第二军医大学学报  2017, Vol. 38 Issue (4): 458-462   PDF    
低氧诱导因子与绝经后骨质疏松研究进展
汪琳1,2, 李全1, 苏佳灿1,2     
1. 第二军医大学长海医院创伤骨科, 上海 200433;
2. 中韩生物医学工程中心, 上海 201802
摘要: 低氧诱导因子(hypoxia inducible factor,HIF)在细胞对低氧的反应中起着至关重要的作用,参与葡萄糖代谢、血管重建和红细胞生成等多种病理生理过程。越来越多的研究表明HIF对骨生成、骨吸收及血管生成具有非常重要的作用,而骨血管结构和功能退变与绝经后骨质疏松的发生和发展存在着密切的联系。本文从HIF在骨生成、骨吸收、血管生成中的作用出发,综述了HIF与绝经后骨质疏松的关系及其在绝经后骨质疏松治疗中的应用前景。
关键词: 低氧诱导因子     骨质疏松     骨生成     骨吸收     血管生成    
Hypoxia inducible factor in postmenopausal osteoporosis: recent progress
WANG Lin1,2, LI Quan1, SU Jia-can1,2     
1. Department of Orthopaedic Trauma, Changhai Hospital, Second Military Medical University, Shanghai 200433, China;
2. China-South Korea Biomedical Engineering Center, Shanghai 201802, China
Supported by International Cooperative Project of National Natural Science Foundation of China (8141101156) and Biological Medicine Project of Science and Technology Commission of Shanghai Municipality (15411950600).
Abstract: Hypoxia inducible factor (HIF) plays a key role in the cellular response to hypoxia, and is involved in a variety of pathological and physiological processes such as glucose metabolism, vascular remodeling and erythropoiesis. Growing research suggests that HIF has an important effect on osteogenesis, bone resorption and angiogenesis; while the deterioration of bone vascular structures and functions is closely related to the development and progression of postmenopausal osteoporosis. In this review, we summarized the relationship between HIF and postmenopausal osteoporosis based on the roles of HIF in osteogenesis, bone resorption and angiogenesis, hoping to evaluate its therapeutic prospect on postmenopausal osteoporosis.
Key words: hypoxia inducible factors     osteoporosis     osteogenesis     bone resorption     angiogenesis    

骨组织通过成骨作用与破骨作用保持着平衡,绝经后女性由于雌激素缺乏导致破骨细胞活性及骨吸收作用增强,骨平衡遭到破坏,易引发骨质疏松症[1~3]。骨质疏松症及其相关并发症严重威胁人类健康,带来了沉重的社会经济负担[4]。研究表明,骨血管结构和功能退变与绝经后骨质疏松的发生、发展存在密切的联系[5]。低氧诱导因子 (hypoxia inducible factor, HIF) 对于调节骨生成、骨吸收和血管生成具有重要的作用,本文对HIF与骨形成、骨吸收以及绝经后骨质疏松的相互关系进行了综述,并展望了HIF在绝经后骨质疏松症防治方面的应用前景。

1 HIF概述

HIF属于螺旋-环-螺旋家族的转录因子,由不同的α亚基 (HIF-1α、HIF-2α、HIF-3α) 和共同的β亚基组成。β亚基在常压状态下恒定表达,而α亚基在氧气浓度大于5%时被降解,且半衰期仅5 min左右;在α亚基激活区域的N末端包含一个氧依赖的降解区域 (oxygen-dependent degradation domain,ODD),该区域内含有一组特异性的脯氨酸残基,在HIF-1α内为Pro402、Pro546,而在HIF-2α内为Pro405、Pro531[6~8]。目前对于HIF-1α的相关研究较多,对HIF-2α也有一些研究[6]

