第二军医大学学报  2017, Vol. 38 Issue (5): 679-682   PDF    
胃饥饿素通过cAMP/PKA通路对胰高血糖素样肽1促胰岛素分泌功能的影响
王一凡, 王强, 张伟, 仇明     
第二军医大学长征医院普外三科, 上海 200003
摘要: 目的 探讨胃饥饿素(ghrelin)能否通过调控环磷酸腺苷/蛋白激酶A(cAMP/PKA)通路竞争性抑制胰高血糖素样肽1(GLP-1)的促胰岛素分泌效应。 方法 取8~10周龄雄性SD大鼠5只,分离、纯化大鼠胰岛,经双硫腙(DTZ)和吖啶橙/碘化丙啶(AO/PI)染色鉴定后,每只大鼠挑选60个胰岛,将其随机分成6组并接受不同处理:S0组(8.3 mmol/L葡萄糖溶液)、S1组(8.3 mmol/L葡萄糖溶液+10 nmol/L GLP-1)、S2组(8.3 mmol/L葡萄糖溶液+10 nmol/L GLP-1+10 nmol/L ghrelin)、S3组[8.3 mmol/L葡萄糖溶液+10 nmol/L GLP-1+10 nmol/L ghrelin+1 μmol/L生长激素促泌素受体1α(GHSR-1α)拮抗剂生长激素释放肽6(D-Lys3-GHRP-6)]、S4组(8.3 mmol/L葡萄糖溶液+10 nmol/L GLP-1+10 nmol/L ghrelin+5 μmol/L腺苷酸环化酶激动剂毛喉素)、S5组(8.3 mmol/L葡萄糖溶液+10 nmol/L GLP-1+10 nmol/L ghrelin+10 μmol/L PKA激动剂6-Phe-cAMP);所有试剂均于前一试剂处理10 min后依次加入后一试剂共同处理,每组胰岛的所有处理时间共3 h。采用ELISA法检测各组胰岛培养液中胰岛素和cAMP的浓度。 结果 S1组胰岛细胞分泌胰岛素和释放cAMP的浓度均高于S0组(P均<0.05),S2组均低于S1组(P均<0.05)。S3、S4和S5组胰岛细胞分泌胰岛素和释放cAMP的浓度均高于S2组(P均<0.05)。 结论 Ghrelin能够抑制GLP-1的促胰岛素分泌效应,其作用机制可能是通过cAMP/PKA通路竞争性抑制GLP-1的促分泌效应。
关键词: 胃饥饿素     胰高血糖素样肽1     环磷酸腺苷     胰岛素     胰岛    
Effect of ghrelin on function of glucagon-like peptide 1 stimulating secretion of insulin through cAMP/PKA pathway
WANG Yi-fan, WANG Qiang, ZHANG Wei, QIU Ming     
Department of General Surgery(Ⅲ), Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
Supported by National Natural Science Foundation of China (81270969, 81370984) and Natural Science Foundation of Shanghai (12ZR1439100).
Abstract: Objective To explore whether ghrelin can competitively inhibit glucagon-like peptide 1 (GLP-1) to stimulate the secretion of insulin via cyclic adenosinc monophosphate/protein kinase A (cAMP/PKA) pathway. Methods The pancreatic islets were isolated and purified from five 8-10 weeks old male SD rats, and identified by dithizone (DTZ) and acridine orange (AO)/propidium iodide (PI) staining. Sixty pancreatic islets were selected from each rat and then randomly divided into six groups for different disposals:S0 group (8.3 mmol/L glucose solution), S1 group (8.3 mmol/L glucose solution+10 nmol/L GLP-1), S2 group (8.3 mmol/L glucose solution+10 nmol/L GLP-1+10 nmol/L ghrelin), S3 group (8.3 mmol/L glucose solution+10 nmol/L GLP-1+10 nmol/L ghrelin+1 μmol/L growth hormone-releasing peptide 6[D-Lys3-GHRP-6], an antagonist of growth hormone secretagogue receptor 1α[GHSR-1α]), S4 group (8.3 mmol/L glucose solution + 10 nmol/L GLP-1+10 nmol/L ghrelin+5 μmol/L forskolin, an adenylate cyclase activator), and S5 group (8.3 mmol/L glucose solution + 10 nmol/L GLP-1+10 nmol/L ghrelin + 10 μmol/L 6-Phe-cAMP, a PKA activator); all reagents were added after last reagent treatment for 10 min. Each group had a disposal of three hours totally. ELISA assay was used to detect the concentrations of insulin and cAMP. Results The concentrations of insulin and cAMP in S1 group were significantly higher than those in S0 group (all P < 0.05); their concentrations in S2 group were significantly lower than those in S1 group (both P < 0.05). The concentrations of insulin and cAMP in S3, S4, and S5 groups were significantly higher than those in S2 group (all P < 0.05). Conclusion Ghrelin can inhibit the effect of GLP-1 in promoting secretion of insulin, which may be mediated by cAMP/PKA pathway.
Key words: ghrelin     glucagon-like peptide 1     cyclic AMP     insulin     islets of Langerhans    

