏脂肪素水平与炎性指标呈正相关,DAS28水平更高[35]。在肺损伤及脓毒血症的患者体内,内脏脂肪素的水平明显升高[36]。内脏脂肪素可通过p38和MEK1信号通路刺激CD14+单核细胞分泌IL-1β、TNF-α、IL-6,并刺激淋巴细胞增殖[37]。其他新发现的脂肪因子包括apelin、omentin等在RA等炎性疾病中的作用还在进一步的研究中。

4 代谢与免疫细胞的发育和分化的关系

代谢异常与免疫细胞的发育和分化关系密切。缺氧环境可以影响免疫细胞的代谢。在缺氧环境下,炎性组织中的HIF-1可诱导细胞利用糖酵解作为主要能量来源途径,并激活细胞外腺苷受体的信号通路。这种缺氧条件下的调节作用可打破Th1细胞和Th2细胞之间的平衡,并改变固有免疫细胞的活性,从而导致机体产生异常的免疫反应[38]。CD4+ T细胞受到刺激后可转化为效应T细胞(effector T cell,Teff)或者Treg。T细胞需要从局部微环境中摄取大量能量以完成细胞的分化和增殖过程[39]。Th1、Th2和Th17细胞表面高表达葡萄糖转运蛋白1(glucose transporter 1,Glut1),主要从糖酵解途径获取能量。而Treg低表达Glut1,主要通过脂质氧化获取能量。这些数据表明,CD4+ T细胞亚群的分化需要不同的代谢程序,调控代谢过程可能会调节炎性疾病中Treg和Teff的分化[40]。通过药理学或转基因手段阻断糖酵解可抑制Th17增殖和分化,同时促进Treg增殖与分化,从而保护小鼠不发生自身免疫性疾病[41]。氨基酸和脂肪酸代谢也很重要,因为阻断谷氨酰胺酶活性可抑制Teff增殖[41],而脂肪酸氧化受阻可抑制Treg分化以及自身反应性T细胞的存活[40]。相反,由共生微生物产生的短链脂肪酸丁酸酯促进结肠中的Treg发育,从而保护小鼠抵抗结肠炎[42-43]

5 小结

机体通过分解代谢提供能量,通过合成代谢维持细胞的生存和增殖。20世纪以来,代谢的过程被逐渐阐明,人们对于代谢性疾病也有了更深的理解。1960年,首次有实验证实活化的巨噬细胞存在代谢途径的异常,之后陆续有多项研究从不同角度证实代谢途径异常与免疫及炎性反应密切相关。提示代谢途径的异常与免疫及炎症过程在许多方面存在一定的交互作用。近年来,也有研究注意到代谢异常在RA等免疫性疾病发病中的重要性,一些作用于代谢途径的药物对RA的治疗也有一定的疗效[44]。代谢异常的相关研究将有助于我们对RA发病机制的认识以及探寻RA的治疗靶点,为部分生物制剂治疗效果不佳的患者提供治疗的希望,也为减少慢作用抗风湿药及生物制剂药物的用量及不良反应提供可能。

