第二军医大学学报  2018, Vol. 39 Issue (1): 86-91   PDF    
动脉瘤性蛛网膜下隙出血后脑血管痉挛的诊断和治疗进展
陈荣彬1, 吴学铭2, 赵亮1, 韩凯伟1, 黄承光1, 于明琨1, 侯立军1*     
1. 第二军医大学长征医院神经外科, 上海 200003;
2. 第二军医大学长征医院脊柱外科, 上海 200003
摘要: 脑血管痉挛多见于动脉瘤性蛛网膜下隙出血(aneurysmal subarachnoid hemorrhage,aSAH),常在出血后数天发现,1周后达高峰。其进展迅速,常引起局部脑缺血、脑梗死及神经功能障碍,是动脉瘤破裂后致死、致残的重要原因。脑血管造影是诊断脑血管痉挛的金标准,但近年来经颅多普勒超声、CT脑灌注成像、近红外线光谱等非侵袭性检查手段日趋流行,便于广泛开展。脑血管痉挛的治疗大体上分为血液动力学及药物治疗两类,早期清除血肿、舒张血管、增强脑灌注为主要研究方向,联合治疗是其今后的治疗趋势,本文就其诊断和治疗进展作一综述。
关键词: 脑血管痉挛     蛛网膜下隙出血     动脉瘤     诊断     治疗    
Advance in diagnosis and treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage
CHEN Rong-bin1, WU Xue-ming2, ZHAO Liang1, HAN Kai-wei1, HUANG Cheng-guang1, YU Ming-kun1, HOU Li-jun1*     
1. Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China;
2. Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
Supported by National Natural Science Foundation for Young Scientists of China (H0910.8150051107), "Leading Talent" Project of Shanghai (2012049), and Scientific and Technological Talent Project of Shanghai (15XD1504700).
Abstract: Cerebral vasospasm is common in aneurysmal subarachnoid hemorrhage (aSAH). It often occurs several days after aSAH, and then peaks at 1 week, causing local cerebral ischemia, cerebral infarction and neurological deficit dysfunction. Cerebral vasospasm is an important reason for death or disability after aneurysm rupture. Cerebral angiography is the gold standard for the diagnosis of cerebral vasospasm, but now transcranial Doppler ultrasound, CT cerebral perfusion imaging, near infrared spectroscopy and other non-invasive inspection methods are increasingly popular and easy to carry out extensively. Treatments of cerebral vasospasm include hemodynamics and drug therapy, with early removal of hematoma, diastolic blood vessels, and enhanced brain perfusion as the main research direction. Joint treatments are the future trends of cerebral vasospasm therapy. In this review, we summarized the diagnosis and treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage.
Key words: cerebral vascular spasm     subarachnoid hemorrhage     aneurysm     diagnosis     treatment    

脑血管痉挛(cerebral vasospasm,CVS)多见于动脉瘤性蛛网膜下隙出血(aneurysmal subarachnoid hemorrhage,aSAH),其进展迅速,可引起局部脑缺血及迟发性缺血性神经功能障碍(delayed ischemic neurological deficit,DIND),是动脉瘤破裂后致死、致残的重要原因[1]。研究发现,aSAH后50%~90%的患者造影中可见CVS,常在出血后数天发生,1周后达到高峰[2],因此早期临床干预尤为重要。近年来aSAH后CVS的诊断和治疗取得一定进展,现综述如下。

1 CVS的诊断进展

数字减影血管造影(digital substraction angiography,DSA)和CT血管造影(computed tomography angiography,CTA)是目前最有效的颅内大中血管的显影方式。颅内动脉CTA诊断的敏感度和特异度分别为80%和93%,但由于其在动脉瘤夹及弹簧圈处形成放射性伪影,导致其准确率不及DSA,但仍可作为初步检查方案[3]。Namyong等[4]认为,DSA和CTA在发现左侧大脑前动脉A1、A2段和左侧大脑中动脉M1段血管狭窄处关联度最高。准备行球囊扩张术的患者可采用CTA。CVS多呈向心分布,可分为局限性痉挛、节段性痉挛和弥漫性痉挛。以血管痉挛前的造影结果为基线,以血管狭窄程度的25%和50%为界划分为轻、中、重度3级[5],CTA及DSA均可检出靠近Willis动脉环的轻度痉挛。在动脉瘤破裂48 h内行CTA检查确诊的患者可归为“早期CVS”[6],也可用于预测迟发性脑梗死。但由于国内多方面条件的制约,仅有小部分aSAH患者可经CTA诊断,难以普适,部分地区仍以脑梗死及DIND的出现作为诊断标准。

