第二军医大学学报  2017, Vol. 38 Issue (1): 97-101   PDF    
早老素在扩张型心肌病中的作用研究进展
袁青宁, 杨勇骥, 雷长海     
第二军医大学基础部生物物理学教研室, 上海 200433
摘要: 早老素(presenilin,PS)是在家族性早发型阿尔茨海默病中发现的一种跨膜蛋白,主要表达于细胞膜和细胞器膜上。PS作为γ-分泌酶的重要组成部分,参与细胞内多种蛋白的调控。近年研究发现在扩张型心肌病中存在PS基因突变,并且发现PS基因对心脏的形成及心肌细胞中钙稳态的调控具有重要作用。本文综述了PS在心脏中的作用以及PS可能影响心肌细胞钙稳态的相关机制,后者包括β-淀粉样蛋白、1,4,5-三磷酸肌醇受体、Ryanodine受体、钙泵等,为家族性扩张型心肌病的研究提供参考。
关键词: 早老素类     扩张型心肌病     淀粉样前体蛋白          γ-分泌酶    
Presenilins in dilated cardiomyopathy: an update
YUAN Qing-ning, YANG Yong-ji, LEI Chang-hai     
Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, China
Abstract: Presenilin (PS) is a transmembrane protein identified in familial early-onset Alzheimer disease, and it is mainly expressed in cell membranes and organelle membranes. As an important catalytic core of the γ-secretase multimeric enzyme complex, PS has been implicated in regulating various proteins. Recent researches have shown that mutations in PS are identified in the familial dilated cardiomyopathy, and the PS gene plays an important role in cardiac formation and regulation of calcium homeostasis in myocardial cells. In this review, we summarized the function of PS in heart and the mechanisms underlying the effects of PS on calcium homeostasis, such as amyloid β protein (Aβ), 1, 4, 5-inositol trisphosphate receptors, ryanodine receptors and PS as endoplasmic reticulum (ER) Ca leak channels, hoping to provide a theoretical basis for the therapy of dilated cardiomyopathy.
Key words: presenilins     dilated cardiomyopathy     amyloid precusor protein     calcium     γ-secretase    

扩张型心肌病(dilated cardiomyopathy, DCM)是指单心室或双心室的扩张,并伴有心室收缩功能减退的心脏疾病。DCM在各年龄段都可能发生,以20~60岁之间最为常见。大约三分之一的DCM患者会发展为充血性心力衰竭(heart failure, HF),且5年内死亡率可达50%[1],因此,是否患有DCM成为心脏移植的重要诊断标准。早老素(presenilin, PS)突变是家族性阿尔茨海默病(Alzheimer disease, AD)发生的主要诱因,但近些年研究发现DCM患者中也存在PS突变[2-3]。本文主要对PS在扩张型心肌病中的作用以及其引起扩张型心肌病的可能机制进行综述。

1 PS蛋白的生物学特性

目前已在多种物种中发现PS蛋白的存在,包括哺乳动物、青蛙、蠕虫等生物。在神经细胞和心肌细胞中PS主要表达于内质网(ER)和高尔基体膜上,在细胞膜上也有少量的表达。PS蛋白为9次跨膜蛋白,氨基端在胞质内,羧基端在胞质外;其在哺乳动物细胞内主要有PS1和PS2两种类型,两者具有高度同源性。PS1位于14号染色体上,由476个氨基酸残基组成,相对分子质量约50 000;PS2位于1号染色体上,是PS1蛋白在N端丢失了第26~29位4个氨基的跨膜蛋白。PS1和PS2在结构和功能上都具有高度保守性。Ilaya等[4]研究发现,PS2蛋白在PS1缺失细胞中的表达量升高,可能因为在功能上PS2对PS1存在补偿作用,这一观点和前期的研究结果一致[5]。但Nakajima等[6]发现,在PS1缺失的状态下PS2的高表达并没有改善血管表型,表明PS2的高表达并不能完全补偿PS1的缺失。因此,PS1和PS2在功能上存在一定程度的补偿作用,但是两者的功能又不完全相同[7]