参考文献
[1] HUMPHREYS J H, WARNER A, CHIPPING J, MARSHALL T, LUNT M, SYMMONS D P, et al. Mortality trends in patients with early rheumatoid arthritis over 20 years:results from the Norfolk Arthritis Register[J]. Arthritis Care Res, 2014, 66: 1296–1301. DOI: 10.1002/acr.v66.9
[2] OKADA Y, WU D, TRYNKA G, RAJ T, TERAO C, IKARI K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery[J]. Nature, 2014, 506: 376–381. DOI: 10.1038/nature12873
[3] HE Z, LIU H, AGOSTINI M, YOUSEFI S, PERREN A, TSCHAN M P, et al. p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene[J]. Cell Death Differ, 2013, 20: 1415–1424. DOI: 10.1038/cdd.2013.104
[4] HUMPHRIES F, YANG S, WANG B, MOYNAGH P N. RIP kinases:key decision makers in cell death and innate immunity[J]. Cell Death Differ, 2015, 22: 225–236. DOI: 10.1038/cdd.2014.126
[5] SEMENZA G L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1[J]. Physiology (Bethesda), 2009, 24: 97–106.
[6] CUMMINS E P, KEOGH C E, CREAN D, TAYLOR C T. The role of HIF in immunity and inflammation[J]. Mol Aspects Med, 2016, 47: 24–34.
[7] HITCHON C A, EL-GABALAWY H S, BEZABEH T. Characterization of synovial tissue from arthritis patients:a proton magnetic resonance spectroscopic investigation[J]. Rheumatol Int, 2009, 29: 1205–1211. DOI: 10.1007/s00296-009-0865-z
[8] LETTIERI BARBATO D, AQUILANO K, BALDELLI S, CANNATA S M, BERNARDINI S, ROTILIO G, et al. Proline oxidase-adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation[J]. Cell Death Differ, 2014, 21: 113–123. DOI: 10.1038/cdd.2013.137
[9] REIS A C, ALESSANDRI A L, ATHAYDE R M, PEREZ D A, VAGO J P, ÁVILA T V, et al. Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation[J/OL]. Cell Death Dis, 2015, 6: e1632. doi: 10.1038/cddis.2014.580.
[10] AHN J K, KOH E M, CHA H S, LEE Y S, KIM J, BAE E K, et al. Role of hypoxia-inducible factor-1alpha in hypoxia-induced expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes[J]. Rheumatology (Oxford), 2008, 47: 834–839. DOI: 10.1093/rheumatology/ken086
[11] BOSCO M C, DELFINO S, FERLITO F, BATTAGLIA F, PUPPO M, GREGORIO A, et al. Hypoxic synovial environment and expression of macrophage inflammatory protein 3gamma/CCL20 in juvenile idiopathic arthritis[J]. Arthritis Rheum, 2008, 58: 1833–1838. DOI: 10.1002/(ISSN)1529-0131
[12] PALAZON A, GOLDRATH A W, NIZET V, JOHNSON R S. HIF transcription factors, inflammation, and immunity[J]. Immunity, 2014, 41: 518–528. DOI: 10.1016/j.immuni.2014.09.008
[13] BARTOK B, FIRESTEIN G S. Fibroblast-like synoviocytes:key effector cells in rheumatoid arthritis[J]. Immunol Rev, 2010, 233: 233–255. DOI: 10.1111/imr.2009.233.issue-1
[14] BALAKRISHNAN L, BHATTACHARJEE M, AHMAD S, NIRUJOGI R S, RENUSE S, SUBBANNAYYA Y, et al. Differential proteomic analysis of synovial fluid from rheumatoid arthritis and osteoarthritis patients[J]. Clin Proteomics, 2014, 11: 1. DOI: 10.1186/1559-0275-11-1
[15] DUAN L, PEREZ R E, DAVAADELGER B, DEDKOVA E N, BLATTER L A, MAKI C G. p53-regulated autophagy is controlled by glycolysis and determines cell fate[J]. Oncotarget, 2015, 6: 23135–23156.
[16] ROSKO A E, McCOLL K S, ZHONG F, RYDER C B, CHANG M J, SATTAR A, et al. Acidosis sensing receptor GPR65 correlates with anti-apoptotic Bcl-2 family member expression in CLL cells:potential implications for the CLL microenvironment[J]. J Leuk (Los Angel), 2014, 2: 160.
[17] SCHOORS S, DEBOCK K, CANTELMO A R, GEORGIADOU M, GHESQUIÈRE B, CAUWENBERGHS S, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis[J]. Cell Metab, 2014, 19: 37–48. DOI: 10.1016/j.cmet.2013.11.008
[18] ROMBOUTS Y, EWING E, VAN DE STADT L A, SELMAN M H, TROUW L A, DEELDER A M, et al. Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis[J]. Ann Rheum Dis, 2015, 74: 234–241.
[19] PETROW P K, HUMMEL K M, SCHEDEL J, FRANZ J K, KLEIN C L, MÜLLER-LADNER U, et al. Expression of osteopontin messenger RNA and protein in rheumatoid arthritis:effects of osteopontin on the release of collagenase 1 from articular chondrocytes and synovial fibroblasts[J]. Arthritis Rheum, 2000, 43: 1597–1605. DOI: 10.1002/(ISSN)1529-0131
[20] YUMOTO K, ISHIJIMA M, RITTLING S R, TSUJI K, TSUCHIYA Y, KON S, et al. Osteopontin deficiency protects joints against destruction in anti-type Ⅱ collagen antibody-induced arthritis in mice[J]. Proc Natl Acad Sci USA, 2002, 99: 4556–4561. DOI: 10.1073/pnas.052523599
[21] XU G, SUN W, HE D, WANG L, ZHENG W, NIE H, et al. Overexpression of osteopontin in rheumatoid synovial mononuclear cells is associated with joint inflammation, not with genetic polymorphism[J]. J Rheumatol, 2005, 32: 410–416.