经颅多普勒超声(transcranial Doppler,TCD)多用于CVS初期血流速度改变的监测,也可用于DIND的预测[7]。其原理为颅内动脉痉挛后管腔狭窄导致血流速度加快,通过入射波和反射波的改变影响多普勒频移。TCD为无创性,操作相对简单,便于床边开展,但其对颞窗等常用声窗有一定要求。TCD将血管流速与CVS程度相关联,其检测大脑中动脉流速超过120 cm/s时提示存在血管痉挛,超过200 cm/s则提示重度痉挛[8]。考虑到动脉血压及脑血管流速等混淆因素,加入颅外段颈内动脉的流速进行检测。Lindegaard指数又被称为血管痉挛指数,是指大脑中动脉与颈内动脉平均血流速度的比值,大于3则提示有血管痉挛。颅内基底动脉与颅外椎动脉平均血流速度的比值也可检测基底动脉痉挛情况[9]。TCD对大脑中动脉主干检测的准确性和特异性接近90%,临床中对大脑中动脉流速超过200 cm/s和低于120 cm/s进行预测最为常用,居中范围则引入脑血流量和自身短暂充血调节反应等参数进行评估。TCD不适用于血管分支中血流灌注影响的评估。

单光子发射计算机断层扫描(single-photon emission computed tomography,SPECT),氙增强CT(Xe-CT)、正电子发射计算机断层扫描(positron emission computed tomography,PET)和MRI等可用于aSAH后脑血流量的检测,但由于检查耗时长、价格高昂、需吸入麻醉氙气等原因在临床实际操作中均受到一定限制。CT脑灌注成像(computed tomography perfusion,CTP)是一种非侵入性功能成像技术,由对比剂通过特定区域产生的密度变化获取脑灌注信息,具有操作简便、成像迅速等优点,与DSA也有较好的相关性。CTP可检测发现早期脑灌注不足、动脉通过时间延长和脑血容量变化,预测脑缺血,同时也可部分显示局部脑缺血的位置和范围[10]。Malinova等[11]对aSAH患者在发病后3 d行全脑CTP,结果显示14例脑灌注不足患者中有10例出现DIND,提示CTP可用于预测脑缺血预后。热弥散血流监测(thermal diffusion flowmetry,TDF)能够持续床旁监测aSAH后CVS患者早期脑血流量变化,较TCD更敏感[12]。热弥散探针常被置于额叶脑白质区域,对高级别aSAH患者脑血流量的持续监测有一定意义。但TDF属有创操作,仅适用于局部小范围脑组织,因此其准确性和假阴性率受到质疑。

近红外线光谱(near-infrared spectroscopy,NIRS)具有波长依赖性吸收衰减的特性,在穿透组织过程中被各物质吸收衰减,可无创、实时地监测脑组织氧饱和度、血红蛋白量,进而评估脑血容量[13]。时间分辨NIRS能够定量分析血红蛋白浓度和皮质血氧饱和度,早期发现脑缺血。Yokose等[14]研究发现NIRS在诊断CVS方面的灵敏度高于TCD,血红蛋白容积指数可成为脑血管反应性的另一种评价指标,但仍需大量临床数据支持。NIRS的不足之处在于其测量的血红蛋白浓度为平均值,仅反映局部脑组织血流情况。NIRS对血氧饱和度的测量主要经中央皮质区的静脉系统及脑脊液,而颅骨或其他区域会出现对光信号的干扰。在此基础上发展的近红外光学拓扑图技术可对血氧饱和度进行短期监测,其早期诊断CVS和预测DIND的敏感度与SPECT接近[15]。总体而言,NIRS可用于持续床旁监测皮质血氧饱和度、氧合及去氧血红蛋白浓度,为aSAH甚至颅脑创伤后脑缺血缺氧的监测提供多种渠道。

