Wilms瘤(Wilms tumor, WT)是儿童最常见的肾脏恶性肿瘤,发病率约为1/10万,在儿童原发腹腔恶性肿瘤中居第2位,在所有儿童恶性肿瘤中居第5位,占儿童肾脏肿瘤的95%[1]。随着外科手术、放化疗等综合治疗水平的提高,WT的总体生存率较以往有较大提高,达到90%[2],即使发生远处转移,其10年生存率也可达76.6%[3]。成人WT常因误诊和分期分级不准确而延误治疗,因此预后较儿童差[4]。儿童WT患者再发恶性肿瘤的概率较一般人群高,但是与其他儿童恶性肿瘤相比,其增加的危险度相对较小[5]。儿童WT的发病和预后在不同种族之间存在一定差异[6],如黑人儿童较白人儿童更易患WT,而西班牙裔患儿预后较其他种族差[7-8]。
肿瘤的发生、发展伴随着分子层面的改变,尽管目前的组织学分型可以在一定程度上帮助指导儿童WT的治疗和预后判断,但加深对肿瘤分子层面的认识能够使我们更好地了解肿瘤的生物学特性,通过分子层面的改变对不同肿瘤进行区分,实现更准确的分子分型[9]。目前已经发现一些分子标志物可以作为WT分子分型的标志物,帮助指导肿瘤的诊断、治疗及预后判断。本文就儿童WT在分子分型标志物研究方面的进展作一综述。
1 WT中基因突变作为WT分子分型标志物在WT中大约有23%的肿瘤可以检测到常见的一些突变,如Wilms tumor suppressor gene 1 (WT1,12%)、WTX(32%)、CTNNB1(15%)、TP53(5%)[10]、DROSHA(12%)[11]、DGCR8(15%)[12]、FBXW7(4%)[13]、DIS3L2(5%)[14]等。其中有一部分WT同时存在多种突变。
目前研究最为广泛的是WT1基因突变。WT1最早是在WT的研究中被发现,它可以通过改变上皮-间质转化这一过程促进疾病进展[15],进一步的研究发现其与白血病[16]和男性不育[17]等都有一定关系。WT1基因8号外显子的一个无义突变可能会导致双侧WT发生率的增加[18]。突变的WT1可以通过p53信号途径促进细胞增殖,从而促进WT的恶性进展[19]。Maschietto等[20]研究发现TP53突变可以作为有间变分化的WT患者危险分级的分子标志物,存在该突变的患者复发和病死率均较高。p53的失活或突变还与多药耐药相关蛋白(multidrug resistant-associated proteins, MRPs)的表达有关,野生型p53和MRP1蛋白的表达检测可能对预后的判断和选择治疗方式提供帮助[21]。
在WT中,其他突变的研究也取得一定进展。Astuti等[14]研究发现DIS3L2的种系突变会导致患WT的风险增加。Williams等[22]发现一个体细胞P44L的突变和特异性的DNA低甲基化会导致MYCN的过表达,而MYCN高表达的患者肿瘤间变成分较高,预后也较差。
测序技术的发展为发现WT中的新型突变提供了便利。Hanks等[23]在35个WT家族中发现了CTR9基因的突变,但是在对照的1 000例人群当中却未发现该突变,显示该基因可能会降低WT的易患性,并可能是一个WT的新抑癌基因。
2 MiRNA及其相关基因在WT诊断和分子分型中的应用MiRNA是真核生物体内一类由较长的初级转录物经过一系列核酸酶的剪切加工而产生的、具有内源性的调控功能的非编码RNA,长度约20~25个核苷酸,可以特异性地沉默细胞内一些蛋白的表达,从而发挥相应的生物学作用,而miRNA本身的转录和行使功能也受到其他因素的影响[24-25]。MiRNA在正常的肾脏发育和肿瘤进展中都发挥了重要的作用,会影响很多信号通路的改变,为肿瘤治疗提供新的干预靶点[26-28]。
目前已有研究发现一些miRNA在WT的恶性进展中发挥重要作用。Koller等[29-30]发现WT中miR-204的低表达导致癌基因MEIS1的表达上升,miR-23a的低表达导致癌基因HOXB4的表达上升,促进肿瘤恶性进展。Cao等[31]发现转录因子Stat3可以通过上调miR-370的表达抑制抑癌基因WTX的表达,促进肿瘤恶性进展。
一些特异性影响miRNA生物学功能的信号通路的突变会影响miRNA形成相关基因(microRNA processing genes, miRNAPGs)的改变, 从而影响组织中miRNA的表达谱,进而使下游信号通路发生改变[11]。在miRNA形成过程中的两个重要的基因DROSHA和DGCR8的突变会明显改变WT中的miRNA表达谱,与较差的预后相关[32-33]。Torrezan等[11]研究发现,miRNA形成过程中的关键基因DROSHA RNase Ⅲb结构域中E1147K的突变,会影响其Mg2+离子结合区域的晶体结构,从而影响miRNA的形成,从而导致一系列miRNA表达的下降。在预后较好的WT中,最常见突变就发生在SIX1/2(7%)和miRNAPGs基因DROSHA和DGCR8中(15%),在miRNAPGs突变的肿瘤中,成熟的Let-7a和miR-200家族(可以促进上皮-间质转化)的表达下降,let-7家族可以调节MYCN、LIN28等WT中癌基因的表达,而由于其表达下降,导致组织中未分化的肉瘤成分较多;SIX和miRNAPG均发生突变的患者,复发率和病死率都较高[12]。
此外,在WT中,其他与miRNA形成相关的基因如DICER1、XPO5和TARBP2,在WT也存在突变的情况,但其生物学意义仍需进一步明确[11]。
组织中miRNA表达谱的变化可以作为WT化疗反应预测的指标,在穿刺组织中这些指标的表达量可以帮助临床医师在化疗前对患者进行危险分级,并指导合适的治疗方案[34]。血液中的miRNA表达谱检测更加无创,临床应用也更为方便。Murray等[35]研究发现实体肿瘤患儿血清中miRNA表达谱有显著差异,其中miR-129-5p和miR-143-3p可以作为WT的潜在诊断标志物。Ludwig等[36]研究发现了14个在WT和正常对照血清中差异表达的miRNA, 其中miR-100-5p和miR-130b-3p可以作为WT潜在的生物标志物,并且其诊断效能不受WT病理学亚型和血清收集方式的影响。