HIF脯氨酰羟化酶 (prolyl hydroxylase domain-containing protein,PHD) 是催化HIF特异性脯氨酸残基羟基化的关键酶,在人类中共有3种PHD,分别是PHD1、PHD2、PHD3。在常氧条件下,PHD识别ODD内的脯氨酸残基,并使之羟基化,羟化的α亚基与肿瘤抑制蛋白VHL (von Hippel-Lindau tumour suppressor protein) 形成复合物,VHL具有E3泛素连接酶的活性,引导HIF-α被蛋白酶降解。PHD需要氧气、α-酮戊二酸及协同因子二价铁离子、抗坏血酸才能发挥作用。铁离子螯合剂去铁胺 (desferrioxamine,DFO)、氯化钴 (CoCl2) 及α-酮戊二酸类似物二甲基乙二酰甘氨酸 (dimethyloxalylglycine,DMOG) 能够分别通过螯合铁离子、竞争铁离子结合位点、竞争α-酮戊二酸等作用降低PHD活性,阻滞HIF-1α被降解;因此,在组织缺氧或DFO、CoCl2、DMOG存在的条件下,HIF-α在细胞质聚积,α亚基转位到细胞核与β亚基形成异二聚体,从而启动下游基因的转录。HIF-1α下游靶基因包括促红细胞生成素 (erythropoietin,EPO)、血管内皮生长因子 (vascular endothelial growth factor,VEGF) 等,目前研究发现,骨保护素 (osteoprotegerin, OPG) 基因也是其下游基因之一[9~13]

2 HIF与骨生成 2.1 HIF与成骨细胞

氧是细胞生存及新陈代谢必不可少的组成部分,在缺氧条件下成骨细胞不能产生足够的ATP维持细胞的基本功能,导致成骨细胞在增殖时不能获得充足的能量供应,因此表现为抑制现象,缺氧时间越长,线粒体产生ATP的量越少,增殖能力越低;并且,缺氧可导致成骨细胞凋亡,缺氧时间越长,成骨细胞凋亡越高[14]。骨质疏松发生与血管损伤导致的机体缺氧环境下成骨细胞活性受到抑制有关[15]。低氧也能引起机体适应性反应,在低氧条件下,HIF-1α表达迅速上调,从而对抗低氧诱导的细胞凋亡。Xu等[16]研究发现,低氧时成骨细胞MC3T3-E1活性减低,同时HIF-1α蛋白表达增加,MC3T3-E1细胞活性的降低能够通过增加HIF-1α的表达而缓解;通过小分子干扰RNA敲除HIF-1α后,成骨细胞活性进一步减低,而使成骨细胞表达HIF-1α后,成骨细胞凋亡减少。Wang等[17]将MC3T3-E1细胞分别在正常氧浓度 (20%) 和不同低氧浓度条件下孵育,发现10%或者5%浓度的低氧促进成骨细胞的增殖,1%或0%浓度的低氧引起成骨细胞凋亡;在10%浓度的低氧环境下HIF-1α表达增加,而在0%浓度的低氧环境下HIF-1α表达降低;进一步研究表明,低氧主要通过PI3K/Akt和MAPK/ERK通路激活HIF-1α,从而促进成骨细胞的增殖。

除影响成骨细胞活性及凋亡外,HIF-1α对于成骨细胞分化也具有一定程度的影响。Qu等[18]研究发现在成骨细胞分化过程中,成骨细胞系抑癌基因ING1b (inhibitor of growth 1b) 表达逐渐降低,通过转染使其在成骨细胞前体细胞C3H10T1/2中表达后,HIF-1α及过氧化物酶体增殖物激活受体 (peroxisome proliferator-activated receptor-β/δ, PPAR-β/δ) 的表达水平降低,成骨细胞分化降低,进一步研究发现ING1b对成骨细胞分化的作用主要依赖HIF-1α对PPAR-β/δ的抑制作用。

2.2 HIF偶联血管生成与骨生成

血管生成与骨生成是相互偶联的过程,大量研究已经表明,HIF通过调控VEGF的表达偶联骨生成和血管生成[18~20]。然而,最近研究发现,HIF还可通过其他多种方式参与骨生成与血管生成的调节。Kusumbe等[21]研究发现小鼠骨骼系统中存在两种特殊的毛细血管亚型,根据其形态、分子组成及功能可分为H型内皮和L型内皮,成骨细胞及其前体细胞主要分布在H型内皮细胞周围,而在L型内皮细胞周围出现较少,随着年龄的增长,成骨细胞前体细胞及H型内皮细胞的增殖减少,而L型内皮细胞无明显改变;进一步研究表明,H型内皮细胞是骨血管生成的调节剂,HIF-1α对其具有重要的调节作用,通过转基因方法使HIF-1α表达增高后,H型内皮及干骺端血管扩增,成骨细胞前体细胞增加,松质骨生成及骨生成增加[7]。因此,H型内皮可能是骨生成和血管生成的调节剂。