微透析(microdialysis)是一种微创检测脑组织代谢的方法,需局部放置微透析探针。它可以持续床旁监测脑组织细胞外液中乳酸、葡萄糖、丙酮酸、谷氨酸和甘油等生物化学指标的变化,反映细胞损伤及脑缺血程度。乳酸/丙酮酸比值(LPR)升高及葡萄糖水平降低提示脑组织缺血,在诊断上可较CTP提前18 h[16]。最可靠的观察指标为谷氨酸和乳酸,在脑缺血出现临床症状前24 h可检测波动;其次为甘油,在症状出现前12 h出现。LPR与甘油水平呈正相关,与脑灌注呈负相关,LPR增高也提示较高病死率[17]。探针置入区域要尽可能靠近动脉瘤,增加敏感度的同时也减少继发性梗死灶。常见梗死高发区为前、后交通动脉瘤及同侧大脑中动脉瘤区域[18]。此外,Spiotta等[19]现LPR越高时aSAH预后越好,提示乳酸本身并不能完全反映缺血病情,而是与组织的整体代谢水平有关。

2 CVS的治疗进展 2.1 一般治疗

目前尚无证据表明在aSAH急性期增加脑血容量治疗对预防脑缺血或CVS有效。aSAH患者脑利钠肽分泌增加常可导致低钠,若补钠不足则增加CVS甚至脑梗死风险,建议使用等渗或高渗盐水配合氟氢可的松0.3 mg/d预防CVS[20]。贫血是影响CVS进展和aSAH预后的原因之一,血色素水平应维持在90 g/L以上,必要时可予输血治疗[21]。脑灌注压必须兼顾,可在动脉瘤术后适当升高血压,同时行脑室外引流患者应维持颅内压不低于70 mmHg(1 mmHg=0.133 kPa)[22]。维持体内电解质平衡、控制血糖及营养状况都有利于病情恢复。尼莫地平是L型钙离子通道抑制剂,阻断钙离子异常内流能有效缓解CVS。口服或鼻饲尼莫地平60 mg/4 h持续3周是aSAH的标准疗法,但并未减少CVS发生率,研究仅表明其可改善aSAH患者神经功能损伤[23]

2.2 3H治疗

扩容(hypervolemia)、升压(hypertension)和血液稀释(hemodilution)合称为3H治疗,是临床常用的改善颅内血流动力学的方法,它能够增加心排血量、加强脑灌注、增强血液携氧能力。为避免液体过负荷,通常维持中心静脉压为8~10 mmHg,肺毛细血管楔压为14~16 mmHg。若患者有心肌梗死、心力衰竭或肺水肿等心肺功能异常病史,则需在肺动脉置入导管[24]。若排除禁忌,升压较扩容更能提升脑组织含氧量。升压治疗应在颅内动脉瘤手术或栓塞治疗成功后进行,可适当使用肾上腺素或去甲肾上腺素等升压药物,维持收缩压为150~200 mmHg。针对不同的激动受体还可选择多巴胺、多巴酚丁胺和米力农等[25]。升压或扩容治疗在急性期并不增加不稳定动脉瘤破裂风险。若收缩压调整至200 mmHg后脑缺血症状仍无缓解,则代表升压治疗失败,应尽快维持正常血压水平避免加重缺血性脑水肿。血液稀释可以降低血黏度,增大血容量,但需保证红细胞比容不低于30%,血红蛋白不能低于90 g/L。补充等渗晶体溶液对心指数无显著影响,同时可改善血管痉挛区域脑灌注。