PS是γ-分泌酶的催化核心,可以被γ-分泌酶内切形成N端(NFT,相对分子质量约为30 000,TMD1-6)和C端(CFT,相对分子质量约为20 000,TMD7-9)两种片段,剪切片段的数量及比例对PS蛋白和γ-分泌酶的活性具有重要作用[8]γ-分泌酶属于膜内切割蛋白家族,参与AD的发生和发展,其可以调控细胞内多种信号蛋白的活性,主要底物包括淀粉样前体蛋白(amyloid precusor protein,APP)、Notch受体等Ⅰ型跨膜蛋白[9]γ-分泌酶由4种膜蛋白PS、Nicastrin、Pen2和Aph-1以1:1:1:1的形式组装而成[10]。近年来研究发现PS蛋白也可以不依赖γ-分泌酶发挥作用,调控细胞内钙稳态,维持细胞正常的生理功能[11]

2 PS在心脏中的作用 2.1 PS在心血管中的作用

PS蛋白不仅对神经细胞正常生理功能的维持具有重要作用,而且对心血管的形成、发育具有不可替代的作用[12-13]PS1基因缺失的小鼠在胚胎期或者出生时死亡,并表现为心脏多功能发育缺陷[14]。虽然PS1和PS2在结构和功能上具有相似性,但它们在心血管中具有不同的功能。Li等[15]研究发现,携带PS1突变的心血管疾病容易发展为DCM和HF,目前主要的治疗方法是心脏移植;而携带PS2突变的心血管疾病比较缓和,致死率较低,不需要心脏移植,预后效果较好。心肌细胞缺血、缺氧是诱导心脏疾病的主要原因之一。Mohuczy等[16]研究发现低糖、低氧环境下心肌细胞中PS2的表达量增加,表明心肌细胞可能通过上调PS2的表达调控自身状态。PS缺失小鼠主要表现为室间隔缺损、右心室双出口、肺动脉狭窄等异常现象。Nakajima等[12]发现,PS缺失鼠的肺动脉直径仅为正常鼠的53%,并发现PS缺失影响胚胎毛细血管内皮细胞增殖、凋亡、坏死等现象[6],提示PS可能对心血管正常发育具有重要作用。另有研究提示PS1可能参与组织器官中血管新生和发育问题[13, 17],进而诱导心脏疾病的发生和发展。在心肌细胞形态学方面,PS过表达和表达沉默时分别形成不同的病理特征:PS过量表达时心肌纤维细胞中出现不规则的液泡、变宽的Z线和肿胀的线粒体,而PS基因沉默时心肌纤维细胞中的液泡量减少,Z线中断,线粒体退化[18]

2.2 PS对心功能的影响

在心肌功能方面,Li等[18]发现在果蝇中过表达PS基因时果蝇的心率增加,而PS基因沉默时果蝇的心率降低且伴随年龄依赖性的左室舒张末期内径增加。PS基因沉默或过表达均能引起心率不规则性改变、心肌纤维化和线粒体功能受损,而线粒体的退化进一步促进了心肌细胞中能量的缺失,从而加速心脏疾病的发展过程。Takeda等[19]也发现,PS2敲除鼠表现为左心室收缩末压明显升高,表明PS2在维持正常心功能上具有重要作用。我们课题组研究发现敲除小鼠PS1后小鼠左室舒张末期的内径发生改变,射血分数和缩短分数增加(结果未发表),表明PS1在心脏发育中具有重要作用。

3 PS在心脏疾病中的钙调控机制

钙离子是心肌细胞内重要的第二信使,参与心肌细胞内多种生物功能的信号转导。细胞内钙离子浓度的改变对于细胞正常的生理功能调控具有不可替代的作用。心肌细胞内钙稳态的改变也是心脏疾病发生的重要原因之一。初步研究证据表明,细胞内钙稳态失调诱发原发性DCM,并且发现先天性DCM患者携带PS基因突变[15]。研究发现PS在心肌细胞钙库ER膜上表达较高,提示PS可能调控ER上钙通道蛋白影响细胞内钙稳态[20-21]