[22] 赵向聪, 王彩虹, 罗静, 李雪飞, 刘晓剑, 李小峰. 类风湿关节炎患者外周血淋巴细胞P-糖蛋白的表达水平及逆转耐药作用的研究[J]. 中华风湿病学杂志, 2013, 17: 672–676. DOI: 10.3760/cma.j.issn.1007-7480.2013.10.006
[23] DENG T, LYON C J, BERGIN S, CALIGIURI M A, HSUEH W A. Obesity, inflammation, and cancer[J]. Annu Rev Pathol, 2015, 11: 421–449.
[24] ZHANG Y, PROENCA R, MAFFEI M, BARONE M, LEOPOLD L, FRIEDMAN J M. Positional cloning of the mouse obese gene and its human homologue[J]. Nature, 1994, 372: 425–432. DOI: 10.1038/372425a0
[25] LA CAVA A, MATARESE G. The weight of leptin in immunity[J]. Nat Rev Immunol, 2004, 4: 371–379. DOI: 10.1038/nri1350
[26] PROCACCINI C, PUCINO V, MANTZOROS C S, MATARESE G. Leptin in autoimmune diseases[J]. Metabolism, 2015, 64: 92–104. DOI: 10.1016/j.metabol.2014.10.014
[27] STJERNHOLM T, OMMEN P, LANGKILDE A, JOHANSEN C, IVERSEN L, ROSADA C, et al. Leptin-deficiency in mice counteracts imiquimod (IMQ)-induced psoriasis-like skin inflammation while leptin stimulation induces inflammation in human keratinocytes[J]. Exp Dermatol, 2017, 26: 338–345. DOI: 10.1111/exd.2017.26.issue-4
[28] DENG J, LIU Y, YANG M, WANG S, ZHANG M, WANG X, et al. Leptin exacerbates collagen-induced arthritis via enhancement of Th17 cell response[J]. Arthritis Rheum, 2012, 64: 3564–3573. DOI: 10.1002/art.34637
[29] KLEIN-WIERINGA I R, ANDERSEN S N, HERB-VAN TOORN L, KWEKKEBOOM J C, VAN DER HELM-VAN MIL A H, MEULENBELT I, et al. Are baseline high molecular weight adiponectin levels associated with radiographic progression in rheumatoid arthritis and osteoarthritis?[J]. J Rheumatol, 2014, 41: 853–857. DOI: 10.3899/jrheum.130888
[30] FROMMER K W, ZIMMERMANN B, MEIER F M, SCHRÖDER D, HEIL M, SCHÄFFLER A, et al. Adiponectin-mediated changes in effector cells involved in the pathophysiology of rheumatoid arthritis[J]. Arthritis Rheum, 2010, 62: 2886–2899. DOI: 10.1002/art.v62:10
[31] KIM K S, CHOI H M, JI H I, SONG R, YANG H I, LEE S K, et al. Serum adipokine levels in rheumatoid arthritis patients and their contributions to the resistance to treatment[J]. Mol Med Rep, 2014, 9: 255–260. DOI: 10.3892/mmr.2013.1764
[32] BOKAREWA M, NAGAEV I, DAHLBERG L, SMITH U, TARKOWSKI A. Resistin, an adipokine with potent proinflammatory properties[J]. J Immunol, 2005, 174: 5789–5795. DOI: 10.4049/jimmunol.174.9.5789
[33] SENOLT L, HOUSA D, VERNEROVÁ Z, JIRÁSEK T, SVOBODOVÁ R, VEIGL D, et al. Resistin in rheumatoid arthritis synovial tissue, synovial fluid and serum[J]. Ann Rheum Dis, 2007, 66: 458–463.
[34] FUKUHARA A, MATSUDA M, NISHIZAWA M, SEGAWA K, TANAKA M, KISHIMOTO K, et al. Visfatin:a protein secreted by visceral fat that mimics the effects of insulin[J]. Science, 2005, 307: 426–430. DOI: 10.1126/science.1097243
[35] OTERO M, LAGO R, GOMEZ R, LAGO F, DIEGUEZ C, GÓMEZ-REINO J J, et al. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis[J]. Ann Rheum Dis, 2006, 65: 1198–1201. DOI: 10.1136/ard.2005.046540
[36] JIA S H, LI Y, PARODO J, KAPUS A, FAN L, ROTSTEIN O D, et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis[J]. J Clin Invest, 2004, 113: 1318–1327. DOI: 10.1172/JCI19930
[37] MOSCHEN A R, KASER A, ENRICH B, MOSHEIMER B, THEURL M, NIEDEREGGER H, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties[J]. J Immunol, 2007, 178: 1748–1758. DOI: 10.4049/jimmunol.178.3.1748
[38] LARSEN H, MUZ B, KHONG T L, FELDMANN M, PALEOLOG E M. Differential effects of Th1 versus Th2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA[J/OL]. Arthritis Res Ther, 2012, 14: R180. doi: 10.1186/ar3934.
[39] FOX C J, HAMMERMAN P S, THOMPSON C B. Fuel feeds function:energy metabolism and the T-cell response[J]. Nat Rev Immunol, 2005, 5: 844–852. DOI: 10.1038/nri1710
[40] MICHALEK R D, GERRIETS V A, JACOBS S R, MACINTYRE A N, MACIVER N J, MASON E F, et al. Cutting edge:distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets[J]. J Immunol, 2011, 186: 3299–3303. DOI: 10.4049/jimmunol.1003613
[41] WANG R, DILLON C P, SHI L Z, MILASTA S, CARTER R, FINKELSTEIN D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation[J]. Immunity, 2011, 35: 871–882. DOI: 10.1016/j.immuni.2011.09.021
[42] ARPAIA N, CAMPBELL C, FAN X, DIKIY S, VAN DER VEEKEN J, DEROOS P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504: 451–455. DOI: 10.1038/nature12726
[43] FURUSAWA Y, OBATA Y, FUKUDA S, ENDO T A, NAKATO G, TAKAHASHI D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504: 446–450. DOI: 10.1038/nature12721
[44] CHIMENTI M S, TRIGGIANESE P, CONIGLIARO P, CANDI E, MELINO G, PERRICONE R. The interplay between inflammation and metabolism in rheumatoid arthritis[J/OL]. Cell Death Dis, 2015, 6: e1887. doi: 10.1038/cddis.2015.246.