2.3 血管内治疗

对于3H治疗无效或存在禁忌证的患者宜采用血管内治疗,可改善重度及难治性CVS的预后[26]。临床症状及TCD结果提示CVS的患者应造影确认CVS的具体位置。双侧颈内动脉、椎动脉及大脑中动脉M1段行血管内球囊扩张术较为安全,症状出现2 h内最佳。一项包括165例接受非顺应性球囊扩张患者的多中心研究显示,97%的患者血管痉挛症状得到不同程度的改善且鲜有并发症[27]。球囊导管的选择应与该痉挛血管的正常管径相符,型号过大会有血管破裂风险,术前应仔细区分痉挛血管与发育不良动脉。球囊扩张仅对痉挛局部有效,若术后出现远端血管新发痉挛可能需要再次手术治疗[28]。扩张血管多选择直径≥2.0 mm进行,但有研究显示选择标准化球囊导管会降低血管破裂风险[29]。对于手术风险极大的远端血管痉挛往往选择血管内药物,如米力农、罂粟碱、硝苯地平、尼莫地平和维拉帕米等改善循环,但其作用短暂,与保守的血液动力学治疗相比无明显差异[30]。球囊扩张联合血管内药物尼莫地平缓解血管痉挛效果更佳,但不能明显改善预后[31]。Bhogal等[32]采用自膨胀式可回收支架治疗大脑前动脉A1、A2段及大脑中动脉M1、M2段CVS疗效持久,血管扩张后未出现再狭窄。一项Ⅱ期随机对照研究(RCT)对试验组85例CVS阴性的aSAH患者96 h内行预防性球囊扩张成形术,通过3个月随访的格拉斯哥预后评分(GOS)来判断疗效,结果显示手术组CVS发生率低于对照组,但两组预后方面无明显差异;此类手术安全性也受到质疑,由于其并发症与操作有关,个别病例出现动脉穿孔及动脉夹层,其中3例死亡[33]

2.4 脑池内药物注射

在aSAH并发CVS病例中,CVS严重程度往往与蛛网膜下隙积血关联密切。脑池内rtPA和尿激酶溶栓可降低CVS及脑缺血的发生率,然而考虑到鞘内注射溶栓药物的安全性,枕大池穿刺技术尚未广泛开展。有学者发现与腰大池引流相比,脑池内溶栓患者预后更佳[34]。对于aSAH积血可能引起急性脑积水的患者,在动脉瘤夹闭术中行终板造瘘术可改善aSAH患者脑脊液循环,加速血块清除,降低CVS及脑积水的发生率。有学者提出在动脉瘤夹闭术中经由蛛网膜下隙注入缓释尼莫地平可预防CVS并减轻脑缺血引起的神经功能损害,改善预后[35]。但经脑室外引流管注入缓释尼莫地平的疗效尚存争议。

2.5 镁剂

研究证实硫酸镁具有血管舒张及神经保护功能,对CVS及脑缺血患者有一定的防治作用[36]。一项meta分析显示,aSAH患者静脉滴注硫酸镁未能降低CVS及脑梗死风险,对预后也并无改善[37]。Mijalski等[38]报道了2例静脉滴注镁剂可缓解CVS后难治性头痛的病例。但目前尚无证据推荐aSAH患者接受静脉滴注硫酸镁治疗。

2.6 内皮素受体拮抗剂

既往研究显示aSAH患者脑脊液中内皮素1(endothelin 1,ET-1)过表达与CVS的发生和发展有关。ETA/B受体抑制剂TAK-044可减轻脑缺血神经功能损害,在一定程度上改善认知功能[39]。一项对不同剂量内皮素受体拮抗剂克拉生坦(clazosentan)静脉滴注的RCT显示,以15 mg/h的速度静脉滴注克拉生坦可降低中或重度CVS发生率,但对预后及脑梗死的发生无明显影响[40]。类似研究表明5 mg/h速度静脉滴注克拉生坦在CVS致死率、GOS评分及肺部感染、低血压等并发症方面与对照组相比差异无统计学意义[41];亚组分析发现,对于重度CVS及弥漫性SAH患者克拉生坦能够降低CVS死亡率,但对预后无改变。克拉生坦无法改善预后的原因可能与病例数不足、预后指标选择或其他机制有关,有待进一步研究。最新研究显示,钙离子通道增敏剂左西孟旦(levosimendan)可通过上调一氧化氮-环鸟苷酸(nitric oxide-cyclic guanosine monophosphate,NO-cGMP)信号通路缓解ET-1引起的血管痉挛,还可剂量依赖性拮抗前列腺素F2α(PGF2α)介导的血管收缩效应[42]