3.1 β-淀粉样蛋白(Aβ)的调控机制

APP是由770个氨基酸组成的Ⅰ型跨膜糖蛋白,经γ-分泌酶切割后形成Aβ[22]。临床研究发现,部分HF患者心脏中存在Aβ蛋白沉淀,并与其在神经细胞中的分布类似[23]PS基因突变诱导Aβ42低聚物的形成和积累,产生细胞毒性,影响细胞正常生理功能[24]。但目前临床以Aβ和Aβ产物的相关分泌酶作为治疗AD的靶点,并没有起到预期的治疗作用[25]

虽然Aβ的积累并不是引起AD神经细胞病变的主要原因,但是Aβ与细胞中钙稳态之间的相关性还需进一步探讨。有研究用0.5~5 g/mL低聚物处理急性分离的鼠心肌细胞,测定心肌细胞的钙瞬变和细胞收缩,结果发现低聚物诱导心肌细胞钙瞬变和钙释放率增加[26];后续研究也证明了这一点,认为Aβ可以引起细胞兴奋[27]。另有研究证明使用钙离子试剂调控胞质中的钙信号可以诱导Aβ产生和改变Aβ42:Aβ40比例[28]。HF时,细胞质中钙浓度升高、肌浆网中钙容量降低,加剧Aβ蛋白沉淀对心肌细胞生理功能的影响[29]。综上所述,目前有关细胞中钙离子与Aβ关系的研究已有一定进展,但两者之间的具体机制并不十分清楚,还需进一步研究证明。

3.2 膜蛋白调控机制

心肌细胞的钙循环主要包括肌浆网的钙释放、钙回摄及钙储存3个主要过程。研究发现PS基因突变影响胞质内的钙循环过程[11, 30]。钙调蛋白是调控细胞中钙稳态的主要蛋白,因此PS突变可能调控ER膜上1, 4, 5-三磷酸肌醇受体(IP3R)[31-32]和Ryanodine受体(RyR)[33-34]的活性,影响钙泵(SERCA)[35]的功能,从而影响PS蛋白作为钙离子泄露通道的功能[36]

现有两种机制解释PS对钙稳态的影响:(1) PS通过调控ER上钙调蛋白的表达影响钙稳态[33]。Gianni等[37]通过对SERCA的免疫共沉淀发现,PS蛋白和SERCA之间存在相互作用,PS1突变的细胞中SERCA的表达降低[18],而PS过表达则增加SERCA活性[35]。在PS1和PS2双敲除的细胞中也发现SERCA的功能降低[37],表明PS可能通过调控钙泵影响心肌细胞的钙回摄过程。Li等[18]发现过表达PS时,RyR的表达量减少到60%;PS沉默时IP3R的表达量增加了2.19倍,而SERCA的表达则减少到40%,表明PS过表达或沉默可导致不同钙调蛋白表达量的改变。Takeda等[19]发现PS2缺失可以引起细胞中钙稳态的改变,但并没有改变细胞中钙调蛋白的表达量。(2) PS蛋白自身形成Ca2+泄漏通道,促进肌浆网中的钙离子泄漏到胞质中[38-39]。Takeda等[19]发现PS2敲除小鼠心肌细胞中Ca2+瞬变峰值的丰度增加,峰值持续时间也有所改变,但钙调蛋白的表达量并没有改变;Tu等[36]实验发现PS蛋白可以介导质膜二价离子的跨膜流动。后续实验也发现,细胞中PS的缺失减少了ER内的钙容量和钙释放量、增加了胞质中Ca2+的浓度;并且认为静息期时,胞质中Ca2+浓度的增加可能是静息期ER中Ca2+泄漏增加的原因[40]。在PS转染细胞中,缓激肽(bradykinin,BK)诱导钙瞬变时间延长的原因很可能是钙泵需要更多时间才能将释放到胞质中的Ca2+回摄到泄漏的钙库中[36],表明PS在钙调控中具有重要作用。