此外,机体对HIF的调节可能在血管生成和骨生成之间发挥着重要的作用。Weng等[22]研究发现敲除新生小鼠骨软骨祖细胞VHL基因后,成熟成骨细胞VHL的表达相应缺乏,而成骨细胞的增殖及其分化增强,VEGF表达及Smad1/5/8磷酸化作用增强;而敲除成年小鼠骨软骨祖细胞VHL基因后,骨量损失得到抑制;因此认为骨软骨祖细胞中的VHL参与调节骨重建过程中的骨生成与血管生成。PHD1、PHD2、PHD3是细胞氧的主要感应器,对于HIF-1α和HIF-2α的稳定性具有调节作用,Wu等[23]研究发现,敲除小鼠成骨细胞PHD1、PHD2、PHD3基因后,HIF靶基因EPOVEGF等表达增加,血管生成增加,骨生成增多;而单纯敲除成骨细胞PHD2、PHD3基因后,HIF靶基因EPOVEGF等基因表达增加程度有所减少,尽管松质骨量增加,但血管生成无明显增加。

3 HIF与骨吸收 3.1 HIF参与雌激素对破骨细胞的调节

细胞中HIF-1α主要受到氧水平的调节,而位于低氧骨膜区域的破骨细胞主要受到雌激素水平的调节。在低氧条件下,雌激素使破骨细胞中的HIF-1α处于不稳定的状态,易于分解;而切除小鼠卵巢后,雌激素的缺乏使破骨细胞HIF-1α趋向稳定,破骨细胞活性增加,骨吸收增加,骨量减少;将卵巢切除术后小鼠破骨细胞HIF-1α基因敲除后,破骨细胞活性及其介导的骨吸收作用减弱,骨量增加;进一步研究表明,雌激素主要通过和破骨细胞雌激素特异性受体 (estrogen receptor-α,ERα) 相互作用实现对破骨细胞活性的调节。口服HIF-1α的抑制剂2-甲氧雌二醇 (2-methoxyestradiol,2ME2) 后,破骨细胞活性受到抑制,骨吸收减少[24~25]

3.2 HIF参与成骨细胞与破骨细胞功能的偶联

成骨细胞主要通过RANK/RANKL/OPG信号系统调节破骨细胞的功能,这种调节作用对骨组织形态与功能稳定起着关键作用[26~27]。Wu等[23]研究发现敲除成骨细胞PHD2、PHD3基因后,VEGFOPG基因及RANKL mRNA的表达增加,血清中OPG水平较对照组高,松质骨量较对照组增加,但血管生成及血清中RANKL同对照组相比无明显差异;分别将这些成骨细胞与野生型鼠骨髓基质细胞共培养后,PHD2、PHD3基因敲除组破骨细胞生成明显减少,而骨生成作用与对照组无明显差异。进一步研究发现,通过持续稳定成骨细胞MC3T3-E1中的HIF-1α、HIF-2α,HIF靶基因VEGF表达增强,同时发现在HIF-2α稳定的成骨细胞中OPG mRNA表达明显增强,而在HIF-1α稳定的成骨细胞中VEGF mRNA表达增强、活性增加;动物实验进一步验证了上述结果。Shao等[28]研究发现,通过敲除成骨细胞VHL基因使HIF-1α表达增高后,OPG基因表达水平明显提高,骨量和骨密度增加,而敲除成骨细胞HIF-1α基因后,OPG基因表达水平明显降低,骨量和骨吸收减少;进一步研究表明,HIF-1α能够直接结合在OPG基因的上游,提高其表达水平,进而调控破骨细胞介导的骨吸收。