2.7 他汀类药物

他汀类药物是羟甲基戊二酰辅酶A(HMG-CoA)还原酶抑制剂,竞争性抑制胆固醇合成限速酶,减少胆固醇合成;此外还具有改善血管内皮功能、调节炎性反应、稳定动脉斑块、减少血栓形成等作用。他汀类药物能上调内皮型一氧化氮合酶(eNOS)促进NO的合成与利用,改善aSAH患者脑灌注情况,有效防止CVS。口服辛伐他汀(simvastatin)80 mg/d可减少CVS和脑梗死的发生[43]。一项包含80例患者的RCT发现,口服普伐他汀(pravastatin)40 mg/d持续2周后与对照组相比CVS发生率降低32%,而CVS梗死率及病死率分别降低83%和75%[44]。另有包含6项RCT的meta分析指出,他汀类药物可减少CVS及脑缺血的发生,但对于神经功能预后无明显改善[45]

3 小结

综上所述,国内外对aSAH相关性CVS的研究逐渐深入,在诊断和治疗方面引入了很多新思路和新方法。脑血管造影仍为诊断金标准,但TCD、CTP和NIRS等提供了无创、实时监测的新手段。在治疗上血液动力学及药物的研究取得一定进展,但尚缺乏令人满意的策略,仍无法改善预后,亟待进一步研究。