3 染色体变异在WT分子分型和治疗预后判断中的应用目前不少学者对于WT中存在的染色体变异与患者治疗效果和临床预后进行了深入研究,其中很多变异,尤其是在癌基因或抑癌基因区域的变异,对WT的治疗和预后判断都有潜在的作用[37]。其中很多研究集中在1p和16q的杂合性缺失(loss of heterozygosity, LOH)。Messahel等[38]通过对426例分化良好的WT患者的预后分析发现,无论是接受何种治疗方式,16q LOH的患者复发和病死的风险都较高。进一步的研究指出,在良好组织型的WT中,1p和16q共同出现LOH的患者预后明显较差,3年总生存率和无进展生存率仅为75%和50%,而1p和16q LOH双阴性的患者3年总生存率和无进展生存率可以达到97%和100%[39]。因此,1p和16q双缺失和肿瘤分期可以作为肿瘤预后的独立判断指标[40]。
此外还有一些其他区域的染色体缺失受到学者的关注。Wittmann等[41]对225例WT的研究发现,WT中发生11q和16q的LOH,其出现间变样改变和复发的概率更高,患者预后较差,提示11q和16q的LOH应采用不同的治疗方式,以改善患者预后。11p的LOH也是WT中常见的染色体突变,其不同区域的缺失在不同人群中也存在一定差异,进一步提示WT发病的遗传学差异[42]。Perlman等[43]研究发现在未接受化疗的极低危WT患者(肿瘤分化类型良好,质量小于550 g,患儿小于24个月)中,出现WT1和(或)11p15 LOH突变者[37],复发的风险较高,这也为指导患儿术后化疗提供了危险分级的新指标。
同时发生在1q、2p、3p、4p、7p、7q和8号染色体区域的LOH也有相应研究,但其临床意义仍需要进一步在大样本人群中进行探索[37]。一些存在于染色体上的微缺失,如9q22.3的微缺失[44],也会导致肿瘤的发病风险增加。
除了染色体缺失以外,还存在一些染色体获得型的突变。如在WT中1q的获得可作为WT预后较差的标志物[45-46],但在SIOP2001/GPOH试验中其判断预后的价值却十分有限[47],表明该染色体获得对WT预后的影响仍需要在大样本中进一步验证。
4 表观遗传学改变肿瘤的发生和发展常常涉及很多表观遗传学层面的改变,影响癌基因或抑癌基因的表达,进而对下游信号通路发生影响,促进或抑制肿瘤进展。Satoh等[48]发现,WT中表观遗传学的改变会影响11p13上WT1抑癌基因的表达,从而抑制其发挥抑癌基因的作用。在WT研究的热点区域16q上的WWOX抑癌基因可以发挥调控细胞凋亡和细胞周期的作用,而其表达受到其启动子区域甲基化的影响,并帮助判断肿瘤预后[49]。Ohshima等[50]通过对171例WT样本的RASSF1A基因启动子区域的甲基化定量,发现其启动子区域发生甲基化的患者无疾病进展生存期和总生存期都明显偏低,并且其甲基化在大龄患儿和高级别患儿中更加常见,可以作为一个判断预后的新的生物学标志物。
此外,DNA甲基化的改变还会影响一些印迹基因的表达,如IGF2、NNAT、MEST等[51-52]。而其中一些如IGF2可能作为未来治疗WT药物的研究靶点[53]。
5 液体活检技术在WT分子分型中的应用展望肿瘤的诊断和治疗需要依赖明确的病理诊断,而传统的手术或活检会给患者带来一定痛苦并可能引起相关并发症,而液体活检技术可以通过检测患者的血液、尿液等体液中的循环肿瘤细胞、循环DNA或其他分子标志物对肿瘤病情进行监测和判断。目前已经有一些研究对此进行了初步探索[54]。Charlton等[55]通过对22对WT和周围正常组织的甲基化测序,发现3个在WT中高甲基化的差异甲基化区域(differentially methylated region, DMR),它们可以准确地区分WT和正常组织,准确率几乎达100%,并且其中一个6p21.32的DMR可以在血液中检测到,并在正常和WT人群间以及在不同治疗阶段有差异,显示出血液中循环肿瘤DNA(ctDNA)作为监测病情变化、判断预后的潜能。但由于肿瘤多灶性和在治疗过程中肿瘤发生的变异和进展,往往难以通过单一指标来对肿瘤进行液体活检的监测,未来可能需要整合多个指标联合应用,增加液体活检技术在临床应用的准确性和实用性。
6 靶向治疗在WT中的应用展望虽然目前随着医疗技术的发展,WT的5年及10年生存率有了很大提升[2-3],但是术后患儿再次复发及远处转移的风险依旧居高不下,且患儿经受极大痛苦。靶向治疗作为目前医疗发展的前沿和热点,在WT中也有不少相关的研究。如靶向IGF2信号通路和甲基化药物可能未来应用在WT的治疗当中[53],Pode-Shakked等[56]通过抗FZD7的单抗对WT产生了较好的抑制作用,Maturu等[57]发现COX-2抑制剂可以通过改变肿瘤周围免疫抑制相关微环境,从而起到抑制肿瘤的作用。此外,针对WT中重要的分子WT1的免疫治疗在其他肿瘤中也初现曙光[58-59],为其在儿童WT中的应用提供了可能。
靶向治疗的发展以及精准治疗的进步为今后WT患儿的治疗及良好预后带来了福音,也为今后的研究指明了方向。
[1] | SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2015[J]. CA Cancer J Clin, 2015, 65: 5–29. DOI: 10.3322/caac.21254 |
[2] | DOME J S, GRAF N, GELLER J I, FERNANDEZ C V, MULLEN E A, SPREAFICO F, et al. Advances in Wilms tumor treatment and biology:progress through international collaboration[J]. J Clin Oncol, 2015, 33: 2999–3007. DOI: 10.1200/JCO.2015.62.1888 |
[3] | PERKINS S M, SHINOHARA E T, DEWEES T, FRANGOUL H. Outcome for children with metastatic solid tumors over the last four decades[J/OL]. PLoS One, 2014, 9:e100396. doi:10.1371/journal.pone.0100396. |