代谢手术作为2型糖尿病的治疗方法之一,可影响胃肠道多种激素的水平[1-2],代谢手术在糖尿病发生、发展过程中对激素水平及其受体功能有着重要影响。因此阐明其影响机制对临床治疗糖尿病药物的探索具有重要意义。代谢手术“后肠假说”的代表激素是胰高血糖素样肽1(glucagon-like peptide 1,GLP-1),它可以激活环磷酸腺苷/蛋白激酶A(cAMP/PKA)通路。该信号通路参与调控胰岛β细胞分泌胰岛素,从而维持血糖稳定[3-4];袖状胃切除术具有一定的降血糖效果,主要是通过降低胃底分泌的胃饥饿素(ghrelin)来发挥作用[5-6]。有研究表明ghrelin通过生长激素促泌素受体1α(growth hormone secretagogue receptor 1α,GHSR-1α)竞争性抑制GLP-1刺激胰岛β细胞的促胰岛素分泌效应[7]。但ghrelin对竞争性抑制GLP-1促胰岛素分泌效应的竞争性抑制作用的具体机制尚不清楚,其是否与cAMP/PKA通路直接关联也无明确的研究报道,因此,本研究旨在探索ghrelin是否通过cAMP/PKA通路竞争性抑制GLP-1对胰岛细胞分泌胰岛素的影响。

1 材料和方法 1.1 实验动物及材料

5只8~10周龄250~300 g SPF级成年雄性SD大鼠由第二军医大学实验动物中心提供[动物生产许可证号:SCXK(沪)2013-0016)]。GLP-1、GHSR-1α拮抗剂生长激素释放肽6(D-Lys3-GHRP-6)、腺苷酸环化酶激动剂毛喉素(forskolin)、PKA激动剂(6-Phe-cAMP)和ghrelin均购自美国Sigma公司。RPMI 1640培养基(货号:R10-040-CV,美国Corning公司);大鼠胰岛素ELISA检测试剂盒(货号:10-1250-01,瑞典Mercodia公司);cAMP ELISA检测试剂盒(货号:20161226,南京建成生物工程研究所)。RT-2100C型酶标分析仪(深圳雷杜生命科学股份有限公司)。

1.2 双硫腙(DTZ)染色

分离、纯化胰岛[8],体外培养48 h进行DTZ染色。将10 mg DTZ溶于10 mL DMSO中,用pH 7.8的Hank’s液1:1 000稀释,经0.22 μm孔径滤膜过滤,然后与胰岛混合,室温染色10 min后采用光学显微镜观察胰岛形态。

1.3 吖啶橙/碘化丙啶(AO/PI)染色

用Hank’s液配制储存液:AO 670 μmol/L、PI 750 μmol/L,4 ℃避光保存。将0.01 mL AO、1 mL PI储存液混合,用Hank’s液稀释10倍,0.22 μm孔径滤膜过滤,与胰岛混合10 min后,于荧光显微镜下观察胰岛生长状态。