4 HIF与绝经后骨质疏松症

绝经后骨质疏松症是指绝经后妇女由于卵巢功能衰退,雌激素水平下降,并伴随卵泡刺激素水平上升,从而在骨代谢过程中,骨吸收大于骨形成,出现骨量减少和骨微观结构的退化[29~30]。HIF-α影响骨形成及骨吸收,并且参与雌激素对破骨细胞的调节[24~25],近年来其对绝经后骨质疏松症的作用备受关注。Zhao等[31]研究发现破坏VHL蛋白使成骨细胞HIF表达增高后切除小鼠卵巢,骨组织结构及机械性能无明显改变,进一步研究表明其作用机制是抑制了雌激素缺乏导致的骨量减少及骨髓中血管的减少。Liu等[32]使用PHD抑制剂DFO和DMOG予切除卵巢小鼠进行12周注射后,小鼠骨密度增加、骨微结构改善,机械强度增强,血管生成增多。上述研究提示HIF在绝经后骨质疏松症的治疗中具有广阔的应用前景。

绝经后骨质疏松症患者的骨折风险大大增加。一旦发生骨折,康复过程涉及骨折和骨质疏松两方面的生理进程。成骨细胞生成及血管生成因子如VEGF的减少是骨质疏松性骨折难以治愈的原因[33~34],因此,促进骨质疏松性骨折愈合的基本策略即是促进骨生成和血管生成[35~36]。Li等[34]对比切除卵巢组和相同年龄组正常对照小鼠的骨折愈合过程,发现在骨折后2周和4周切除卵巢组小鼠较对照组小鼠的骨密度、骨痂形成及矿化、骨痂组织中血管生成、生物力学参数及HIF-1α明显降低,进一步研究发现HIF-1α对于骨折愈合具有十分重要的作用,而骨质疏松性骨折由于较低的HIF-1α而导致骨折愈合更加困难。Jia等[37]研究发现在骨质疏松性骨折中HIF-1α及VEGF表达水平降低,而DFO能够上调骨髓间充质干细胞VEGF的表达水平,但对细胞增殖无明显影响,通过将DFO负载于聚乳酸 (lactic-co-glycolic acid,PLGA) 支架中植入切除卵巢骨质疏松小鼠股骨骨缺损中,骨质疏松导致的骨生成及血管生成减少得到逆转,同时促进了骨质疏松性骨缺损的愈合。

5 小结

HIF在骨生成、骨吸收、血管生成等方面均起到重要的调节作用,与绝经后骨质疏松的发生和发展关系密切,随着对其研究的不断深入,将会为绝经后骨质疏松及骨质疏松性骨折的治疗提供新的策略。