[4] | ALI A N, DIAZ R, SHU H K, PAULINO A C, ESIASHVILI N. A Surveillance, Epidemiology and End Results (SEER) program comparison of adult and pediatric Wilms' tumor[J]. Cancer, 2012, 118: 2541–2551. DOI: 10.1002/cncr.26554 |
[5] | LEE J S, PADILLA B, DUBOIS S G, OATES A, BOSCARDIN J, GOLDSBY R E. Second malignant neoplasms among children, adolescents and young adults with Wilms tumor[J]. Pediatr Blood Cancer, 2015, 62: 1259–1264. DOI: 10.1002/pbc.v62.7 |
[6] | JOHNSON K A, APLENC R, BAGATELL R. Survival by race among children with extracranial solid tumors in the United States between 1985 and 2005[J]. Pediatr Blood Cancer, 2011, 56: 425–431. DOI: 10.1002/pbc.22825 |
[7] | AXT J, MURPHY A J, SEELEY E H, MARTIN C A, TAYLOR C, PIERCE J, et al. Race disparities in Wilms tumor incidence and biology[J]. J Surg Res, 2011, 170: 112–119. DOI: 10.1016/j.jss.2011.03.011 |
[8] | AMIRIAN E S. The role of Hispanic ethnicity in pediatric Wilms' tumor survival[J]. Pediatr Hematol Oncol, 2013, 30: 317–327. DOI: 10.3109/08880018.2013.775618 |
[9] | SREDNI S T, GADD S, HUANG C C, BRESLOW N, GRUNDY P, GREEN D M, et al. Subsets of very low risk Wilms tumor show distinctive gene expression, histologic, and clinical features[J]. Clin Cancer Res, 2009, 15: 6800–6809. DOI: 10.1158/1078-0432.CCR-09-0312 |
[10] | SCOTT R H, MURRAY A, BASKCOMB L, TURNBULL C, LOVEDAY C, AL-SAADI R, et al. Stratification of Wilms tumor by genetic and epigenetic analysis[J]. Oncotarget, 2012, 3: 327–335. DOI: 10.18632/oncotarget.v3i3 |
[11] | TORREZAN G T, FERREIRA E N, NAKAHATA A M, BARROS B D, CASTRO M T, CORREA B R, et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour[J]. Nat Commun, 2014, 5: 4039. |
[12] | WALZ A L, OOMS A, GADD S, GERHARD D S, SMITH M A, GUIDRY AUVIL J M, et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors[J]. Cancer Cell, 2015, 27: 286–297. DOI: 10.1016/j.ccell.2015.01.003 |
[13] | WILLIAMS R D, AL-SAADI R, CHAGTAI T, POPOV S, MESSAHEL B, SEBIRE N, et al. Subtype-specific FBXW7 mutation and MYCN copy number gain in Wilms' tumor[J]. Clin Cancer Res, 2010, 16: 2036–2045. DOI: 10.1158/1078-0432.CCR-09-2890 |
[14] | ASTUTI D, MORRIS M R, COOPER W N, STAALS R H, WAKE N C, FEWS G A, et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility[J]. Nat Genet, 2012, 44: 277–284. DOI: 10.1038/ng.1071 |
[15] | MILLER-HODGES E, HOHENSTEIN P. WT1 in disease:shifting the epithelial-mesenchymal balance[J]. J Pathol, 2012, 226: 229–240. DOI: 10.1002/path.v226.2 |