1.4 实验分组与处理

在显微镜下挑选形态饱满、直径为100 μm的胰岛。每只大鼠挑选60个胰岛,随机分入6组并接受不同处理。S0组(8.3 mmol/L葡萄糖溶液)、S1组(8.3 mmol/L葡萄糖溶液+10 nmol/L[9] GLP-1)、S2组(8.3 mmol/L葡萄糖溶液+10 nmol/L GLP-1+10 nmol/L[9]ghrelin)、S3组[8.3 mmol/L葡萄糖溶液+10 nmol/L GLP-1+10 nmol/L ghrelin+1 μmol/L[9]D-Lys3-GHRP-6]、S4组(8.3 mmol/L葡萄糖溶液+10 nmol/L GLP-1+10 nmol/L ghrelin+5 μmol/L[10]forskolin)、S5组(8.3 mmol/L葡萄糖溶液+10 nmol/L GLP-1+10 nmol/L ghrelin+10 μmol/L[10]6-Phe-cAMP);所有试剂均于前一试剂处理10 min后依次加入后一试剂共同处理。每10个胰岛放入1个1.5 mL离心管中,加入300 μL含相应浓度试剂的KRBH培养液(KRBH培养液购自美国Sigma公司;使用时添加1 mg/mL小牛血清白蛋白),于37 ℃、5% CO2条件下培养3 h。

1.5 ELISA法检测胰岛素及cAMP浓度

吸取上清250 μL于新的离心管中,标记后4 ℃保存。按照大鼠胰岛素ELISA检测试剂盒操作说明处理样本,采用酶标分析仪测定450 nm波长下的光密度(D)值。同时,于原有离心管中加入0.5 mL KRBH培养液,超声波裂解胰岛。37 ℃ 400×g离心20 min后取上清400 μL,按照cAMP ELISA检测试剂盒操作说明处理样本后,用酶标仪测定450 nm波长下的D值。根据浓度和D值算出标准曲线的回归方程,分别采用三次样条回归模型和logistic曲线模型(四参数)计算胰岛素和cAMP浓度。

1.6 统计学处理

应用SPSS 24.0软件进行数据分析。计量资料均以x±s表示,同组统计指标给予不同处理的变化比较采用单因素方差分析。检验水准(α)为0.05。

2 结果 2.1 DTZ及AO/PI染色结果

分离、纯化后的胰岛被DTZ染成猩红色,镜下表现为大小不一的圆形或卵圆形细胞团和散在细胞(图 1A1B)。胰岛细胞被AO/PI染色后,活细胞发出绿色荧光(图 1C1D)。

图 1 大鼠胰岛细胞DTZ及AO/PI染色 A, B:双硫腙(DTZ)染色; C, D:吖啶橙(AO)/碘化丙啶(PI)染色. Original magnification: ×100 (A,C), ×200 (B,D)

2.2 Ghrelin对胰岛素和cAMP浓度的影响

图 2可见,与对照组(S0组)相比,GLP-1(S1组)能够促进胰岛素分泌,并上调cAMP的浓度(P<0.05),而与ghrelin同时处理胰岛(S2组)可明显抑制GLP-1对胰岛素和cAMP的上调效应(P<0.05)。当GLP-1、ghrelin与GHSR-1α拮抗剂D-Lys3-GHRP-6联合作用时(S3组),结果显示胰岛素与cAMP浓度均明显增加,与GLP-1和ghrelin共同处理(S2组)相比差异有统计学意义(P<0.05);与forskolin(S4组)或6-Phe-cAMP(S5组)共同处理时,胰岛素和cAMP浓度也均高于S2组(P均<0.05)。