4 小结

心脏疾病病因复杂,心脏中相关基因的突变都将可能引起心脏功能异常。临床研究发现家族性DCM患者中存在PS突变,因此以PS为作用靶点可能成为心脏病治疗和预防的一种新途径。尽管目前对PS在心脏中的作用以及分子机制的研究比较有限,但PS仍有望成为家族性心脏病的理想治疗靶点,值得进一步深入探讨。

参考文献
[1] FU M. Autoimmunity in idiopathic dilated cardiomyopathy:from patients to molecules and back to patients[J]. Int J Cardiol, 2006, 112: 1. DOI: 10.1016/j.ijcard.2006.07.002
[2] VEUGELEN S, SAITO T, SAIDO T C, CHAVEZ-GUTIERREZ L, DE STROOPER B. Familial Alzheimer's disease mutations in presenilin generate amyloidogenic Aβ peptide seeds[J]. Neuron, 2016, 90: 410–416. DOI: 10.1016/j.neuron.2016.03.010
[3] NEWELL K, VONSATTEL J P, MURRELL J, GAMBETTI P, GHETTI B. Phenotypic characterization of early-onset familial Alzheimer disease associated with a PSEN1 L418F mutation[J]. J Neuropath Neur, 2016, 75: 578.
[4] ILAYA N T, EVIN G, MASTERS C L, CULVENOR J G. Nicastrin expression in mouse peripheral tissues is not co-ordinated with presenilin and is high in muscle[J]. J Neurochem, 2004, 91: 230–237. DOI: 10.1111/jnc.2004.91.issue-1
[5] LAI M T, CHEN E, CROUTHAMEL M C, DIMUZIO-MOWER J, XU M, HUANG Q, et al. Presenilin-1 and presenilin-2 exhibit distinct yet overlapping gamma-secretase activities[J]. J Biol Chem, 2003, 278: 22475–22481. DOI: 10.1074/jbc.M300974200
[6] NAKAJIMA M, YUASA S, UENO M, TAKAKURA N, KOSEKI H, SHIRASAWA T. Abnormal blood vessel development in mice lacking presenilin-1[J]. Mech Dev, 2003, 120: 657–667. DOI: 10.1016/S0925-4773(03)00064-9
[7] RIVABENE R, VISENTIN S, PISCOPO P, DE NUCCIO C, CRESTINI A, SVETONI F, et al. Thapsigargin affects presenilin-2 but not presenilin-1 regulation in SK-N-BE cells[J]. Exp Biol Med (Maywood), 2014, 239: 213–224. DOI: 10.1177/1535370213514317
[8] RATOVITSKI T, SLUNT H H, THINAKARAN G, PRICE D L, SISODIA S S, BORCHELT D R. Endoproteolytic processing and stabilization of wild-type and mutant presenilin[J]. J Biol Chem, 1997, 272: 24536–24541. DOI: 10.1074/jbc.272.39.24536
[9] WOLFE M S, KOPAN R. Intramembrane proteolysis:theme and variations[J]. Science, 2004, 305: 1119–1123. DOI: 10.1126/science.1096187
[10] KITAGAWA N, SHIMOHAMA S, OEDA T, UEMURA K, KOHNO R, KUZUYA A, et al. The role of the presenilin-1 homologue gene sel-12 of Caenorhabditis elegans in apoptotic activities[J]. J Biol Chem, 2003, 278: 12130–12134. DOI: 10.1074/jbc.M212058200
[11] STILLER I, LIZAK B, BANHEGYI G. Physiological functions of presenilins; beyond gamma-secretase[J]. Curr Pharm Biotechnol, 2014, 15: 1019–1025. DOI: 10.2174/1389201015666141122204139
[12] NAKAJIMA M, MORⅡZUMI E, KOSEKI H, SHIRASAWA T. Presenilin 1 is essential for cardiac morphogenesis[J]. Dev Dyn, 2004, 230: 795–799. DOI: 10.1002/(ISSN)1097-0177
[13] GAMA SOSA M A, DE GASPERI R, HOF P R, ELDER G A. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation[J/OL]. Sci Rep, 2016, 6:30267. doi:10.1038/srep.30267.