[16] | SANO H, SHIMADA A, TABUCHI K, TAKI T, MURATA C, PARK M J, et al. WT1 mutation in pediatric patients with acute myeloid leukemia:a report from the Japanese Childhood AML Cooperative Study Group[J]. Int J Hematol, 2013, 98: 437–445. DOI: 10.1007/s12185-013-1409-6 |
[17] | SEABRA C M, QUENTAL S, LIMA A C, CARVALHO F, GONCALVES J, FERNANDES S, et al. The mutational spectrum of WT1 in male infertility[J]. J Urol, 2015, 193: 1709–1715. DOI: 10.1016/j.juro.2014.11.004 |
[18] | HU M, FLETCHER J, McCAHON E, CATCHPOOLE D, ZHANG G Y, WANG Y M, et al. Bilateral Wilms tumor and early presentation in pediatric patients is associated with the truncation of the Wilms tumor 1 protein[J]. J Pediatr, 2013, 163: 224–229. DOI: 10.1016/j.jpeds.2012.12.080 |
[19] | BUSCH M, SCHWINDT H, BRANDT A, BEIER M, GORLDT N, ROMANIUK P, et al. Classification of a frameshift/extended and a stop mutation in WT1 as gain-of-function mutations that activate cell cycle genes and promote Wilms tumour cell proliferation[J]. Hum Mol Genet, 2014, 23: 3958–3974. DOI: 10.1093/hmg/ddu111 |
[20] | MASCHIETTO M, WILLIAMS R D, CHAGTAI T, POPOV S D, SEBIRE N J, VUJANIC G, et al. TP53 mutational status is a potential marker for risk stratification in Wilms tumour with diffuse anaplasia[J/OL]. PLoS One, 2014, 9:e109924. doi:10.1371/journal.pone.0109924. |
[21] | HODOROVÁ I, RYBÁROVÁ S, VECANOVÁ J, SOLÁR P, PLANK L, MIHALIK J. Relation between expression pattern of wild-type p53 and multidrug resistance proteins in human nephroblastomas[J]. Acta Histochem, 2013, 115: 273–278. DOI: 10.1016/j.acthis.2012.08.001 |
[22] | WILLIAMS R D, CHAGTAI T, ALCAIDE-GERMAN M, APPS J, WEGERT J, POPOV S, et al. Multiple mechanisms of MYCN dysregulation in Wilms tumour[J]. Oncotarget, 2015, 6: 7232–7243. DOI: 10.18632/oncotarget.v6i9 |
[23] | HANKS S, PERDEAUX E R, SEAL S, RUARK E, MAHAMDALLIE S S, MURRAY A, et al. Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour[J]. Nat Commun, 2014, 5: 4398. |
[24] | LI Z, RANA T M. Therapeutic targeting of microRNAs:current status and future challenges[J]. Nat Rev Drug Discov, 2014, 13: 622–638. DOI: 10.1038/nrd4359 |
[25] | HAYES J, PERUZZI P P, LAWLER S. MicroRNAs in cancer:biomarkers, functions and therapy[J]. Trends Mol Med, 2014, 20: 460–469. DOI: 10.1016/j.molmed.2014.06.005 |
[26] | URBACH A, YERMALOVICH A, ZHANG J, SPINA C S, ZHU H, PEREZ-ATAYDE A R, et al. Lin28 sustains early renal progenitors and induces Wilms tumor[J]. Genes Dev, 2014, 28: 971–982. DOI: 10.1101/gad.237149.113 |
[27] | HOHENSTEIN P, PRITCHARD-JONES K, CHARLTON J. The yin and yang of kidney development and Wilms' tumors[J]. Genes Dev, 2015, 29: 467–482. DOI: 10.1101/gad.256396.114 |