图 2 各组间胰岛细胞分泌胰岛素及释放cAMP比较 S0组: 8.3 mmol/L葡萄糖溶液(GS);S1组:8.3 mmol/L GS+10 nmol/L胰高血糖素样肽1(GLP-1);S2组:8.3 mmol/L GS+10 nmol/L GLP-1+10 nmol/L ghrelin;S3组:8.3 mmol/L GS+10 nmol/L GLP-1+10 nmol/L ghrelin+1 μmol/L生长激素促泌素受体1α(GHSR-1α)拮抗剂生长激素释放肽6(D-Lys3-GHRP-6);S4组:8.3 mmol/L GS+10 nmol/L GLP-1+10 nmol/L ghrelin+5 μmol/L腺苷酸环化酶激动剂毛喉素(forskolin);S5组:8.3 mmol/L GS+10 nmol/L GLP-1+10 nmol/L ghrelin+10 μmol/L PKA激动剂6-Phe-cAMP. cAMP:环磷酸腺苷. *P<0.05. n=5, x±s

3 讨论

研究发现,摄食后GLP-1释放到循环中的浓度增加,禁食使得胰高血糖素原1和2表达均下降[11],还发现GLP-1的肠促胰素作用在2型糖尿病患者体内有所减弱[12];而循环ghrelin的浓度在餐前增加,在餐后下降[13],低血清ghrelin水平有助于改善机体糖代谢、胰岛素抵抗和肥胖,高血清ghrelin水平在胰岛中能够抑制胰岛素分泌,在中枢能显著增加摄食量[14]。可见GLP-1和ghrelin对于机体的糖代谢和胰岛素分泌存在一定的“相反性”。本研究也显示ghrelin可以拮抗GLP-1促胰岛素分泌的效应。

研究表明,cAMP/PKA通路在调控胰岛分泌胰岛素过程中发挥重要作用[9]。Ghrelin可通过抑制cAMP/PKA通路进而抑制胰岛素的分泌[15]。本研究结果显示,在8.3 mmol/L葡萄糖状态下,GLP-1促进了胰岛素的分泌和cAMP的释放,而ghrelin可以拮抗GLP-1的这种促进效应;但在给予ghrelin的主要结合受体GHSR-1α的拮抗剂D-Lys3-GHRP-6时,其胰岛素分泌和cAMP释放又明显增加。GLP-1、ghrelin共同处理胰岛释放cAMP的浓度明显低于其与forskolin或6-Phe-cAMP共同作用时的浓度。因此,我们得出结论:ghrelin能够抑制GLP-1的促胰岛素分泌效应,其作用机制可能是通过cAMP/PKA通路竞争性抑制GLP-1的促分泌效应。该结论为临床实践中治疗糖尿病提供了新的思路,即可以在阻断ghrelin的同时激活GLP-1,增加cAMP的释放,促进胰岛素分泌,从而达到治疗糖尿病的目的。

本研究仅在体外水平验证了ghrelin对GLP-1的促胰岛素分泌效应的拮抗作用,并探讨了与cAMP/PKA通路相关的可能机制,由于胰岛素分泌涉及的影响因素较多,排除其他因素对GLP-1和ghrelin的影响难度较大,故本研究并未开展体内实验。本研究虽只有体外实验结果,但可为后续体内研究提供科研思路,有助于进一步探究激素在体内外作用的差异。