[14] DORIT D B, HADJANTONAKIS A K, IKEDA M, ZHENG H, HYSLOP P S, BERNSTEIN A. Mice lacking both presenilin genes exhibit early embryonic patterning defects[J]. Gene Dev, 1999, 13: 2801–2810. DOI: 10.1101/gad.13.21.2801
[15] LI D, PARKS S B, KUSHNER J D, NAUMAN D, BURGESS D, LUDWIGSEN S, et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure[J]. Am J Hum Genet, 2006, 79: 1030–1039. DOI: 10.1086/509900
[16] MOHUCZY D, QIAN K, PHILLIPS M I. Presenilins in the heart:presenilin-2 expression is increased by low glucose and by hypoxia in cardiac cells[J]. Regul Peptides, 2002, 110: 1–7. DOI: 10.1016/S0167-0115(02)00225-2
[17] SOMAVARAPU A K, KEPP K P. The dynamic mechanism of presenilin-1 function:sensitive gate dynamics and loop unplugging control protein access[J]. Neurobiol Dis, 2016, 89: 147–156. DOI: 10.1016/j.nbd.2016.02.008
[18] LI A, ZHOU C, MOORE J, ZHANG P, TSAI T H, LEE H C, et al. Changes in the expression of the Alzheimer's disease-associated presenilin gene in drosophila heart leads to cardiac dysfunction[J]. Curr Alzheimer Res, 2011, 8: 313–322. DOI: 10.2174/156720511795563746
[19] TAKEDA T, ASAHI M, YAMAGUCHI O, HIKOSO S, NAKAYAMA H, KUSAKARI Y, et al. Presenilin 2 regulates the systolic function of heart by modulating Ca signaling[J]. FASEB J, 2005, 19: 2069–2071.
[20] HONARNEJAD K, HERMS J. Presenilins:role in calcium homeostasis[J]. Int J Biochem Cell Biol, 2012, 44: 1983–1986. DOI: 10.1016/j.biocel.2012.07.019
[21] POPUGAEVA E, BEZPROZVANNY I. Role of endoplasmic reticulum Ca signaling in the pathogenesis of Alzheimer disease[J]. Front Mol Neurosci, 2013, 6: 29.
[22] HARDY J, SELKOE D J. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics[J]. Science, 2002, 297: 353–356. DOI: 10.1126/science.1072994
[23] GLABE C G, KAYED R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis[J/OL]. Neurology, 2006, 66:S74-S78. doi:10.1212/01.wnl.0000192103.24796.42.
[24] SMOLARKIEWICZ M, SKRZYPCZAK T, WOJTASZEK P. The very many faces of presenilins and the gamma-secretase complex[J]. Protoplasma, 2013, 250: 997–1011. DOI: 10.1007/s00709-013-0494-y
[25] MULLANE K, WILLIAMS M. Alzheimer's therapeutics:continued clinical failures question the validity of the amyloid hypothesis-but what lies beyond?[J]. Biochem Pharmacol, 2013, 85: 289–305. DOI: 10.1016/j.bcp.2012.11.014
[26] BRAWEK B, SCHWENDELE B, RIESTER K, KOHSAKA S, LERDKRAI C, LIANG Y, et al. Impairment of in vivo calcium signaling in amyloid plaque-associated microglia[J]. Acta Neuropathologica, 2014, 127: 495–505. DOI: 10.1007/s00401-013-1242-2
[27] EVANGELISTI E, ZAMPAGNI M, CASCELLA R, BECATTI M, FIORILLO C, CASELLI A, et al. Plasma membrane injury depends on bilayer lipid composition in Alzheimer's disease[J]. J Alzheimers Dis, 2014, 41: 289–300.