[28] | SAAL S, HARVEY S J. MicroRNAs and the kidney:coming of age[J]. Curr Opin Nephrol Hypertens, 2009, 18: 317–323. DOI: 10.1097/MNH.0b013e32832c9da2 |
[29] | KOLLER K, PICHLER M, KOCH K, ZANDL M, STIEGELBAUER V, LEUSCHNER I, et al. Nephroblastomas show low expression of microR-204 and high expression of its target, the oncogenic transcription factor MEIS1[J]. Pediatr Dev Pathol, 2014, 17: 169–175. DOI: 10.2350/13-01-1288-OA.1 |
[30] | KOLLER K, DAS S, LEUSCHNER I, KORBELIUS M, HOEFLER G, GUERTL B. Identification of the transcription factor HOXB4 as a novel target of miR-23a[J]. Genes Chromosomes Cancer, 2013, 52: 709–715. DOI: 10.1002/gcc.v52.8 |
[31] | CAO X, LIU D, YAN X, ZHANG Y, YUAN L, ZHANG T, et al. Stat3 inhibits WTX expression through up-regulation of microRNA-370 in Wilms tumor[J]. FEBS Lett, 2013, 587: 639–644. DOI: 10.1016/j.febslet.2013.01.012 |
[32] | KLEIN S, LEE H, GHAHREMANI S, KEMPERT P, ISCHANDER M, TEITELL M A, et al. Expanding the phenotype of mutations in DICER1:mosaic missense mutations in the RNase Ⅲb domain of DICER1 cause GLOW syndrome[J]. J Med Genet, 2014, 51: 294–302. DOI: 10.1136/jmedgenet-2013-101943 |
[33] | WEGERT J, ISHAQUE N, VARDAPOUR R, GEORG C, GU Z, BIEG M, et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors[J]. Cancer Cell, 2015, 27: 298–311. DOI: 10.1016/j.ccell.2015.01.002 |
[34] | WATSON J A, BRYAN K, WILLIAMS R, POPOV S, VUJANIC G, COULOMB A, et al. MiRNA profiles as a predictor of chemoresponsiveness in Wilms' tumor blastema[J/OL]. PLoS One, 2013, 8:e53417. doi:10.1371/journal.pone.0053417. |
[35] | MURRAY M J, RABY K L, SAINI H K, BAILEY S, WOOL S V, TUNNACLIFFE J M, et al. Solid tumors of childhood display specific serum microRNA profiles[J]. Cancer Epidemiol Biomarkers Prev, 2015, 24: 350–360. DOI: 10.1158/1055-9965.EPI-14-0669 |
[36] | LUDWIG N, NOURKAMI-TUTDIBI N, BACKES C, LENHOF H P, GRAF N, KELLER A, et al. Circulating serum miRNAs as potential biomarkers for nephroblastoma[J]. Pediatr Blood Cancer, 2015, 62: 1360–1367. DOI: 10.1002/pbc.v62.8 |
[37] | SINGH N, SAHU D K, GOEL M, KANT R, GUPTA D K. Retrospective analysis of FFPE based Wilms' tumor samples through copy number and somatic mutation related molecular inversion probe based array[J]. Gene, 2015, 565: 295–308. DOI: 10.1016/j.gene.2015.04.051 |
[38] | MESSAHEL B, WILLIAMS R, RIDOLFI A, A'HERN R, WARREN W, TINWORTH L, et al. Allele loss at 16q defines poorer prognosis Wilms tumour irrespective of treatment approach in the UKW1-3 clinical trials:a Children's Cancer and Leukaemia Group (CCLG) Study[J]. Eur J Cancer, 2009, 45: 819–826. DOI: 10.1016/j.ejca.2009.01.005 |