参考文献
[1] NARAYANASWAMI V, DWOSKIN L P. Obesity:current and potential pharmacotherapeutics and targets[J]. Pharmacol Ther, 2017, 170: 116–147. DOI: 10.1016/j.pharmthera.2016.10.015
[2] FAERCH K, HULMÁN A, SOLOMON T P. Heterogeneity of pre-diabetes and type 2 diabetes:implications for prediction, prevention and treatment responsiveness[J]. Curr Diabetes Rev, 2016, 12: 30–41.
[3] SECHER A, JELSING J, BAQUERO A F, HECKSHER-SØRENSEN J, COWLEY M A, DALBØGE L S, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss[J]. J Clin Invest, 2014, 124: 4473–4488. DOI: 10.1172/JCI75276
[4] SALEHI M, GASTALDELLI A, D'ALESSIO D A. Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass[J/OL]. Gastroenterology, 2014, 146:669-680. e2. doi:10.1053/j.gastro.2013.11.044.
[5] LEE J H, NGUYEN Q N, LE Q A. Comparative effectiveness of 3 bariatric surgery procedures:Roux-en-Y gastric bypass, laparoscopic adjustable gastric band, and sleeve gastrectomy[J]. Surg Obes Relat Dis, 2016, 12: 997–1002. DOI: 10.1016/j.soard.2016.01.020
[6] MARTINUSSEN C, BOJSEN-MØLLER K N, DIRKSEN C, JACOBSEN S H, JØRGENSEN N B, KRISTIANSEN V B, et al. Immediate enhancement of first-phase insulin secretion and unchanged glucose effectiveness in patients with type 2 diabetes after Roux-en-Y gastric bypass[J]. Am J Physiol Endocrinol Metab, 2015, 308: E535–E544. DOI: 10.1152/ajpendo.00506.2014
[7] GE G H, DOU H J, YANG S S, MA J W, CHENG W B, QIAO Z Y, et al. Glucagon-like peptide-1 protects against cardiac microvascular endothelial cells injured by high glucose[J]. Asian Pac J Trop Med, 2015, 8: 73–78. DOI: 10.1016/S1995-7645(14)60191-7
[8] CARTER J D, DULA S B, CORBIN K L, WU R, NUNEMAKER C S. A practical guide to rodent islet isolation and assessment[J]. Biol Proced Online, 2009, 11: 3–31. DOI: 10.1007/s12575-009-9021-0
[9] DAMDINDORJ B, DEZAKI K, KURASHINA T, SONE H, RITA R, KAKEI M, et al. Exogenous and endogenous ghrelin counteracts GLP-1 action to stimulate cAMP signaling and insulin secretion in islet β-cells[J]. FEBS Lett, 2012, 586: 2555–2562. DOI: 10.1016/j.febslet.2012.06.034
[10] KONG X, YAN D, WU X, GUAN Y, MA X. Glucotoxicity inhibits cAMP-protein kinase A-potentiated glucose-stimulated insulin secretion in pancreatic β-cells[J]. J Diabetes, 2015, 7: 378–385. DOI: 10.1111/jdb.2015.7.issue-3
[11] HOYT E C, LUND P K, WINESETT D E, FULLER C R, GHATEI M A, BLOOM S R, et al. Effects of fasting, refeeding, and intraluminal triglyceride on proglucagon expression in jejunum and ileum[J]. Diabetes, 1996, 45: 434–439. DOI: 10.2337/diab.45.4.434
[12] KJEMS L L, HOLST J J, VOLUND A, MADSBAD S. The influence of GLP-1 on glucose-stimulated insulin secretion:effects on β-cell sensitivity in type 2 and nondiabetic subjects[J]. Diabetes, 2003, 52: 380–386. DOI: 10.2337/diabetes.52.2.380
[13] CUMMINGS D E, PURNELL J Q, FRAYO R S, SCHMIDOVA K, WISSE B E, WEIGLE D S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans[J]. Diabetes, 2001, 50: 1714–1719. DOI: 10.2337/diabetes.50.8.1714
[14] YADA T, DEZAKI K, SONE H, KOIZUMI M, DAMDINDORJ B, NAKATA M, et al. Ghrelin regulates insulin release and glycemia:physiological role and therapeutic potential[J]. Curr Diabetes Rev, 2008, 4: 18–23. DOI: 10.2174/157339908783502352
[15] DEZAKI K, DAMDINDORJ B, SONE H, DYACHOK O, TENGHOLM A, GYLFE E, et al. Ghrelin attenuates cAMP-PKA signaling to evoke insulinostatic cascade in islet β-cells[J]. Diabetes, 2011, 60: 2315–2324. DOI: 10.2337/db11-0368