参考文献
[1] NELSON E R, WARDELL S E, MCDONNELL D P. The molecular mechanisms underlying the pharmacological actions of estrogens, SERMs and oxysterols:implications for the treatment and prevention of osteoporosis[J]. Bone, 2013, 53: 42–50. DOI: 10.1016/j.bone.2012.11.011
[2] MANOLAGAS S C. Birth and death of bone cells:basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis[J]. Endocr Rev, 2000, 21: 115–137.
[3] ANDERSEN T L, SONDERGAARD T E, SKORZYNSKA K E, DAGNAES-HANSEN F, PLESNER T L, HAUGE E M, et al. A physical mechanism for coupling bone resorption and formation in adult human bone[J]. Am J Pathol, 2009, 174: 239–247. DOI: 10.2353/ajpath.2009.080627
[4] QU B, MA Y, YAN M, WU H H, FAN L, LIAO D F, et al. The economic burden of fracture patients with osteoporosis in western China[J]. Osteoporos Int, 2014, 25: 1853–1860. DOI: 10.1007/s00198-014-2699-0
[5] SANADA M, TAGUCHI A, HIGASHI Y, TSUDA M, KODAMA I, YOSHIZUMI M, et al. Forearm endothelial function and bone mineral loss in postmenopausal women[J]. Atherosclerosis, 2004, 176: 387–392. DOI: 10.1016/j.atherosclerosis.2004.05.021
[6] SHOMENTO S H, WAN C, CAO X, FAUGERE M C, BOUXSEIN M L, CLEMENS T L, et al. Hypoxia-inducible factors 1α and 2α exert both distinct and overlapping functions in long bone development[J]. J Cell Biochem, 2010, 109: 196–204. DOI: 10.1002/jcb.22396
[7] WAN C, SHAO J, GILBERT S R, RIDDLE R C, LONG F, JOHNSON R S, et al. Role of HIF-1α in skeletal development[J]. Ann N Y Acad Sci, 2010, 1192: 322–326. DOI: 10.1111/j.1749-6632.2009.05238.x
[8] WANG Y, WAN C, GILBERT S R, CLEMENS T L. Oxygen sensing and osteogenesis[J]. Ann N Y Acad Sci, 2007, 1117: 1–11. DOI: 10.1196/annals.1402.049
[9] JAAKKOLA P, MOLE D R, TIAN Y M, WILSON M I, GIELBERT J, GASKELL S J, et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation[J]. Science, 2001, 292: 468–472. DOI: 10.1126/science.1059796
[10] MAXWELL P H, WIESENER M S, CHANG G W, CLIFFORD S C, VAUX E C, COCKMAN M E, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis[J]. Nature, 1999, 399: 271–275. DOI: 10.1038/20459
[11] KALLIO P J, WILSON W J, O'BRIEN S, MAKINO Y, POELLINGER L. Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin-proteasome pathway[J]. J Biol Chem, 1999, 274: 6519–6525. DOI: 10.1074/jbc.274.10.6519
[12] HSIEH T P, SHEU S Y, SUN J S, CHEN M H. Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-κB regulated HIF-1α and PGE2 synthesis[J]. Phytomedicine, 2011, 18(2/3): 176–185.
[13] YU X J, XIAO C J, DU Y M, LIU S, DU Y, LI S. Effect of hypoxia on the expression of RANKL/OPG in human periodontal ligament cells in vitro[J]. Int J Clin Exp Pathol, 2015, 8: 12929–12935.
[14] LEIJTEN J C, MOREIRA TEIXEIRA L S, LANDMAN E B, VAN BLITTERSWIJK C A, KARPERIEN M. Hypoxia inhibits hypertrophic differentiation and endochondral ossification in explanted tibiae[J/OL]. PLoS One, 2012, 7:e49896. doi:10.1371/journal.pone.0049896.
[15] 陈晓, 苏佳灿. 骨质疏松研究热点:骨髓间充质干细胞分化命运[J]. 第二军医大学学报, 2017, 38: 397–404.
CHEN X, SU J C. New focus on osteoporosis:differentiation fate of bone marrow-derived mesenchymal stem cells[J]. Acad J Sec Mil Med Univ, 2017, 38: 397–404.
[16] XU G, XUE M, WANG H, XIANG C. Hypoxia-inducible factor-1α antagonizes the hypoxia-mediated osteoblast cell viability reduction by inhibiting apoptosis[J]. Exp Ther Med, 2015, 9: 1801–1806.
[17] WANG L, WU B, ZHANG Y, TIAN Z. Hypoxia promotes the proliferation of MC3T3-E1 cells via the hypoxia-inducible factor-1α signaling pathway[J]. Mol Med Rep, 2015, 12: 5267–5273.
[18] QU B, HONG Z, GONG K, SHENG J, WU H H, DENG S L, et al. Inhibitors of growth 1b suppresses peroxisome proliferator-activated receptor-β/δ expression through downregulation of hypoxia-inducible factor 1α in osteoblast differentiation[J]. DNA Cell Biol, 2016, 35: 184–191. DOI: 10.1089/dna.2015.3020