[39] | FAWZY M, BAHANASSY A, SAMIR A, HAFEZ H. Profiling loss of heterozygosity patterns in a cohort of favorable histology nephroblastoma Egyptian patients:what is consistent with the rest of the world[J]. Pediatr Hematol Oncol, 2015: 1–9. |
[40] | GRUNDY P E, BRESLOW N E, LI S, PERLMAN E, BECKWITH J B, RITCHEY M L, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor:a report from the National Wilms Tumor Study Group[J]. J Clin Oncol, 2005, 23: 7312–7321. DOI: 10.1200/JCO.2005.01.2799 |
[41] | WITTMANN S, ZIRN B, ALKASSAR M, AMBROS P, GRAF N, GESSLER M. Loss of 11q and 16q in Wilms tumors is associated with anaplasia, tumor recurrence, and poor prognosis[J]. Genes Chromosomes Cancer, 2007, 46: 163–170. DOI: 10.1002/gcc.v46:2 |
[42] | SIGAMANI E, WARI M N, IYER V K, AGARWALA S, SHARMA A, BAKHSHI S, et al. Loss of heterozygosity at 11p13 and 11p15 in Wilms tumor:a study of 22 cases from India[J]. Pediatr Surg Int, 2013, 29: 223–227. DOI: 10.1007/s00383-012-3254-8 |
[43] | PERLMAN E J, GRUNDY P E, ANDERSON J R, JENNINGS L J, GREEN D M, DOME J S, et al. WT1 mutation and 11P15 loss of heterozygosity predict relapse in very low-risk Wilms tumors treated with surgery alone:a children's oncology group study[J]. J Clin Oncol, 2011, 29: 698–703. DOI: 10.1200/JCO.2010.31.5192 |
[44] | ISIDOR B, BOURDEAUT F, LAFON D, PLESSIS G, LACAZE E, KANNENGIESSER C, et al. Wilms' tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastoma[J]. Eur J Hum Genet, 2013, 21: 784–787. DOI: 10.1038/ejhg.2012.252 |
[45] | SEGERS H, VAN DEN HEUVEL-EIBRINK M M, WILLIAMS R D, VAN TINTEREN H, VUJANIC G, PIETERS R, et al. Gain of 1q is a marker of poor prognosis in Wilms' tumors[J]. Genes Chromosomes Cancer, 2013, 52: 1065–1074. DOI: 10.1002/gcc.22101 |
[46] | GRATIAS E J, JENNINGS L J, ANDERSON J R, DOME J S, GRUNDY P, PERLMAN E J. Gain of 1q is associated with inferior event-free and overall survival in patients with favorable histology Wilms tumor:a report from the Children's Oncology Group[J]. Cancer, 2013, 119: 3887–3894. DOI: 10.1002/cncr.28239 |
[47] | VOKUHL C, VOGELGESANG W, LEUSCHNER I, FURTWANGLER R, GRAF N, GESSLER M, et al. 1q gain is a frequent finding in preoperatively treated Wilms tumors, but of limited prognostic value for risk stratification in the SIOP2001/GPOH trial[J]. Genes Chromosomes Cancer, 2014, 53: 960–962. DOI: 10.1002/gcc.v53.11 |
[48] | SATOH Y, NAKADATE H, NAKAGAWACHI T, HIGASHIMOTO K, JOH K, MASAKI Z, et al. Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms' tumours[J]. Br J Cancer, 2006, 95: 541–547. DOI: 10.1038/sj.bjc.6603302 |