参考文献
[1] TREGGIARI-VENZI M M, SUTER P M, ROMAND J A. Review of medical prevention of vasospasm after aneurysmal subarachnoid hemorrhage:a problem of neurointensive care[J]. Neurosurgery, 2001, 48: 249–261.
[2] DORSCH N W, KING M T. A review of cerebral vasospasm in aneurysmal subarachnoid haemorrhage Part Ⅰ:incidence and effects[J]. J Clin Neurosci, 1994, 1: 19–26. DOI: 10.1016/0967-5868(94)90005-1
[3] SUN H, ZHANG H, MA J, LIU Y, YOU C. Evaluating the diagnostic accuracy of CT perfusion in patients with cerebral vasospasm after aneurysm rupture:a meta-analysis[J]. Turk Neurosurg, 2014, 24: 757–762.
[4] NAMYONG J, AURBOONYAWAT T, CHANKAEW E, CHAWALPARIT O, TRITRAKARN S, SRIRABHEEBHAT P, et al. Computerized tomographic angiography for detection of cerebral vasospasm after ruptured intracranial aneurysm[J]. J Med Assoc Thai, 2015, 98: 804–811.
[5] BALDWIN M E, MacDONALD R L, HUO D, NOVAKOVIC R L, GOLDENBERG F D, FRANK J I, et al. Early vasospasm on admission angiography in patients with aneurysmal subarachnoid hemorrhage is a predictor for in-hospital complications and poor outcome[J]. Stroke, 2004, 35: 2506–2511. DOI: 10.1161/01.STR.0000144654.79393.cf
[6] AL-MUFTI F, ROH D, LAHIRI S, MEYERS E, WITSCH J, FREY H P, et al. Ultra-early angiographic vasospasm associated with delayed cerebral ischemia and infarction following aneurysmal subarachnoid hemorrhage[J]. J Neurosurg, 2017, 126: 1545–1551. DOI: 10.3171/2016.2.JNS151939
[7] MILLER C, ARMONDA R; Participants in the International Multi-disciplinary Consensus Conference on Multimodality Monitoring. Monitoring of cerebral blood flow and ischemia in the critically ill[J]. Neurocrit Care, 2014, 21(Suppl 2): S121–S128.
[8] LINDEGAARD K F, BAKKE S J, SORTEBERG W, NAKSTAD P, NORNES H. A non-invasive Doppler ultrasound method for the evaluation of patients with subarachnoid hemorrhage[J]. Acta Radiol, 1986, 369: 96–98.
[9] SVIRI G E, GHODKE B, BRITZ G W, DOUVILLE C M, HAYNOR D R, MESIWALA A H, et al. Transcranial Doppler grading criteria for basilar artery vasospasm[J]. Neurosurgery, 2006, 59: 360–366. DOI: 10.1227/01.NEU.0000223502.93013.6E
[10] DUAN Y, XU H, LI R, ZHENG K, HU Z, WU N, et al. Computed tomography perfusion deficits during the baseline period in aneurysmal subarachnoid hemorrhage are predictive of delayed cerebral ischemia[J]. J Stroke Cerebrovasc Dis, 2017, 26: 162–168. DOI: 10.1016/j.jstrokecerebrovasdis.2016.09.004
[11] MALINOVA V, DOLATOWSKI K, SCHRAMM P, MOERER O, ROHDE V, MIELKE D. Early whole-brain CT perfusion for detection of patients at risk for delayed cerebral ischemia after subarachnoid hemorrhage[J]. J Neurosurg, 2016, 125: 128–136. DOI: 10.3171/2015.6.JNS15720
[12] PACREU S, VILLALBA G, GRACIA M P, QUIJADA C, MOLTÓ L, FERNÁNDEZ S. [Regional cerebral blood flow monitoring using thermal diffusion flowmetry. Description of 3 cases][J]. Rev Esp Anestesiol Reanim, 2012, 59: 394–397. DOI: 10.1016/j.redar.2012.03.016
[13] MENG L, SETTECASE F, XIAO J, YU Z, FLEXMAN A M, HIGASHIDA R T. Initial clinical experience with near-infrared spectroscopy in assessing cerebral tissue oxygen saturation in cerebral vasospasm before and after intra-arterial verapamil injection[J]. J Clin Neurosci, 2016, 26: 63–69. DOI: 10.1016/j.jocn.2015.10.020
[14] YOKOSE N, SAKATANI K, MURATA Y, AWANO T, IQARASHI T, NAKAMURA S, et al. Bedside monitoring of cerebral blood oxygenation and hemodynamics after aneurysmal subarachnoid hemorrhage by quantitative time-resolved nearinfrared spectroscopy[J]. World Neurosurg, 2010, 73: 508–513. DOI: 10.1016/j.wneu.2010.02.061
[15] TANAKA Y, EBIHARA A, IKOTA M, YAMAGURO T, KAMOCHI H, KUSAKA G, et al. Early diagnosis of cerebral ischemia in cerebral vasospasm by oxygen-pulse near-infrared optical topography[J]. Acta Neurochir Suppl, 2015, 120: 269–274.