[19] MAMEDE A C, ABRANTES A M, PEDROSA L, CASALTA-LOPES J E, PIRES A S, TEIXO R J, et al. Beyond the limits of oxygen:effects of hypoxia in a hormone-independent prostate cancer cell line[J]. ISRN Oncol, 2013, 2013: 918207.
[20] LIU X D, CAI F, LIU L, ZHANG Y, YANG A L. MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast differentiation[J]. Biol Chem, 2015, 396: 339–347.
[21] KUSUMBE A P, RAMASAMY S K, ADAMS R H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014, 507: 323–328. DOI: 10.1038/nature13145
[22] WENG T, XIE Y, HUANG J, LUO F, YI L, HE Q, et al. Inactivation of Vhl in osteochondral progenitor cells causes high bone mass phenotype and protects against age-related bone loss in adult mice[J]. J Bone Miner Res, 2014, 29: 820–829. DOI: 10.1002/jbmr.2087
[23] WU C, RANKIN E B, CASTELLINI L, ALCUDIA J F, LAGORY E L, ANDERSEN R, et al. Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin[J]. Genes Dev, 2015, 29: 817–831. DOI: 10.1101/gad.255000.114
[24] MIYAUCHI Y, SATO Y, KOBAYASHI T, YOSHIDA S, MORI T, KANAGAWA H, et al. HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis[J]. Proc Natl Acad Sci USA, 2013, 110: 16568–16573. DOI: 10.1073/pnas.1308755110
[25] MABJEESH N J, ESCUIN D, LAVALLEE T M, PRIBLUDA V S, SWARTZ G M, JOHNSON M S, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF[J]. Cancer Cell, 2003, 3: 363–375. DOI: 10.1016/S1535-6108(03)00077-1
[26] WOLSKI H, DREWS K, BOGACZ A, KAMIŃSKI A, BARLIK M, BARTKOWIAK-WIECZOREK J, et al. The RANKL/RANK/OPG signal trail:significance of genetic polymorphisms in the etiology of postmenopausal osteoporosis[J]. Ginekol Pol, 2016, 87: 347–352. DOI: 10.5603/GP.2016.0014
[27] MENCEJ-BEDRAČ S, ZUPAN J, MLAKAR S J, ZAVRATNIK A, PREŽ ELJ J, MARC J. Raloxifene pharmacodynamics is influenced by genetic variants in the RANKL/RANK/OPG system and in the Wnt signaling pathway[J]. Drug Metabol Drug Interact, 2014, 29: 111–114.
[28] SHAO J, ZHANG Y, YANG T, QI J, ZHANG L, DENG L. HIF-1α disturbs osteoblasts and osteoclasts coupling in bone remodeling by up-regulating OPG expression[J]. In Vitro Cell Dev Biol Anim, 2015, 51: 808–814. DOI: 10.1007/s11626-015-9895-x
[29] RIGGS B L, KHOSLA S, MELTON L J 3rd. Sex steroids and the construction and conservation of the adult skeleton[J]. Endocr Rev, 2002, 23: 279–302. DOI: 10.1210/edrv.23.3.0465
[30] ALMEIDA M, LAURENT M R, DUBOIS V, CLAESSENS F, O'BRIEN C A, BOUILLON R, et al. Estrogens and androgens in skeletal physiology and pathophysiology[J]. Physiol Rev, 2017, 97: 135–187. DOI: 10.1152/physrev.00033.2015
[31] ZHAO Q, SHEN X, ZHANG W, ZHU G, QI J, DENG L. Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss[J]. Bone, 2012, 50: 763–770. DOI: 10.1016/j.bone.2011.12.003
[32] LIU X, TU Y, ZHANG L, QI J, MA T, DENG L. Prolyl hydroxylase inhibitors protect from the bone loss in ovariectomy rats by increasing bone vascularity[J]. Cell Biochem Biophys, 2014, 69: 141–149. DOI: 10.1007/s12013-013-9780-8
[33] DING W G, ZHANG Z M, ZHANG Y H, JIANG S D, JIANG L S, DAI L Y. Changes of substance P during fracture healing in ovariectomized mice[J]. Regul Pept, 2010, 159(1/2/3): 28–34.
[34] LI W, WANG K, LIU Z, DING W. HIF-1α change in serum and callus during fracture healing in ovariectomized mice[J]. Int J Clin Exp Pathol, 2015, 8: 117–126.
[35] ZHANG Y, CHENG N, MIRON R, SHI B, CHENG X. Delivery of PDGF-B and BMP-7 by mesoporous bioglass/silk fibrin scaffolds for the repair of osteoporotic defects[J]. Biomaterials, 2012, 33: 6698–6708. DOI: 10.1016/j.biomaterials.2012.06.021
[36] WEI L, KE J, PRASADAM I, MIRON R J, LIN S, XIAO Y, et al. A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects[J]. Osteoporos Int, 2014, 25: 2089–2096. DOI: 10.1007/s00198-014-2735-0
[37] JIA P, CHEN H, KANG H, QI J, ZHAO P, JIANG M, et al. Deferoxamine released from poly (lactic-co-glycolic acid) promotes healing of osteoporotic bone defect via enhanced angiogenesis and osteogenesis[J]. J Biomed Mater Res A, 2016, 104: 2515–2527. DOI: 10.1002/jbm.a.35793