[49] | PLUCIENNIK E, NOWAKOWSKA M, WUJCICKA W I, SITKIEWICZ A, KAZANOWSKA B, ZIELINSKA E, et al. Genetic alterations of WWOX in Wilms' tumor are involved in its carcinogenesis[J]. Oncol Rep, 2012, 28: 1417–1422. DOI: 10.3892/or.2012.1940 |
[50] | OHSHIMA J, HARUTA M, FUJIWARA Y, WATANABE N, ARAI Y, ARIGA T, et al. Methylation of the RASSF1A promoter is predictive of poor outcome among patients with Wilms tumor[J]. Pediatr Blood Cancer, 2012, 59: 499–505. DOI: 10.1002/pbc.v59.3 |
[51] | HUBERTUS J, LACHER M, ROTTENKOLBER M, MULLER-HOCKER J, BERGER M, STEHR M, et al. Altered expression of imprinted genes in Wilms tumors[J]. Oncol Rep, 2011, 25: 817–823. |
[52] | YUAN E, LI C M, YAMASHIRO D J, KANDEL J, THAKER H, MURTY V V, et al. Genomic profiling maps loss of heterozygosity and defines the timing and stage dependence of epigenetic and genetic events in Wilms' tumors[J]. Mol Cancer Res, 2005, 3: 493–502. DOI: 10.1158/1541-7786.MCR-05-0082 |
[53] | MASCHIETTO M, CHARLTON J, PEROTTI D, RADICE P, GELLER J I, PRITCHARD-JONES K, et al. The IGF signalling pathway in Wilms tumours——a report from the ENCCA Renal Tumours Biology-driven drug development workshop[J]. Oncotarget, 2014, 5: 8014–8026. DOI: 10.18632/oncotarget.v5i18 |
[54] | CHARLTON J, PAVASOVIC V, PRITCHARD-JONES K. Biomarkers to detect Wilms tumors in pediatric patients:where are we now?[J]. Future Oncol, 2015, 11: 2221–2234. DOI: 10.2217/fon.15.136 |
[55] | CHARLTON J, WILLIAMS R D, WEEKS M, SEBIRE N J, POPOV S, VUJANIC G, et al. Methylome analysis identifies a Wilms tumor epigenetic biomarker detectable in blood[J]. Genome Biol, 2014, 15: 434. DOI: 10.1186/s13059-014-0434-y |
[56] | PODE-SHAKKED N, HARARI-STEINBERG O, HABERMAN-ZIV Y, ROM-GROSS E, BAHAR S, OMER D, et al. Resistance or sensitivity of Wilms' tumor to anti-FZD7 antibody highlights the Wnt pathway as a possible therapeutic target[J]. Oncogene, 2011, 30: 1664–1680. DOI: 10.1038/onc.2010.549 |
[57] | MATURU P, JONES D, RUTESHOUSER E C, HU Q, REYNOLDS J M, HICKS J, et al. Role of cyclooxygenase-2 pathway in creating an immunosuppressive microenvironment and in initiation and progression of Wilms' tumor[J]. Neoplasia, 2017, 19: 237–249. DOI: 10.1016/j.neo.2016.07.009 |
[58] | SHIRAKATA T, OKA Y, NISHIDA S, HOSEN N, TSUBOI A, OJI Y, et al. WT1 peptide therapy for a patient with chemotherapy-resistant salivary gland cancer[J]. Anticancer Res, 2012, 32: 1081–1085. |
[59] | PROVASI E, GENOVESE P, LOMBARDO A, MAGNANI Z, LIU P Q, REIK A, et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer[J]. Nat Med, 2012, 18: 807–815. DOI: 10.1038/nm.2700 |