[28] LI N M, LIU K F, QIU Y J, REN Z H, DAI R J, DENG Y L, et al. Effect of presenilin mutations on APP cleavage; insights into the pathogenesis of FAD[J]. Front Aging Neurosci, 2016, 8: 51.
[29] SMALL D H, GASPERINI R, VINCENT A J, HUNG A C, FOA L. The role of a beta-induced calcium dysregulation in the pathogenesis of Alzheimer's disease[J]. J Alzheimers Dis, 2009, 16: 225–233.
[30] HUANG H C, TANG D, LU S Y, JIANG Z F. Endoplasmic reticulum stress as a novel neuronal mediator in Alzheimer's disease[J]. Neurol Res, 2015, 37: 366–374. DOI: 10.1179/1743132814Y.0000000448
[31] SEPULVEDA-FALLA D, BARRERA-OCAMPO A, HAGEL C, KORWITZ A, VINUEZA-VELOZ M F, ZHOU K, et al. Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis[J]. J Clin Invest, 2014, 124: 1552–1567. DOI: 10.1172/JCI66407
[32] SHILLING D, MÜELLER M, TAKANO H, MAK D O, ABEL T, COULTER D A, et al. Suppression of InsP 3 receptor-mediated Ca signaling alleviates mutant presenilin-linked familial Alzheimer's disease pathogenesis[J]. J Neurosci, 2014, 34: 6910–6923. DOI: 10.1523/JNEUROSCI.5441-13.2014
[33] DEL PRETE D, CHECLER F, CHAMI M. Ryanodine receptors:physiological function and deregulation in Alzheimer disease[J]. Mol Neurodegener, 2014, 9: 1–15. DOI: 10.1186/1750-1326-9-1
[34] D'ADAMIO L, CASTILLO P E. Presenilin-ryanodine receptor connection[J]. Proc Natl Acad Sci USA, 2013, 110: 14825–14826. DOI: 10.1073/pnas.1313996110
[35] GREEN K N, DEMURO A, AKBARI Y, HITT B D, SMITH I F, PARKER I, et al. SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production[J]. J Cell Biol, 2008, 181: 1107–1116. DOI: 10.1083/jcb.200706171
[36] TU H, NELSON O, BEZPROZVANNY A, WANG Z, LEE S F, HAO Y H, et al. Presenilins form ER Ca leak channels, a function disrupted by familial Alzheimer's disease-linked mutations[J]. Cell, 2006, 126: 981–993. DOI: 10.1016/j.cell.2006.06.059
[37] GIANNI D, LI A, TESCO G, MCKAY K M, MOORE J, RAYGOR K, et al. Protein aggregates and novel presenilin gene variants in idiopathic dilated cardiomyopathy[J]. Circulation, 2010, 121: 1216–1226. DOI: 10.1161/CIRCULATIONAHA.109.879510
[38] BRUNELLO L, ZAMPESE E, FLOREAN C, POZZAN T, PIZZO P, FASOLATO C. Presenilin-2 dampens intracellular Ca stores by increasing Ca leakage and reducing Ca uptake[J]. J Cell Mol Med, 2009, 13: 3358–3369. DOI: 10.1111/j.1582-4934.2009.00755.x
[39] MIDDE K, RICH R, SAXENA A, GRYCZYNSKI I, BOREJDO J, DAS H K. Membrane topology of human presenilin-1 in SK-N-SH cells determined by fluorescence correlation spectroscopy and fluorescent energy transfer[J]. Cell Biochem Biophys, 2014, 70: 923–932. DOI: 10.1007/s12013-014-9999-z
[40] DAS H K, TCHEDRE K, MUELLER B. Repression of transcription of presenilin-1 inhibits γ-secretase independent ER Ca leak that is impaired by FAD mutations[J]. J Neurochem, 2012, 122: 487–500. DOI: 10.1111/jnc.2012.122.issue-3