[16] PATET C, QUINTARD H, ZERLAUTH J B, MAIBACH T, CARTERON L, SUYS T, et al. Bedside cerebral microdialysis monitoring of delayed cerebral hypoperfusion in comatose patients with poor grade aneurysmal subarachnoid haemorrhage[J]. J Neurol Neurosurg Psychiatry, 2017, 88: 332–338. DOI: 10.1136/jnnp-2016-313766
[17] PAPADOPOULOS D, FILIPPIDIS A, KROMMIDAS G, VRETZAKIS G, PATERAKIS K, KOMNOS A, et al. Regional cerebral blood flow and cellular environment in subarachnoid hemorrhage:a thermal doppler flowmetry and microdialysis study[J]. Neurol Neurochir Pol, 2017, 51: 66–71.
[18] THOLANCE Y, BARCELOS G K, PERRET-LIAUDET A, OMAR E, CARRILLON R, GROUSSON S, et al. Placing intracerebral probes to optimise detection of delayed cerebral ischemia and allow for the prediction of patient outcome in aneurysmal subarachnoid haemorrhage[J]. J Cereb Blood Flow Metab, 2017, 37: 2820–2832. DOI: 10.1177/0271678X16675880
[19] SPIOTTA A M, PROVENCIO J J, RASMUSSEN P A, MANNO E. Brain monitoring after subarachnoid hemorrhage:lessons learned[J]. Neurosurgery, 2011, 69: 755–766. DOI: 10.1227/NEU.0b013e31821d2b61
[20] RAHMAN M, FRIEDMAN W A. Hyponatremia in neurosurgical patients:clinical guidelines development[J]. Neurosurgery, 2009, 65: 925–936. DOI: 10.1227/01.NEU.0000358954.62182.B3
[21] KRAMER A H, HEHIR M, NATHAN B, GRESS D, DUMONT A S, KASSELL N F, et al. A comparison of 3 radiographic scales for the prediction of delayed ischemia and prognosis following subarachnoid hemorrhage[J]. J Neurosurg, 2008, 109: 199–207. DOI: 10.3171/JNS/2008/109/8/0199
[22] DE OLIVEIRA MANOEL A L, GOFFI A, MAROTTA T R, SCHWEIZER T A, ABRAHAMSON S, MacDONALD R L. The critical care management of poor-grade subarachnoid haemorrhage[J]. Crit Care, 2016, 20: 1–19.
[23] DORHOUT MEES S M, RINKEL G J, FEIGIN V L, ALGRA A, VAN DEN BERGH W M, VERMEULEN M, et al. Calcium antagonists for aneurysmal subarachnoid hemorrhage[J]. Stroke, 2008, 39: 514–515. DOI: 10.1161/STROKEAHA.107.496802
[24] SHURE D. Pulmonary artery catheters-Peace at last?[J]. N Engl J Med, 2006, 354: 2273–2274. DOI: 10.1056/NEJMe068099
[25] MEYER R, DEEM S, YANEZ N D, SOUTER M, LAM A, TREGGIARI M M, et al. Current practices of triple-h prophylaxis and therapy in patients with subarachnoid hemorrhage[J]. Neurocrit Care, 2011, 14: 24–36. DOI: 10.1007/s12028-010-9437-z
[26] BOULOUIS G, LABEYRIE M A, RAYMOND J, RODRIGUEZ-RÉGENT C, LUKASZEWICZ A C, BRESSON D, et al. Treatment of cerebral vasospasm following aneurysmal subarachnoid haemorrhage:a systematic review and meta-analysis[J]. Eur Radiol, 2017, 27: 3333–3342. DOI: 10.1007/s00330-016-4702-y
[27] PATEL A S, GRIESSENAUER C J, GUPTA R, ADEEB N, FOREMAN P M, SHALLWANI H, et al. Safety and efficacy of non-compliant balloon angioplasty for the treatment of subarachnoid hemorrhage-induced vasospasm:a multicenter study[J]. World Neurosurg, 2017, 98: 189–197. DOI: 10.1016/j.wneu.2016.10.064
[28] TEKLE W G, CHAUDRY S A, HASSAN A E, QAISER H, GRIGORYAN M, RODRIGUEZ G J, et al. High risk of new episode of symptomatic vasospasm in unaffected arteries in subarachnoid hemorrhage patients receiving targeted endovascular treatment for symptomatic focal vasospasm[J]. Neurocrit Care, 2014, 20: 399–405. DOI: 10.1007/s12028-013-9825-2
[29] SANTILLAN A, KNOPMAN J, ZINK W, PATSALIDES A, GOBIN Y P. Transluminal balloon angioplasty for symptomatic distal vasospasm refractory to medical therapy in patients with aneurysmal subarachnoid hemorrhage[J]. Neurosurgery, 2011, 69: 95–102. DOI: 10.1227/NEU.0b013e31821424f9
[30] GOEL R, AGGARWAL A, SALUNKE P, KUMAR A, CHHABRA R. Is intra arterial nimodipine really beneficial in vasospasm following aneurysmal subarachnoid haemorrhage?[J]. Br J Neurosurg, 2016, 30: 407–410. DOI: 10.3109/02688697.2016.1161172
[31] KERZ T, BOOR S, ULRICH A, BEYER C, HECHTNER M, MUELLER FORELL W. Endovascular therapy for vasospasm after aneurysmatic subarachnoid hemorrhage[J]. Br J Neurosurg, 2016, 30: 549–553. DOI: 10.3109/02688697.2016.1173193
[32] BHOGAL P, LOH Y, BROUWER P, ANDERSSON T, SÖDERMAN M. Treatment of cerebral vasospasm with self-expandable retrievable stents:proof of concept[J]. J Neurointerv Surg, 2017, 9: 52–59. DOI: 10.1136/neurintsurg-2016-012546
[33] ZWIENENBERG-LEE M, HARTMAN J, RUDISILL N, MADDEN L K, SMITH K, ESKRIDGE J, et al. Effect of prophylactic transluminal balloon angioplasty on cerebral vasospasm and outcome in patients with Fisher grade Ⅲ subarachnoid hemorrhage:results of a phase Ⅱ multicenter, randomized, clinical trial[J]. Stroke, 2008, 39: 1759–1765. DOI: 10.1161/STROKEAHA.107.502666
[34] ETMINAN N, BESEOGLU K, EICKER S O, TUROWSKI B, STEIGER H J, HÄNGGI D. Prospective, randomized, open-label phase Ⅱ trial on concomitant intraventricular fibrinolysis and low-frequency rotation after severe subarachnoid hemorrhage[J]. Stroke, 2013, 44: 2162–2168. DOI: 10.1161/STROKEAHA.113.001790
[35] BARTH M, CAPELLE H H, WEIDAUER S, WEISS C, MÜNCH E, THOMÉ C, et al. Effect of nicardipine prolonged-release implants on cerebral vasospasm and clinical outcome after severe aneurysmal subarachnoid hemorrhage:a prospective, randomized, double-blind phase Ⅱa study[J]. Stroke, 2007, 38: 330–336. DOI: 10.1161/01.STR.0000254601.74596.0f
[36] DORHOUT MEES S M, ALGRA A, VANDERTOP W P, VAN KOOTEN F, KUIJSTEN H A, BOITEN J, et al. Magnesium for aneurysmal subarachnoid haemorrhage (MASH-2):a randomised placebo-controlled trial[J]. Lancet, 2012, 380: 44–49. DOI: 10.1016/S0140-6736(12)60724-7
[37] GOLAN E, VASQUEZ D N, FERGUSON N D, ADHIKARI N K, SCALES D C. Prophylactic magnesium for improving neurologic outcome after aneurysmal subarachnoid hemorrhage:systematic review and meta-analysis[J]. J Crit Care, 2013, 28: 173–181. DOI: 10.1016/j.jcrc.2012.07.001
[38] MIJALSKI C, DAKAY K, MILLER-PATTERSON C, SAAD A, SILVER B, KHAN M. Magnesium for treatment of reversible cerebral vasoconstriction syndrome:case series[J]. Neurohospitalist, 2016, 6: 111–113. DOI: 10.1177/1941874415613834
[39] BRIYAL S, PHILIP T, GULATI A. Endothelin-A receptor antagonists prevent amyloid-β-induced increase in ETA receptor expression, oxidative stress, and cognitive impairment[J]. J Alzheimers Dis, 2011, 23: 491–503.
[40] MacDONALD R L, KASSELL N F, MAYER S, RUEFENACHT D, SCHMIEDEK P, WEIDAUER S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1):randomized, double-blind, placebo-controlled phase 2 dose-finding trial[J]. Stroke, 2008, 39: 3015–3021. DOI: 10.1161/STROKEAHA.108.519942
[41] MacDONALD R L, HIGASHIDA R T, KELLER E, MAYER S A, MOLYNEUX A, RAABE A, et al. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling[J]. Stroke, 2012, 43: 1463–1469. DOI: 10.1161/STROKEAHA.111.648980
[42] KONCZALLA J, WANDERER S, MROSEK J, GUERESIR E, SCHUSS P, PLATZ J, et al. Levosimendan, a new therapeutic approach to prevent delayed cerebral vasospasm after subarachnoid hemorrhage?[J]. Acta Neurochir (Wien), 2016, 158: 2075–2083. DOI: 10.1007/s00701-016-2939-5
[43] WOO S W, KIM J H, KANG H I, KIM D R, MOON B G, KIM J S. High-dose simvastatin is effective in preventing cerebral vasospasm after aneurysmal subarachnoid hemorrhage:a prospective cohort study in Korean patients[J]. J Korean Neurosurg Soc, 2015, 58: 328–333. DOI: 10.3340/jkns.2015.58.4.328
[44] TSENG M Y, CZOSNYKA M, RICHARDS H, PICKARD J D, KIRKPATRICK P J. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage:a phase Ⅱ randomized placebo-controlled trial[J]. Stroke, 2005, 36: 1627–1632. DOI: 10.1161/01.STR.0000176743.67564.5d
[45] SU S H, XU W, HAI J, WU Y F, YU F. Effects of statins-use for patients with aneurysmal subarachnoid hemorrhage:a meta-analysis of randomized controlled trials[J/OL]. Sci Rep, 2014, 4:4573. doi:10.1038/srep04573.